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Comparing multiple RNA secondary structures
using tree comparisons

Bruce A.Shapiro and Kaizhong Zhang1

Abstract

In a previous paper, an algorithm was presented for analyzing
multiple RNA secondary structures utilizing a multiple string
alignment algorithm. In this paper we present another approach
to the problem of comparing many secondary structures by
utilizing a very efficient tree-matching algorithm that will
compare two trees in O(\Tt\ X |7*2| X L, X L2) in the worst
case and very close to 0(17^1 X \T2\) for average trees
representing secondary structures. The result of the pairwise
comparison algorithm is then used with a cluster algorithm to
produce a multiple structure clustering which can be displayed
in a taxonomy tree to show related structures.

Introduction

In a previous paper (Shapiro, 1988), an algorithm was presented
that utilizes a multiple sequence homology algorithm (Sobel and
Martinez, 1986) to compare many RNA secondary structures.
The object of such analysis is to be able to determine how
structural similarity is related to functional similarity. This
approach is analogous to the philosophy behind sequence
homology programs (Needleman and Wunsch, 1970; Sankoff,
1972; Sellers, 1980; Dumas and Ninio, 1982; Goad and
Kanehisa, 1982; Nussinov, 1983; Wilbur and Lipman, 1983;
Fickett, 1984) where portions of sequence that show homology
are assumed to behave in a similar way in a functional sense.
Recent biological experiments (Hall et al., 1982; Altuvia et al.,
1987; Berkhout etal., 1987; Deckman and Draper, 1987;
Thomas and Nomura, 1987; Tuerk et al., 1988) have indicated
how in several instances structural motifs appear to have similar
functionality. It is also becoming evident that certain sequence
motifs appear to be reproducible in structures that are in
themselves reproducible, e.g. the recent paper by Tuerk et al.
(1988) that seems to indicate that the CUUCGG motif appears
quite often in structural hairpins that apparently occur in
termination sites. The presumption, of course, is that structures
that are functionally similar will have similar structures. This
concept of determining similarity may also be useful for
structure prediction of phylogenetically related structures.

Thus, the ability to compare secondary structures and
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substructures can elucidate potentially interesting sites and
structures (Konings and Hogeweg, 1989; Margalit et al., 1989).
The methodology discussed in this paper has the ability to
examine structural motifs at various levels because of a very
general cost function. It is possible, for example, to determine
high-level structural similarity in a manner similar to that
discussed in Shapiro (1988). That is, one may determine that
structures are similar if they have a similar topological
arrangement of loops. This does not account for loop sizes or
helical stem sizes. At another level, it is possible to incorporate
loop and stem sizes so that the cost function will distinguish
between two structures that may have the same looping structure
but may differ in the actual sizes of the loops or helical stems.
Obviously, this level is able to pick up more subtle differences
among the structures than the previous level. At another level
it is possible to include loop component sizes. That is, similarity
is determined by not just the general morphology but also by
the sizes of the two parts of an internal loop or the sizes of
the multiple parts of a multibranch loop. At yet another level,
it would be possible to include actual sequence data. This would
distinguish for example, between structures that have the same
shape and size but may differ in the nucleotides that comprise
a given substructure. This would determine whether, for
example, a compensatory base change has conserved the
structure. The general cost function could also contain
information such as energy of loops or regions or any other
properties that one may desire.

RNA secondary structure and trees

If one examines a typical secondary structure such as the one
depicted in Figure 1 (a) it becomes apparent that such a structure
may be represented as a tree (see Figure lb). One may represent
the helical stems and loops as nodes in such a tree. In Shapiro
(1988) the stems were not considered as nodes. Only the loops
were represented as nodes. This permitted a higher level of
abstraction but also reduced the amount of information available
for comparisons. In the current representation, the helical stems
may be included as nodes so that information such as stem and
loop size may be included in the cost function. The tree shown
is considered an ordered tree where the ordering is imposed
based upon the 5' to 3' nature of the molecule. That is, one
may visit the nodes in a very definite order that has implications
on the way the tree may be represented. In this paper a tree
is represented by a fully parenthesized notation where the root
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of every subtree precedes all the nodes contained in its subtree.
Thus, the tree depicted in Figure l(b) may be represented in
the fully parenthesized form as

(N(R(I(R(M(R(B(R(M(R(H))

where hairpin nodes are represented by H, internal loops are
represented by I, bulge loops are represented by B, multibranch
loops are represented by M, helical stem regions are represented

a
1 10
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U'A

A U
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B H

by R (shown here as connecting arcs) and N is a special node
that is used to make sure the tree is connected.

Following the tree representation presented above is a list
of properties for each node. This property list may be empty
if one is interested in only the general loose topology of the
conformation. The property list is depicted in preorder. That
is, the root node is depicted before any of its subtrees and the
subtrees are traversed in a left to right order. Thus, the preorder
traversal of the parenthesized expression shown above would
be the same as the left to right order of the nodes shown in
the expression above except the parentheses would be removed.
Thus, the properties are represented in such an order with their
property name associated with its value. For example, a
property list for total size comparison for the structure shown
in Figure 1 will look as follows,

Nsize 2; Rsize 2; Isize 3; Rsize 3; Msize 5; Rsize 4; Bsize 1;
Rsize 3; Msize 0; Rsize 3; Hsize 7; Rsize 11; Hsize 5; Rsize 5;
Hsize 5;

The property list shown only contains the size property per
node. It is possible as indicated above that more information
may be provided per node, e.g. sizes of loop components,
sequence information and energy. Each node is delimited by
a semicolon. Input to the algorithm generally consists of a file
containing a series of parenthesized tree representations followed
by the property lists associated with each tree. The property
lists may be empty if size information is not of interest. The
information illustrated above is all obtained from a standard
region table used for representing the secondary structure of
a molecule. The region table for the above example (shown
in Table I) consists of a quadruplet for each helical stem in the
structure. The components of the quadruplets are the 5' start
position of the region, its 3' ending position, the region's size
and its energy. Table I contains the information required to
construct the drawing shown in Figure l(a) (Shapiro etal.,
1984) and the tree representations above.

Tree comparison algorithm

Definitions and background

The algorithm described in this section (Zhang and Shasha,
1990) is a generalization of the algorithms used for determining

Table I. Region table used to generate the secondary structure drawing in
Figure l(a) and the tree in Figure l(b)

H H

Fig. 1. Illustration of a typical RNA secondary structure and tree representation,
(a) normal polygonal representation of the structure: (b) tree representation of
the structure.

Region no.

1
2
3
4
5
6
7

5' start

9
13
16

126
131
134
161

3' stop

187
184
121
180
176
160
173

Size

2
3
5
4
3

II
3

Energy

-2 .3
-4 .3
-5 .9
-5 .5
- 5 2

- 2 0 2
-6 .3
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the edit distances between sequences. Three basic edit operations
are used to determine the distance between two trees. They are
relabel, delete and insert a node. That is, the object of the
algorithm is to determine that sequence of tree edit operations
that will change a tree T\ into a tree T2 with minimum cost.
Relabeling a node means changing the label on node n. Deleting
a node means making the children of node n become the children
of the parent of n and then removing n. Inserting is the
complement of delete. This means that inserting n as the child
of n' will make n the parent of all the nodes in one of the
subtrees of n' including the possibility of an empty subtree.
Figure 2 illustrates these editing operations.

An edit operation (Tai, 1979; Zhang and Shasha, 1990) may
be represented as a pair (a,b) =£ (X,X), sometimes written
a -~ b. a — b is called a relabeling operation if a ^ X and
b =£ X; a delete operation if b = X; and an insert operation
if a = X. We will assume a cost function defining the cost of
a — b, denoted by y(a — b), as c if a =£ b and 0 otherwise.
Let 5 be a sequence s{,... ,sk of edit operations that change tree

(A)

(B)

(C)
/

T| into tree T2. T\ may be changed to T2 by considering a
sequence of trees AQ,...,Ak such that A = Tu T2 = Ak, and
/l,_i —• A, via s, for 1 < / < / : . Thus, the cost of a sequence
is simply the sum of the cost function applied to each element
in the sequence. The distance between T\ and T2 is simply the
minimum cost sequence taking T\ to T2.

The editing operations described above correspond to a
mapping which is a graphical specification showing what edit
operations apply to each node in the two trees (or in a more
general case two ordered forests). The mapping shown in
Figure 3 shows a way to transform T{ to T2. It corresponds
to the two edit operations delete node with label f (f — X),
followed by insert node with label f (X — f).

Formally a mapping from 7", to T2 is a triple (M,TUT2),
where M is any set of integers (ij) satisfying the following
conditions:

1. 1 s i s | Ty |, 1 •<, j ^ | T21, where | • | represents the
number of nodes in the indicated tree.

2. For any pair of (/', Ji) and (/'2J2) >n M:
(a) (one-to-one) /', = i2 iffy, = y2;
(b) (ancestor) Tt[i{] is an ancestor of 7"|[;2] iff T2\j\] is an

ancestor of T2\j2];
(c) (sibling) 7",[i|] is to the left of 7",[/2] iff T2\j2] is to the

left of T2\j2].

The notation M instead of (M,TtT2) will be used. The cost
of M, denoted by y(M), is the cost of nodes to be inserted (i.e.
those in T2 that are not touched by a mapping line) plus the
cost of the nodes to be deleted (i.e. those in 7, not touched
by a mapping line) plus the cost of nodes to be relabeled (i.e.
those pairs of nodes related by a mapping line with differing
labels).

Mappings can be composed. Let M{ be a mapping from T\
to T2 and let M2 be a mapping from T2 to 73. A composed
mapping of M\ and M2 may be defined as Mt • M2 =
WJ)\3k 3 (i,k) E Mx and (kj) € M2\. It can be proved "(not
shown here) that a cost function applied to a composed mapping

Fig. 2. Illustration of the three tree-editing functions, (a) relabeling, (b) deletion
and (c) insertion.

Fig. 3. Illustration of mapping tree Tt into tree T2. This mapping corresponds
to deleting the node labeling T followed by insertion of this node elsewhere.
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satisfies metric properties. It can also be proved (not shown
here) that given S, a sequence of edit operations from 7", to
T2, there exists a mapping M from 7", to T2 such that y(\f) <,
y(S) and conversely, for any mapping M, there exists a sequence
of editing operations such that y(S) = y{M).

Notation

In the algorithm to be discussed a left-to-right postorder traversal
of the trees being compared will be used (Knuth, 1973). Some
notation will now be defined to facilitate the understanding of
the algorithm. It is assumed that the nodes in the postorder
traversal are numbered from 1 to n where 1 represents the first
node in the traversal order and n represents the last. Thus, let
71/] be the <th node in the tree according to the left-to-right
postorder numbering. /(/) is the number of the leftmost leaf
descendant of the subtree rooted at T[i]. When 71/] is a leaf,
/(/) = /. T[i...j] is an ordered subforest of T induced by the
nodes numbered / toy inclusive. If/ > j , then T[i...j] is the
empty set. The distance between 7^[/'.../] and T2\j'...j] is
denoted by fdist(Tl[i'...i],T2\j'..J]) or fdist(i'...ij'...j) if the
context is clear. The distance between the subtree rooted at i
and the subtree rooted aty will be denoted by tdist(ij).

The algorithm

To compute the edit distance between two trees 7", and T2 it
suffices to compute fdist(l(i)... i\,l{j).. J\) for /(/) <, /', < /'and
/(/) < j , <, j where 1 25 / ^ |7",| and l s j < \T2\. This
distance may be recusively computed as the minimum of the
following three cases for a given (ij) pair:

1. 7"|[/|] is not touched by a line in M. So.

fdist(l{i)--h ,/(/)•• Ji) = JWsKKQ-'i - 1,/(/).. Ji)

2. 7"2[/]] is not touched by a line in M. So,

fdist(Ki)...i[,l(J)..JO = fdis

7,[/'|] and 7"2[/:] are touched by lines in M. By the ancestor
and sibling conditions on mappings (i\J\) must be in M. By
the ancestor condition on mapping, any node in the subtree
rooted at 7"|[/|] can only be touched by a node in the
subtree rooted at T2[j{]. Hence,

Since these three cases express all the possible mappings
yielding_/y/.y/(f| J | ) , the minimum edit distance is the minimum
of these three costs.

When either /(/,) * leftmost child of r,[/'] or /(/',) *
leftmost child of T2\j] [i.e. /(/,) * /(/) or /(/,) * /(/)] the equa-
tion filisW)...iiM-Ji) = JUisKM-Kii)-UV) -KjO-0 +
tdist(iiJt) can be used in place of the third case. This is true

because uBsKh Ji) < / ^ r ( / ( / 1 ) . . . / 1 - l , / ( / , ) . . y , - l ) + ^ i l ' i l
~ TJUi])- It 's ^so known that fdist(Ki)...i\,l{j)...jx) S

fdisKKi)-Ki\)-l,Kj)-Kj\)-l) + tdisKhJi). Strict inequality
occurs when the minimum distance is not due to the third case.

The algorithm may be further improved by checking for the
current trees being considered in the algorithm, rooted at / and
j , whether /(/,) = l(i) and l(j{) = l(j) as it andj\ run through
the subtrees of i andj. If this is so the third case may be further

simplified to fiHsKKO-ii-hW)-J\-l) + T^it ' i l -Tit / i l )
by just substituting /(/,) for /(/). Two sets KEYROOTS(T{) and
KEYROOTSiT^ are computed, where KEYROOTS is defined
as KEYROOTS(T) = |it| no k'>k such that l(k) = /(*')}.
The computation of these sets limits the computation of tdist
to the roots of all subtrees that have left siblings and to the root
of the trees. The subtree roots that are not in these sets will
be captured within the computation of the roots that are within
the sets. This last step permits the comparison of two trees that
are linear to be performed in a time proportional to a standard

Table II.

M Null

N
I
B
H
M
R
Null

0 00

0
00

3
0

oo
oo
00

oo

OO

0

00

5
5

100
75

5
0

Pig. 4. Example of how one might represent individual loop components in
a tree representation.
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string comparison algorithm. It can be shown that, in the general
case, the time required to compute the comparison of two trees
is 0(17,1 x|r2 |xL|XL2) where L, and L± are the depths of
trees 7", and T2. Again, if the trees are linear then the
algorithm basically runs in Oi\T{\ x|7"2|) time. The fewer the
number of nodes that have siblings, the closer to this running
time one gets.

The algorithm below fills a two-dimensional array called
TDlST\iJ) where 1 ^ / ^ | r , | and 1 ^j<,\T2\ which represents
the distance between all subtrees in T{ rooted at i and all
subtrees in T2 rooted at j . To facilitate the speed of the
algorithm l(k) is precomputed for each tree (see above). Also,
the two sets KEYROOTS(T,) and KEYROOTS(T2) are
precomputed.

The algorithm then proceeds as follows:

/*Precompute
l*main loop*/

) , KEYROOTS(Tt) and KEYROOTS(T2)*/

for i' = 1 to \KEYROOTS(TJ\
for j ' = 1 to \KEYROOTS(Ti)\

i = KEYROOTS(T{)[i']
j = KEYROOTS(Ji)\j']

Compute treedist(ij)

Procedure treedist(ij)

FDIST\O,O) = 0

for /', = /(O to i

FDIST\Ti[l(O- -i\ = FDlS1\T\[Ki)-i\ ~ 1,0])

= /(/) toy
FDIST\O,T2[l(j)...ji]) =
+ y(T2\Ji]-\)

for 11 = l(i) to i
for jt = /(/) to j

«//('i) = '(0 and /(/,) = /(/) then
= min|

I*store in array permanently*I
TDISTlixJi) = FDIST\T[[l(i)...ii]J2U(j)-J\})

else
FDIS1Xni{i)...i\],T2[l(j)...h]) = mini

The cost function

Currently, the cost function used for comparing secondary
structures is based upon the idea that the structures can be
viewed as levels of abstraction. The cost function varies
depending upon the amount of information that is included
within the nodes of the trees. The simplest one just compares
morphology, in which case the only node types that are being
compared are N, M, I, B and H. Table II indicates the current
heuristic costs that are used when comparing structures. It
should be emphasized that it is fairly easy to alter these costs.

If an insertion or deletion edit is performed, the cost assigned
is shown under the 'Null' column. The insertion or deletion
of a hairpin is highly penalized since the morphologic difference
produced by such an operation is quite substantial. The insertion
or deletion of a multibranch loop will lead to an even greater
penality since this will eventually cause a hairpin insertion or
deletion. The cost of comparing an I and a B labeled node is
3 (considered to be a relabeling operation as opposed to a
deletion followed by an insertion). The smaller penality was
chosen since the difference between an I and a B may be as
little as one nucleotide. An M compared to anything else but
an M and an R receives a cost of 8. This is being treated as
a relabeling of the nodes rather than a deletion followed by an
insertion. This heuristic interpretation is chosen because when
the node M is compared to an arbitrary node X, the best cost
up to this point has already been computed and therefore the
distance between the two forests is the best that it could be.
If a stem-loop structure were inserted,—as would happen, for
example, if an internal loop were being relabeled to a
multibranch loop—the cost of the insertion would be captured
by the insertion of the hairpin rather than the insertion of a
multibranch loop. Thus, the process should be one of relabeling
rather than the more difficult physical process of deletion and
insertion, which has already been accounted for. However, since
an M compared with something else is different than other
comparisons, its cost should not be as low as the other
relabelings described, thus the value 8 (as opposed to 5 or 3)
is used. An H compared to anything non-H is currently also
given a relabeling cost of 8. There can never be relabelings
of R's (regions). Regions, however, may be inserted or deleted.
Obviously two identical nodes receive a cost of 0.

When dealing with total size comparative costs, the same
weights as indicated above are used except that the absolute
difference in size of the loops and helical stems are also added
in determining the cost. A further refinement breaks the total
size cost into its component loop parts. The cost is then
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determined by taking the sum of the absolute differences of the
component parts of one node compared with the component
parts of another node, maintaining the order of the component
parts within the nodes and also adding in the relabeling and
insertion/deletion penalties described above. If the number of
component parts being compared are not the same, the best sum
of the differences is chosen. Note that bulge loops may be
represented as two components within a node, a 0 and the loop
size. The position of the 0 in a sense represents where the
stacking across the loop occurs (5' or 3' side). This last point
raises another issue when comparing loops with an unequal
number of components. It would be more ideal if instead of
choosing the best sum of the differences, the components that
make the most sense morphologically to be compared are
compared. For example, if the multibranch loop structure has
components sizes say (3,4,5) and it is being compared to an
internal loop with component sizes (4,5), instead of the
difference based on component size being 3 it might actually
make more sense for the difference to be 5. To fit the formalism
discussed in this paper, this could be accomplished by making
each loop component another node in the tree (see Figure 4).
Another refinement to be considered is the incorporation of
sequence data. This could be accomplished by making each
quartet of stacked bases a node in the tree for helical stems and
specifying the subsequence associated with the loop components.
The tree algorithm will handle the stem nodes with the current
paradigm and the component sequence within the loops may
be handled by a standard string homology algorithm.

Cluster algorithm

Once all the pairwise structure costs are computed, the next
step is to cluster together those structures that are most similar.
This is accomplished by a clustering algorithm (Hong and Tan,
1989) to be discussed. The output of the cluster algorithm is
a taxonomy tree whose terminal nodes contain the name of the
secondary structures and the non-terminal nodes represent a
metric measure of the distance between the structures contained
in the subtrees.

The metric used to construct the taxonomy tree is defined
as follows:

D(a,b) = rnin max = o,an =

where d{x,y) represents the pairwise tree cost distance between
two trees (structures). If one assumes that x and _y represent
two structures, ao,...,an represents a path from x to y going
through all possible combinations of pairs of structures. Thus,
if there where three structures x, y, z being considered, there
would be two possible paths connecting x and v, i.e. x—y and
x~ z — y. One chooses the maximum pairwise distance from
each path connecting x and y and then chooses the minimum

value from amongst these maximums. This minimum value
represents the metric distance D between these two structures.
The values of the non-terminal nodes in the taxonomy tree
define a lower bound on the distance d between terminal nodes
in its subtrees. The maximum distance d between two nodes
in the subtree below the non-terminal node is the sum of the
node costs times the number of children of a node minus 1 for
each non-zero non-terminal node from the current root of
interest for all subtrees of the current root of interest. Figure
5 gives an example of the compressed form (see below) of a
taxonomy tree based upon the above metric for 100 tRNA
structures.

A front-end system has been developed that runs on a
Symbolics 3675 workstation that generates the appropriate input
and output (display of taxonomy trees) for the algorithms
described above. This system is mouse and window driven,
making user interaction easy.

The taxonomy tree is generated in a parenthesized form on
a Sun. This representation is very similar to the parenthesized
representation for structures discussed earlier. The root of each
subtree forms an element at the beginning of a list with the cost
value D with its subtrees nested within. The terminal nodes in
the tree (and in the parenthesized expressions) are the names
of the structures. This representation is then passed to a
Symbolics 3675 computer and displayed in its graphical form.
This operation is initiated by clicking the mouse on an
appropriate entry in a command menu on the Symbolics. It
should be noted that even though the tree is generated on a
remote node tied to the Symbolics by ethernet with TCP/IP,
the operation is basically transparent to the user. The Symbolics
acts as a master controller, thereby making it easy to activate
programs that physically reside on different computer nodes
in the network. The philosphy is to integrate software into the
secondary structure analysis system (B.A.Shapiro, in
preparation) without worrying too much about the language or
the machine upon which the original algorithm was developed.

It should be noted that an option exists within the system to
compress a taxonomy tree that is too large to fit within the
display limits. All terminal nodes that are zero distance apart
can be collapsed into a new terminal node. Thus, more of the
tree becomes visible. There still remains the option of scrolling
the graphical presentation of the taxonomy tree to see those parts
that are still not in view. One can also decompress the tree
whenever desired or ask the system to find a specific structure
(terminal node) within the collasped tree. The node that contains
the specific structure will be decompressed.

Interaction with the taxonomy tree is also possible by
specifying the name of a structure (terminal node); the display
algorithm will locate the structure, center it in the display and
highlight it. This obviously becomes quite useful when dealing
with a large tree. Another option allows one to point at a specific
structure within the tree and a display of the structure will be
depicted.
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a

Fig. 5. Examples of taxonomy trees (a) A compressed taxonomy tree representing structural relationships for 100 tRNAs using only morphologic data, i.e.
only loop and region entities are used. The compressed form takes up less space. The area within the outlined region represents those nodes that contain structures
that are cloverleaf-like. (b) The same 100 tRNAs using the same cost function excep< that now the 47 cloverleaf-like structures are shown by name. Note the
33 that have identical top-level morphologic structures.
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~* "oeei

^ wi

Fig. 6. The compressed taxonomy tree of the same 100 tRNAs illustrated in Figure 5 except that here region and loop sizes are taken into account. The area
within A contains the 47 tRNAs that have cloverleaf-lilce structures. The area within B contains the 33 structures that were identical with the looser cost function
of Figure 5 but are now separated by the more refined cost function. The predetermined structure, PHENYL, is in node 45.
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Discussion

The pairwise tree comparison algorithm presented here was run
on 197 structures. At first a cost function that just distinguished
between the loop types was used. This did not include any
information concerning the size of loops or regions. The results
of these comparisons were then used as input to the clustering
algorithm mentioned above. The output was a taxonomy tree
where the terminal nodes represented the names of the individual
structures and the non-terminal nodes represented the minimum
of the maximum distances of the terminal nodes in its subtrees.
This result was compared with the algorithm presented in
Shapiro (1988). The results looked generally identical in that
the groupings of the structures seemed to be similar. The actual
time required to accomplish the tree comparison and the cluster
analysis on the 197 structures were comparable to the time
required to do the string comparison method described in
Shapiro (1988). The actual wall time was - 3 0 min.

A comparison was also run with 100 tRNA structures chosen
randomly from the sequence database. These sequences are
thought to have cloverleaf-like structures (Sussman and Kim,
1976; Wolfram, 1984). The sequences were folded using the
Zuker-Stiegler algorithm (Zuker and Stiegler, 1981) with
refined energy rules of Freier et al. (1986). In addition, a
determined secondary structure (Cantor and Schimmel, 1980)
for the tRNA of yeast phenylalanine, named PHENYL, was
included. Figure 5(a) illustrates the taxonomy tree that is
generated using just the morphologic information (no stem or
loop sizes). The tree is presented in its condensed form to allow
it to fit on the page. Nodes 22-30 have been expanded in
Figure 5(b) to depict 47 cloverleaf-like structures. It will be
noted that 33, from node 28, are morphologically identical.
There are 14 remaining cloverleaf-like structures that are
somewhat different than the previous 33. Figure 6 depicts the
condensed taxonomy tree using helix size and loop size in
addition to the morphology to compute the distances. The area
contained within the outer-ring indicates those structures that
are cloverleaf-like, i.e. the 47 that are discussed above. The
area within the inner ring contains the 33 structures that were
identical under the looser morphologic cost only but are now
more refined when taking into account the helix and loop sizes.
The predetermined structure of yeast phenylalanine is contained
in node 45.

It should also be noted that the multiple alignment program
GENALIGN (Sobel and Martinez, 1986) was run on the 100
sequences to test how sequence homology is related to structural
homology. The 47 cloverleaf structures were scattered
throughout the 100 multiple sequence alignments. Thus, the
sequence homology alone is not sufficient for determining
structural homology. As a matter of fact it has been shown that
there is a fair amount of sequence variability in tRNAs,
especially in base-paired regions. The invariance occurs
predominately in the loops (Wolfram, 1984). This does,
however, serve to illustrate a use for the algorithm by forming

the basis of a phylogenetic study of the structure for a class
of sequences. The combination of using computed structural
similarities in conjunction with sequence alignments can serve
as a powerful tool in this regard (see also Konings and
Hogeweg, 1989).

The wall time for computing the structural comparisons was
< 5 min. About 2 min were required to convert the computed
region tables for the structures into the representation that the
tree comparison algorithm requires. This operation was done
using the Symbolics 3675 reading files created and residing on
a VAX 8600 and writing the converted files to a sun. The tree
comparison took - 2 min on the sun. The results of the
comparison were displayed on the symbolics.

The algorithm has proven useful in searching for those
compensatory base changes that may preserve function. This
was accomplished by automatically generating double mutations
in sequences under controlled circumstances and then clustering
structures with the wild-type (Margalit et al., 1989). In addition,
it may also prove to be useful for searching through a series
of suboptimal conformations for consensus structures.

Further experiments are required with the cost function to
make it reflect the true costs of changing from one conformation
to another. Such a cost function should probably include a
measure of the energy required to change such conformations.
A weighted cost matrix should also be included at the level of
sequence comparisons so that, for example, differences brought
about by compensatory base changes have a different cost than
those brought about by other nucleotide differences.

In addition, work is currently underway concerning the
analysis of taxonomy trees derived from multiple foldings of
a single sequence. Such circumstances may arise from
suboptimal folding algorithms (Zuker, 1989). The results of
this work will be reported upon in a future paper.

The algorithms described above for comparing secondary
structure trees and generating taxonomy trees were written in
C and currently run on Sun workstations running Unix. A front-
end system has also been developed that runs on a Symbolics
3675 workstation. In addition, this system is being ported to
a Sun workstation to allow more general access. These systems
contain the algorithms to convert region tables to the appropriate
intermediate files. This general RNA structure analysis system
will be described in a future paper.
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