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Abstract

Motivation: Reconstruction of gene copy number evolution is an essential approach for understanding how com-
plex biological systems have been organized. Although various models have been proposed for gene copy number
evolution, existing evolutionary models have not appropriately addressed the fact that different gene families can
have very different gene gain/loss rates.

Results: In this study, we developed Mirage (MIxtuRe model for Ancestral Genome Estimation), which allows differ-
ent gene families to have flexible gene gain/loss rates. Mirage can use three models for formulating heterogeneous
evolution among gene families: the discretized C model, probability distribution-free model and pattern mixture
(PM) model. Simulation analysis showed that Mirage can accurately estimate heterogeneous gene gain/loss rates
and reconstruct gene-content evolutionary history. Application to empirical datasets demonstrated that the PM
model fits genome data from various taxonomic groups better than the other heterogeneous models. Using Mirage,
we revealed that metabolic function-related gene families displayed frequent gene gains and losses in all taxa
investigated.

Availability and implementation: The source code of Mirage is freely available at https://github.com/fukunagatsu/
Mirage.

Contact: fukunaga@aoni.waseda.jp or iwasaki@k.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Gene gain and loss events in genomes have played essential roles in
the evolutionary history of life. Complex biological systems that
function through the coordination of numerous genes, e.g. metabolic
pathways and signal transduction systems, have been constructed
through the accumulation of such events. To answer the fundamen-
tal biological question of how such complex systems have been
organized, gene-content evolutionary history has been studied with
established bioinformatics methods (Fernández and Gabaldón,
2020; Hahn et al., 2007; Iwasaki and Takagi, 2009; Montague
et al., 2014). The gene count method, which utilizes a species tree
and an ortholog table, is one of the effective methods for

reconstructing gene-content evolutionary history (Ames et al., 2012;
Cohen and Pupko, 2010; Csurös and Miklós, 2009; Hahn et al.,
2005; Han et al., 2013; Iwasaki and Takagi, 2007; Kim and Hao,
2014; Li et al., 2014, 2019; Librado et al., 2012; Liu et al., 2011;
Rabier et al., 2014; Snel et al., 2002; Zamani-Dahaj et al., 2016;
Zwaenepoel and Van de Peer, 2020). These algorithms estimate
gene content of ancestral species based on the maximum parsimony
or maximum likelihood (ML) method, where the ML method is
known to show better performance (Ames et al., 2012; Cohen and
Pupko, 2011).

In the ML method, it is important to specify which gene-content
evolutionary model is adopted. The ML method first estimates evo-
lutionary model parameters, such as gene gain and loss rates, and
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then the ML evolutionary history of gene content is reconstructed
based on the estimated parameters. Some ML methods adopt a two-
state evolutionary model and require a two-state ortholog table,
which contains the presence/absence information of each ortholog
group in each genome. These methods estimate whether each ortho-
log group existed or not at each ancestral node of the given phylo-
genetic tree (Cohen and Pupko, 2010; Li et al., 2014). Although the
two-state evolutionary model is mathematically simple, it is appar-
ently unable to deal with gene copy number variations, which play
important roles in the evolution of biological systems (Saitou and
Gokcumen, 2020). The other ML methods estimate a copy number
of each ortholog group at each ancestral node from an ortholog
table that contains copy number information of each ortholog group
in each genome.

To date, various gene gain/loss models have been proposed for
the gene copy number evolution. For example, the birth and death
(BD) model is a two-parameter model, which considers only gene
gain and loss parameters (Han et al., 2013; Iwasaki and Takagi,
2009; Fig. 1A). Other models [the Csurös and Miklós (C&M) model
and the birth, death and innovation (BDI) model] decompose the
gene gain parameter into gene birth (innovation) and duplication
parameters, resulting in three parameters (Ames et al., 2012; Csurös
and Miklós, 2009; Karev et al., 2002; Fig 1B and C). A richer par-
ameter model is the all rates different birth and death (BDARD)
model, which allows all gene gain and loss parameters to be varied
freely (Kim and Hao, 2014; Fig. 1D).

Another important aspect of gene-content evolution that should
be considered is that different gene families have different gene gain/
loss patterns (Krylov et al., 2003). For example, housekeeping genes
are seldom lost from genomes and thus the gene loss rates to zero
copies are small, whereas antibiotic resistance genes are easily lost
from genomes. Another example is olfactory receptor genes, which
are prone to increase copy numbers and have exceptionally large
gene gain rates. The most popular model considering the heterogen-
eity among gene families is the discretized C model, which assumes
that the distribution of the evolutionary rate multipliers follows the
discrete C distribution (Yang, 1994). Another rate multiplier hetero-
geneity model is the probability distribution-free (PDF) model,
which directly learns evolutionary rate multipliers from an input
dataset without making assumptions about the rate multiplier distri-
bution (Kalyaanamoorthy et al., 2017; Yang, 1995). These rate
multiplier heterogeneity models can represent heterogeneous evolu-
tionary rate multipliers among gene families (e.g. Kim and Hao,
2014; Librado et al., 2012), but cannot represent the heterogeneity
of rate patterns among gene families. For example, in the BD model
with a rate multiplier heterogeneity model, the ratio between the
gain and loss parameters becomes always constant among gene fam-
ilies. To deal with such heterogeneity, the pattern mixture (PM)
model is used in molecular evolutionary analyses (Dang and
Kishino, 2019; Lartillot and Philippe, 2004; Pagel and Meade,
2004; Quang et al., 2008). In gene-content evolutionary analyses,
the heterogeneity model has been adopted in the two-state

evolutionary model (Cohen and Pupko, 2010; Li et al., 2014;
Spencer and Sangaralingam, 2009; Zamani-Dahaj et al., 2016).
Additionally, in some methods, the discretized C model has been
used in the gene copy number evolution (Csurös and Miklós, 2009;
Librado et al., 2012; Mendes et al., 2020). However, there have
been no studies using the PDF or PM model for modeling the gene
copy number evolution; in other words, existing models cannot
reflect diverse gene copy number evolution patterns that depend on
gene families.

In this study, we developed Mirage (MIxtuRe model for
Ancestral Genome Estimation), which reconstructs a gene-content
evolutionary history based on various gene gain/loss models by un-
supervised classification of evolutionary patterns among gene fami-
lies. We verified that Mirage can estimate both model parameters
and gene-content evolutionary history with high accuracy using
simulated datasets. In addition, we demonstrated that the combin-
ation of the BDARD and PM models fitted empirical datasets
better than the other models. Finally, we reconstructed gene-content
evolutionary histories of several taxonomic groups using Mirage
and revealed that gene families involved in metabolic functions fre-
quently experienced gene gain/loss events in all taxonomic groups
investigated.

2 Methods

2.1 Input data for our method
The input data for our method are an ortholog table D and a phylo-
genetic tree T. D is a data matrix that consists of N species
(genomes) and L gene families (ortholog groups). Di;j, which is an
element of the species i and the gene family j in the matrix, repre-
sents the gene copy number of j in i. The phylogenetic tree T is a bin-
ary rooted tree whose branches have branch lengths greater than 0.
The tree has N leaves (external nodes), which correspond to the N
species in the ortholog table D. T also has N-1 internal nodes, which
correspond to the ancestral species. The reconstruction problem of
gene-content evolutionary history is defined as an estimation prob-
lem of gene copy numbers (X) in the ancestral species for each gene
family.

2.2 Gene-content evolutionary models
Gene-content evolution is formulated as a continuous-time Markov
model, where gene copy numbers and gene gain/loss events are rep-
resented as states and state transitions, respectively. Gene gain/loss
events in each gene family are assumed to have occurred independ-
ently of those in other gene families. In an infinitesimal time Dt, a
gene gain/loss event of one gene is assumed to have occurred at most
once. In the BD model, where the model parameters are a gene gain
rate a and a gene loss rate b, transitions from a gene copy number n
to nþ1 and n-1 occur at probabilities of aDt and bDt respectively,
in Dt (Han et al., 2013; Iwasaki and Takagi, 2009; Fig. 1A). Csurös

Fig. 1. Schematic illustration of the evolutionary models. Enclosed numerals and arrows indicate gene copy numbers and the gene gain/loss events, respectively. The Greek let-

ters denote independent rate parameters. (A) BD, (B) C&M, (C) BDI and (D) BDARD evolutionary models are shown
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and Miklós developed a model with three parameters: a gene acqui-
sition rate a, a gene loss rate b and a gene duplication rate c (Csurös
and Miklós, 2009; Fig. 1B). By assuming that a horizontal gene
transfer (HGT) is a main mechanism of gene acquisition, the C&M
model defines transition rates from n to nþ1 and n-1 as aþ nc and
nb, respectively (note that the gene gain/loss rates change linearly
with gene copy numbers). The other three-parameter model, the
BDI model, utilizes a novel gene family acquisition rate d in addition
to a general gene gain rate a, and a gene loss rate b (Ames et al.,
2012; Karev et al., 2002; Fig. 1C). This model is basically the same
as the BD model, except that the transition rate from 0 to 1 is d. The
most flexible model is the BDARD model, which allows all state
transition rates to be different (Kim and Hao, 2014; Fig. 1D).

For improved stability and ease of the computation, we set the
maximum gene copy number as a parameter lmax (i.e. gene families
having copy numbers larger than lmax are considered to have lmax

gene copies). Note that the limitation of maximum size was utilized
in some previous researches (Ames et al., 2012; Iwasaki and Takagi,
2007; Spencer et al., 2007) and results in a finite number of parame-
ters in the BDARD model. A large lmax value introduces more
parameters in the BDARD model and may cause instability of par-
ameter estimation. Here, the number of states is lmax þ 1 (0 to lmax).
Because lmax is a user-input parameter, the user can freely set it to a
reasonable value. Let R be a (lmax þ 1) � (lmax þ 1) transition rate
matrix. ½R�i;j, which is an (i, j)-th element of R, represents the state
transition rate from the state i to the state j in Dt. ½R�i;j ¼ 0 when
ji� jj > 1. We define Pðyjx;R; tÞ as a transition probability from
state x to y in time t. If t¼0, the gene copy number does not change
and Pðyjx;R; 0Þ ¼ ½I�x;y, where I is the identity matrix. If
t ¼ Dt; Pðyjx;R;DtÞ ¼ ½I þ RDt�x;y, where ½R�i;i ¼ �

P
j;i 6¼j ½R�i;j.

Then, under the Markov process assumption, we obtain
Pðyjx;R; tÞ ¼ ½limn!1 ðI þ t

n RÞn�x;y ¼ ½expðtRÞ�x;y.
Furthermore, we allowed different gene families to have different

gene gain/loss parameters. Instead of assuming that all of the L gene
families evolve under the same transition rate matrices, these models
utilize K transition rate matrices. Here, K is a user-input parameter.
Each of the gene families is probabilistically assigned to K clusters in
the framework of the mixture model. When the discretized C model
is used, the C distribution is divided into K categories so that each
category has the same probability, and calculates r1,. . .,rK as the
mean rates of each category. Here, the C distribution f(x) is
aa

CðaÞ expð�axÞxa�1, and the distribution is parameterized by a. Then,
the transition parameter matrix for each cluster k is defined as rkR.
In addition, /k, which is the probability that a gene family belongs
to the category k, is set to 1

K. When the PDF model is used, we do
not assume the discrete C distribution for the rate multiplier distri-
bution and directly learn rk and /k for each cluster i from the input
data. Note that both the discretized C model and the PDF model use
only single transition rate matrix R and thus cannot represent the
heterogeneity of evolutionary patterns among gene families. Finally,
when the PM model is used as the most flexible heterogeneous model,
we directly introduce K transition rate matrices (i.e. R1,. . .,RK .) and
learns Rk and /k for each cluster k from the input dataset.

2.3 Parameter estimation and gene-content evolution-

ary history reconstruction algorithm
The evolutionary model parameters to be estimated for the discre-
tized C model, the PDF model and the PM model are h ¼ fa;R; pg;
f/; r1; . . . ; rK;R; pg and f/;R1; . . . ;RK ;p1; . . . ;pKg, respectively.
Here, / is a K-length vector that is the mixing probability of each
gene-content cluster and pk is a (lmax þ 1)-length vector that is the
state occurrence probability of the k-th gene-content cluster at the
root node in the phylogenetic tree. For the discretized C and PDF
models, we assumed that all gene families follow the same distribu-
tion p. We modeled p and R as independent parameters whereas p is
generally modeled as the stationary distribution of the Markov pro-
cess formulated by the parameter matrix R in the DNA evolution
models. This is because it is difficult to assume stationarity in the
gene-content evolution (Wolf and Koonin, 2013).

The model parameters are estimated by the EM algorithm
(Dempster et al., 1977). The EM algorithm is an ML method for

estimating parameters from observed data in statistical models that
assume unobserved hidden states. In our model, the observed data
are the ortholog table D, while the unobserved hidden states are the
gene-content evolutionary history X and assignments of each gene
family to each gene-content cluster Z. The EM algorithm consists of
the following four steps. (1) Initialize the model parameter hold ran-
domly. (2) Calculate pðX;ZjD; holdÞ. (3) Calculate hnew ¼ argmax

hQðh; holdÞ, where Qðh; holdÞ ¼
P

X;Z pðX;ZjD; holdÞlnpðX;Z;DjhÞ.
(4) If the log-likelihood converges, terminate the EM algorithm.
Otherwise, substitute hnew for hold and return to the step (2).

Here, we describe the EM algorithm for the PM model in detail
(see Supplementary Material for those of the other models). The Q
function of our EM algorithm is described as follows:

Qðh; holdÞ ¼ 1

L

X
l;k;X2XðDlÞ

pðX;ZlkjDl; h
oldÞlnpðX;Zlk;DljhÞ;

where Dl is the column l of the ortholog table D, XðDlÞ is the set of all
possible gene-content evolutionary histories on Dl and Zlk is an indica-
tor variable representing whether the gene family l belongs to the gene-
content cluster k. Here, for the formula of conditional probabilities,

lnpðX;Zlk;DljhÞ ¼ lnpðXjZlk; hÞ þ lnpðZlkjhÞ

¼ lnpðXjRk; pkÞ þ ln/k::

Therefore,

Qðh; holdÞ ¼ 1

L

X
l;k

pðZlkjDl; h
oldÞ
�

ln /kþ

X
X2XðDlÞ

pðXjRold
k ; pold

k Þln pðXjRk;pkÞ
�
:

Here,

pðZlkjDl; hÞ / /kpðDljRk; pkÞ;

[pðZlkjDl; hÞ ¼
/kpðDljRk; pkÞPK
j¼1 /jpðDljRj; pjÞ

:

We describe pðZlkjDl; hÞ as cðZlkÞ for the simplicity of the notation.
Based on discussion of the sufficient statistics for the phylogenetic
tree model (Kiryu, 2011),

pðXjRk; pkÞ ¼
X
m;i

tm½Rk�i;iFðmÞði;XÞ þ
X
m;i;j

lnðtm½Rk�i;jÞNðmÞði; j;XÞþ

Xlmax

i¼0

nrootði;XÞlnðpkiÞ:

We assigned a distinct index to each node and tm is a branch length
between the node m and the parent node. FðmÞði;XÞ and NðmÞði; j;XÞ
are the fractional duration of the state i and the number of state
changes from the state i to the state j on the history X at the branch
between the node m and the parent node, respectively. nrootði;XÞ is
an indicator variable representing whether the root node takes the
state i on the history X. By substituting these formulae for the Q
function, we obtained the following equation:

Qðh; holdÞ ¼ 1

L

X
l;k

cðZlkÞ
�

ln/kþ

X
m;i

tm½Rk�i;iFðmÞði;Dl;R
old
k ; pold

k Þ þ

X
m;i;j

lnðtm½Rk�i;jÞNðmÞði; j;Dl;R
old
k ; pold

k Þ þ

X
i

nrootði;Dl;R
old
k ; pold

k ÞlnðpkiÞ
�
;

where FðmÞði;Dl;R
old
k ;pold

k Þ; NðmÞði; j;Dl;R
old
k ; pold

k Þ and nrootði;Dl;

Rold
k ;pold

k Þ are the expected values of FðmÞði;XÞ; NðmÞði; j;XÞ, and

nrootði;XÞ given Dl, Rold
k and pold

k , respectively.
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In the step 2 of our EM algorithm, we calculated the values of

cðZlkÞ; FðmÞði;Dl;R
old
k ;pold

k Þ; NðmÞði; j;Dl;R
old
k ; pold

k Þ and nrootði;Dl;

Rold
k ;pold

k Þ for each k and l. These expected values can be efficiently

calculated using eigenvalue decompositions of the state transition
probability matrices and a dynamic programming method for the
phylogenetic tree T (Holmes and Rubin, 2002; Kiryu, 2011; Quang
et al., 2008). Subsequently, we found the parameter h that maxi-
mized the Q function in the step 3. The details of the step 3 are
described in the Supplementary Material.

We obtained the computational time complexity per iteration as
follows. The most computationally expensive part of the algorithm
is calculating the expected number of transitions for each branch,
which is a part of dynamic programming in step 2. We need to cal-
culate ðlmax þ 1Þ4 expected values because the number of states is
(lmax þ 1). However, since we assumed ½R�i;j ¼ 0 when ji� jj > 1,
the number of transitions from the state i to j is always 0 when
ji� jj > 1. Therefore, the expected values that need to be counted
are Oðl3maxÞ. We have to calculate the expected values for each
branch, species and cluster, thus the total computational time com-
plexity per iteration is OðNLKl3maxÞ.

After the parameter estimation, the ML evolutionary history (X̂)
is reconstructed by a dynamic programming method using the esti-
mated parameters. The reconstruction method is similar to the
Viterbi algorithm, which obtains the ML path of hidden states in the
hidden Markov model, and also resembles an algorithm for the re-
construction of ancestral protein sequences (Pupko et al., 2000).
The details of the algorithms are described in the Supplementary
Materials. We implemented the algorithms in Cþþ, and the source
code is freely available at https://github.com/fukunagatsu/Mirage.

2.4 Preparation of simulated datasets
We evaluated the performance of Mirage using simulated datasets.
We simulated gene-content evolution for all combinations of four
gain/loss models (the BD, C&M, BDI and BDARD models) and
three heterogeneity models (the discretized C, PDF and PM models).
We used a perfect binary tree with 128 leaves as the input phylogen-
etic tree topology and determined the branch lengths by the Yule
process with a birth rate k of 5.0. For the number of gene-content
clusters K and the maximum gene family size lmax, we used two sets
of parameters, (K¼4 and lmax ¼ 3) and (K¼6 and lmax ¼ 5). The
parameter h was different for each evolutionary model, and these
were described in the Supplementary Materials.

We simulated the evolution of 10 000 gene families along the in-
put phylogenetic tree for a simulated dataset, and we constructed an
ortholog table from the gene copy numbers at the leaf nodes. We
prepared 10 simulated datasets, each of which consisted of an ortho-
log table and a phylogenetic tree.

2.5 Preparation of the empirical datasets
We created three empirical datasets including Archaea (domain),
Micrococcales (order) and Fungi (kingdom). We used ortholog
tables provided in the STRING database (Szklarczyk et al., 2019)
and NCBI Taxonomy for taxonomic annotation. Next, we retrieved
species in the phylogenetic trees provided by the Genome
Taxonomy Database release 89 (Parks et al., 2018) for Archaea and
Micrococcales, and those provided by the SILVA database release
111 (Yarza et al., 2017; Yilmaz et al., 2014) for Fungi. Then, we
removed species data that were only included in either the ortholog
tables or the phylogenetic trees from those datasets. In the Fungi
phylogenetic tree, some species contained multiple strains. For those
species, we randomly selected one strain and removed the others.
Then, we reshaped the phylogenetic trees to satisfy the following
three conditions: (i) a leaf of the phylogenetic trees always corre-
sponds to a species, (ii) tree topology is binary and (iii) the distances
and the phylogenetic relationships between species are the same as
in the original tree. Because there were branches with branch lengths
of 0 in the Fungi phylogenetic tree, we added a pseudo length
0.0001 to all tree branches. Note that the minimum branch length
excluding 0 in the tree was 0.00059, which was larger than 0.0001.
Finally, the Archaea, Micrococcales and Fungi datasets comprised

151 species and 11 650 gene families, 111 species and 9523 gene
families, and 123 species and 34 454 gene families, respectively. The
constructed datasets are freely available at https://github.com/fuku
nagatsu/Mirage.

2.6 Evaluation
The EM algorithm is guaranteed to converge to a local optimum but
not to a global optimum, and thus the estimation results can depend
on the initial values of the model parameters. Therefore, we esti-
mated parameters 100 times using the EM algorithm for each data-
set and each evolutionary model, and we adopted the estimation
results with the largest data likelihood.

In the simulated dataset analysis, to evaluate the effect of the het-
erogeneity model on the performance, we investigated the perform-
ance when we changed K. Additionally, to assess the accuracy of
presence/absence state reconstruction of the two-state model, we
examined the performance when we set lmax as 1. Furthermore, we
evaluated the difference in the performance among various gene
gain/loss models and heterogeneity models by applying these models
to the datasets generated by the BDARD model with the PM model.
As the evaluation criteria for the reconstructed evolutionary history,
in the experiments to evaluate the effect of K, gene gain/loss models
and heterogeneity models, we used the proportion of gene families
whose gene copy numbers were correctly estimated in ancestral
nodes. We also investigated the correlation coefficients between the
number of gene gain/loss events for gene families in the recon-
structed history and those in the true history. In the experiments to
assess the performance of the two-state model, we evaluated the esti-
mation accuracy of the presence or absence of gene families.

To evaluate the computational time, we applied Mirage to the
simulated datasets under various conditions. Six factors can affect
computational time: L (size of gene families), N (size of species), K,
lmax, a gain/loss model and a heterogeneity model. To estimate the
influence of each factor on the computational time, we first defined
the base condition and then measured the computation time by
changing only one factor from the base condition. The base condi-
tion was defined as a condition that L¼5000, N¼64, K¼6, lmax ¼
3, the gain/loss model is the BDARD model, and the heterogeneity
model is the PM model. We measured the computational time 100
times for each condition. The computation was conducted on an
Intel Xeon Gold 6130 2.1 GHz CPU with 16GB of memory.

In the empirical dataset analysis, we tested K values from 1 to 10
and lmax values from 2 to 4. We first divided each dataset into gene
families of training and test datasets, and estimated the model
parameters using the training dataset only. We then calculated log-
likelihoods of the test datasets based on the estimated parameters.
We divided the datasets in the following three ways. For experiment
1, we randomly divided the gene families into training and test data-
sets at a 4:1 ratio for each dataset. Here, the species sets were com-
mon between the two datasets. For experiment 2, for each dataset,
we randomly divided the species into training and test datasets at a
1:1 ratio. In this method, some gene families were shared between
the training and test datasets. For experiment 3, we further proc-
essed the datasets obtained by the second method. In particular, we
randomly assigned gene families shared between the training and
test datasets to either of the datasets, so that no gene families were
shared between the two datasets. Therefore, in this division, both
the species and gene families were different between the two data-
sets. The numbers of gene families for each dataset in the experi-
ments 2 and 3 are listed in Supplementary Table S1.

3 Results

3.1 Performance evaluation of Mirage based on

simulated datasets
For the evaluation of the performance of Mirage, we first applied
Mirage to the simulated datasets. Supplementary Figures S1 and S2
show the relative errors of the estimated model parameters. We
defined the relative error as 100� ĥ�h

h , where ĥ and h are the esti-
mated and true parameters, respectively. Additionally, in order to
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evaluate the variability of the estimation accuracy while ignoring
outliers, we used interquartile range (IQR), which is defined as a dif-
ference between the 75 and 25 percentiles of relative errors. When
K¼4 and lmax ¼ 3, the largest IQRs among the various model set-
tings were 2.30 for R, 12.49 for p, 7.19 for /, 4.18 for r and 3.50
for a. Additionally, when K¼6 and lmax ¼ 5, the largest IQRs
among the various model settings were 5.98 for R, 94.12 for p,
15.31 for /, 7.44 for r and 3.44 for a. These results show that
Mirage can estimate parameters with high accuracy although the ac-
curacy decreased when K and lmax were large. On the other hand, in
some model settings, the maximum values of the relative errors were
very large. For example, in the p estimation in the PM model, the
relative errors sometimes exceed 100.0, i.e. the estimated p may sub-
stantially differ from the true parameter. Such difficulty in root par-
ameter estimation is well-known and may stem from the fact that
the root node is the topologically furthest away from the observable
leaf nodes (i.e. extant genomes).

When we used the same model as the one that generated the
dataset for the estimation, the median of the accuracy of the recon-
structed ancestral states (gene copy numbers) was more than 75% in
all model settings (Supplementary Figs S3 and S4). Additionally, the
median of the correlation coefficients for evaluating the estimation
accuracy of numbers of gene gain/loss events was more than 97.5 in
all model settings (Supplementary Fig. S3 and S4). These results
show that Mirage can reconstruct the evolutionary history with high
accuracy. Next, to investigate the effect of the model misspecifica-
tion, we evaluated the different model from the one that generated
the dataset for the estimation. We investigated whether there is a dif-
ference in accuracy between the two methods using paired t-tests.
We used 0.05 as the original significance level, and we adjusted the
value using the Bonferroni’s multiple correction, which divides the
original significance level by the number of tests. When the phylo-
genetic mixture model was not used (i.e. K¼1), the reconstruction
accuracy and the correlation coefficients significantly decreased in
almost all cases, likely because the heterogeneity of gene-content
evolution was ignored (Supplementary Fig. S3 and S4). On the other
hand, when we set K to a larger value than the true value, we could
not observe the significant increase in the reconstruction accuracy
and the correlation coefficients in any cases (Supplementary Fig. S3
and S4). On the contrary, in some cases, such as the C model, the
larger K value shows better performance than the true K value.
These results mean that increasing the value of K does not signifi-
cantly impact the quantitative results.

If the copy number states were ignored and only presence/ab-
sence information was considered (i.e. if incorrect estimation among
the copy numbers 1, 2 and 3 was ignored), the median of the accur-
acy of presence/absence state reconstruction of the ancestral nodes
was more than 90.0% in all model settings (Supplementary Figs S5
and S6). When the two-state model (with the phylogenetic mixture
model) was applied to those cases (i.e. lmax ¼ 1), the accuracy sig-
nificantly decreased depending on the model setting in many cases
(Supplementary Figs S5 and S6). However, only when we used the
C&M model with the C model for the dataset with K¼4 and lmax ¼
3, the accuracy significantly increased. This result indicates that the
estimation of gene copy number evolution can become effective even
when only presence/absence information is reconstructed. Mirage
cannot estimate parameters when users set lmax to a value larger
than any value contained in the dataset. As Mirage is based on the
ML method, the parameters are estimated so that the probability of
an event not occurring in the dataset is zero.

We also investigated the performance among various gene gain/loss

models and heterogeneity models when the datasets were generated by

the BDARD model with the PM model (Supplementary Fig. S7).

Although we could not observe a significant difference probably be-

cause of outliers, we found that the median of the reconstruction accur-

acy and the correlation coefficients of the BDARD model with the PM

model were larger than those of the other models.
We finally evaluated the computational time of Mirage under

various conditions on the simulated datasets. We confirmed that the
computational time was linearly proportional to L, N and K and
more than linearly proportional to lmax as indicated by the

computational complexity analysis (Fig. 2A–D). The result about
lmax suggests that it is impractical to model the evolution of many
copy gene families, such as olfactory receptor genes (Niimura,
2009), in the current Mirage implementation. When we changed the
gain/loss models, the BDI and BDARD models were faster than the
BD and C&M models (Fig. 2E). Additionally, when we changed the
heterogeneity models, the PM model and the C model were the slow-
est and fastest, respectively (Fig. 2F). This result shows that the com-
putation time increases as the complexity of heterogeneity increases.

3.2 Comparison of models and parameters by holdout

validation based on empirical datasets
Next, we compared the effects of models and parameters by evaluat-
ing holdout performance of Mirage using empirical datasets. For the
appropriate setting of lmax, we first investigated the largest gene
copy number among all gene families. Supplementary Fig. S8 shows
cumulative relative frequency curves of the largest gene copy num-
ber in each gene family. In all datasets, the majority (80–90%) of
the gene families had a maximum value of 2–4. Because large lmax

values require huge computation time (Fig. 2D), we tested lmax val-
ues from 2 to 4 as a range of values that can be used in a case of
large-scale data analysis.

We learned the model parameters from the training datasets only
under various model settings and subsequently calculated the log-
likelihoods of the test datasets using the estimated parameters.
Regardless of lmax or the dataset used, the log-likelihood increased
with the increasing number of gene-content cluster K, except for
limited cases, likely because of convergence to local optima by the
EM algorithm. In addition, the BDARD and BD models showed the
best and the worst log-likelihood under the same heterogeneity
model, respectively (Fig. 3). When we changed the heterogeneity
model while using the BDARD model, the PM model achieved su-
perior performances to the other models, and the PDF model
showed slightly higher likelihood than the discretized C model.
When we divided the training and test datasets in different ways (i.e.
by species or by species and gene families), we obtained similar
results (Supplementary Figs S9 and S10). In conclusion, the combin-
ation with the BDARD and PM models yielded gene-content evolu-
tionary models with the largest log-likelihood values among the
models we investigated.

Interestingly, although the C&M and BDI models had the same
numbers of parameters, their log-likelihood values were slightly dif-
ferent (Fig. 3). When the Archaea or Micrococcales dataset was used
and lmax was 4, the C&M model exhibited a larger log-likelihood.
On the other hand, when the Fungi dataset was used, the BDI model
exhibited a larger log-likelihood. When lmax � 3, the C&M model
naturally assumes that gene duplication and loss rates change linear-
ly with gene copies, whereas the BDI model assumes that gene dupli-
cation and loss occur at a constant rate regardless of gene copy
numbers (Fig. 1). Thus, the difference likely reflects the nature of
gene duplications and losses in prokaryotic and eukaryotic genomes.
Specifically, the BDI model may be more suitable for eukaryotic evo-
lutionary processes in which meiotic recombination introduces tan-
dem gene duplications and losses, which are basically independent
of gene copy numbers.

3.3 Analysis of estimated evolutionary model

parameters
Next, we applied Mirage to each of the complete Archaea,
Micrococcales and Fungi datasets. Based on the holdout validation
results, we used the BDARD model with the PM model and lmax ¼ 3
for the evolutionary model. Additionally, we set K to 5 in order to
achieve both large likelihood in the holdout validation and high in-
terpretability thanks to the small number of K. Estimated model
parameters are presented in Table 1, Supplementary Figure S11 and
the Supplementary Data. In all datasets, the gene gain rates
(½Rk�i;iþ1) tended to be smaller than the gene loss rates ([½Rk�i;i�1),
being consistent to a previous study (Cohen and Pupko, 2010).

We next examined the evolutionary model parameters estimated
for each gene-content cluster and each dataset. To quantify the
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frequency of gene gain/loss events occur in each cluster k, we calcu-

lated a normalized cluster evolutionary rate, which was
Plmax

i¼0

pi½Rk�i;i
divided by the minimum of these values among each dataset
(Supplementary Fig. S12). The maximum normalized cluster evolu-
tionary rates were 87.4, 18.4, 18.7 for the Archaea, Micrococcales
and Fungi datasets, respectively, indicating that different gene-
content clusters have largely different evolutionary rates. The
Archaea dataset exhibited the largest difference, where the gene-con-
tent clusters 1, 2 and 3 exhibited large, moderate and small normal-
ized cluster evolutionary rates, respectively (Table 1). We also
investigated whether specific gene functions were enriched in specif-
ic gene-content clusters. We used EGGNOG database version 4.0
for gene annotation to COG, arCOG and NOG gene families and
version 3.0 for gene annotation to KOG category (Powell et al.,
2012, 2014). After removing ‘poorly characterized’ supercategories,
we observed differences in the enriched COG supercategories among
gene-content clusters (Supplementary Tables S2–S4).

3.4 Reconstruction of the gene-content evolutionary

history
We then reconstructed the gene-content evolutionary history for
each dataset using Mirage. We first counted gene gain/loss events in
each gene family from the reconstructed evolutionary history
(Supplementary Fig. S13). In all datasets, gene gain/loss events were
rare in most gene families, whereas some gene families exceptionally
frequently experienced gene/gain loss events. Supplementary Tables
S5–S7 list the 20 gene families with the most frequent gene gain/loss
events for each dataset. Many transposase genes were commonly
found in all three datasets, whereas one gene family, COG0286
(HsdM), commonly appeared in the lists of the Archaea and
Micrococcales datasets. COG0286 is annotated as a DNA methyl-
ase subunit of the type I restriction-modification system. It is reason-
able that a restriction-modification system has been spread by HGT,
as is well-known for the type II system (Jeltsch and Pingoud, 1996).

Finally, we investigated whether specific gene functions were
enriched in the gene families with frequent gene gain/loss events.
First, we examined differences in the distributions of the COG
supercategories between the top 10% of gene families with frequent
gene gain/loss events and entire gene families (Table 2). Based on the
v2 test with Bonferroni’s multiple correction, we found that the ‘me-
tabolism’ supercategory was significantly enriched in the gene fami-
lies with frequent gene gain/loss events in all datasets. Then, we
analyzed which categories in the ‘metabolism’ supercategory were
enriched in the different datasets (Table 3). In the Archaea dataset,
gene families in categories C, ‘Energy production and conversion’,
and P, ‘Inorganic ion transport and metabolism’, were the most
enriched, probably reflecting the diverse ways in which Archaea ob-
tain energy. In the Micrococcales and Fungi datasets, gene families
in categories E, ‘Amino acid transport and metabolism’, G,
‘Carbohydrate transport and metabolism’, I, ‘Lipid transport and
metabolism’ and Q, ‘Secondary metabolites biosynthesis, transport,
and catabolism’, were highly enriched, probably reflecting rich sec-
ondary metabolism functions of those taxonomic groups.

4 Discussion

In this study, we developed Mirage, which adopts heterogeneous
evolutionary model among gene families for accurate ML recon-
struction of gene-content evolutionary history.

We demonstrated that the combination with the BDARD and
PM models achieved good performance based on empirical datasets.
While the rate multiplier models, the PDF and discretized C models,
are very frequently used in the molecular evolutionary analysis, our
results show that these models may be not suitable for modeling
gene copy number evolution. Molecular evolution would follow
similar patterns because of physicochemical characteristics of substi-
tutions and/or constraints due to the genetic code, whereas gene
copy number evolution does not have such universal constraints and
therefore may show diverse evolutionary patterns.

Whether the proposed probabilistic model is identifiable is a crit-
ical theoretical problem in statistics. Here, ‘Identifiable’ means that

Fig. 2. The results of the computational time evaluation on simulated datasets. The x-axis represents the computational time. For each figure, we have changed (A) L, (B) N,

(C) K, (D) lmax, (E) gain/loss models or (F) heterogeneity models from the base model setting.
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two different parameters always produce different probability distri-
butions. Rhodes and Sullivant (2012) proved a theorem about a con-
dition for identifiability in general heterogeneous evolutionary rate
models. The theorem insists that heterogeneous evolutionary rate
models with large K can be identified when the number of species is
sufficiently large. However, we could not apply this theorem to our
model because the assumption of the stationarity of the Markov
process does not hold true. It is essential to discuss the identifiability
of gene-content evolution models in the future.

Although we assumed that the input phylogenetic tree was cor-
rect, the tree topology or branch lengths may contain estimation
errors. Incorrect trees would affect the estimation of ancestral gene
copy numbers. The analysis of the robustness to the input tree error
is important for the gene-content reconstruction analysis.
Additionally, in phylogenetic tree inference, to avoid inaccurate esti-
mation, phylogenetic relationships are often estimated not as a per-
fect binary tree but as a consensus tree or a phylogenetic network.
Improving Mirage to accept them as input is important in mitigating

the impact of estimation errors of phylogenetic trees on gene-content
evolution.

The datasets in this research are unreduced datasets but not un-
biased datasets because the datasets do not include OGs that are not
possessed by extant organisms. Examples of these OGs are those
that possessed by extinct organisms and have now been lost. The un-
biased datasets have to contain these OGs because our probabilistic
model can generate the all-absent patterns. Therefore, our estima-
tion may include biases based on the unobserved patterns even if we
use unreduced datasets (Cohen et al., 2008; Cs}urös, 2005;
Felsenstein, 1992). The development of the bias correction methods
for the EM algorithm is an essential future task.

The setting of the gene-content category number K is an import-
ant problem in Mirage. Although the Akaike Information Criterion
(AIC) is a widely used estimator for model selection in phyloge-
netics, AIC can only be applied to statistically regular models, whose
ML estimator asymptotically follows a normal distribution.
Mixture models are generally nonregular models, and thus we

Fig. 3. Log-likelihood values of various model settings by the holdout validation of the experiment 1. The x-axis and y-axis represent the number of gene-content clusters K

and the log-likelihood of the test dataset, respectively. The BD, C&M, BDI and BDARD models are represented by blue, green, yellow and red lines, respectively. In addition,

the PM, PDF and discretized C models are represented by solid, dashed and dotted lines, respectively. (A–C) Archaea dataset when lmax was set to 2–4, (D–F) Micrococcales

dataset when lmax was set to 2–4 and (G–I) Fungi dataset when lmax was set to 2–4
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cannot apply AIC to the heterogeneity evolution models. Another
popular technique for model selection is the nonparametric Bayesian
method. This method can be applied to nonregular models, but
requires a lot of computation time. A practical model selection
method for nonregular models is an unsolved problem in statistics,
and various methods have been proposed (Fujimaki and Morinaga,
2012; Watanabe, 2013). The integration of Mirage with model se-
lection methods for nonregular models is also a future task.

As an application of Mirage, we envision function prediction of
function-unknown genes by integrating it with phylogenetic profil-
ing to be an interesting direction. The phylogenetic profiling method

predicts gene functions based on correlated occurrence patterns be-
tween genes in an ortholog table (Kensche et al., 2008; Kumagai
et al., 2018; Sherill-Rofe et al., 2019). The method generally ignores
evolutionary relationships, for example by using simple mutual in-
formation as an index of correlation, and such ignorance is known
to decrease prediction performance (Kensche et al., 2008). Previous
studies showed that the prediction performance can be improved by
observing correlation patterns of gene gain/loss events in the recon-
structed gene-content evolutionary history instead of gene occur-
rence patterns in extant species (Barker et al., 2007; Moi et al.,
2020; Ta et al., 2011). Precise reconstruction of the gene-content

Table 1. Estimated parameters based on the complete Archaea dataset (see Supplementary Materials for Micrococcales and Fungi

datasets)

Cluster ID / p R

1 0.318 ð0:305; 0:226; 0:051; 0:418ÞT �0:153 0:153 0 0
8:067 �9:659 1:591 0

0 11:767 �15:246 3:480
0 0 6:571 �6:571

0
BB@

1
CCA

2 0.316 ð0:001; 0:955; 0:000; 0:044ÞT
�0:017 0:017 0 0
2:414 �2:724 0:310 0

0 4:540 �5:521 0:981
0 0 3:381 �3:381

0
BB@

1
CCA

3 0.269 ð0:848; 0:122; 0:023; 0:008ÞT
�0:029 0:029 0 0
0:095 �0:154 0:059 0

0 0:591 �0:881 0:290
0 0 0:314 �0:314

0
BB@

1
CCA

4 0.058 0:399; 0:466; 0:000; 0:135ÞT
� �0:207 0:207 0 0

0:439 �0:755 0:316 0
0 1:792 �2:639 0:847
0 0 2:512 �2:512

0
BB@

1
CCA

5 0.039 ð0:539; 0:134; 0:025; 0:302ÞT
�0:584 0:584 0 0
2:300 �4:330 2:029 0

0 5:649 �7:394 1:744
0 0 1:538 �1:538

0
BB@

1
CCA

Table 2. Enrichment of COG supercategories by frequent gene gain/loss events

COG supercategory Cellular process and signaling Information storage and processing Metabolism

Archaea top 10% 0.231 0.199 0.57

Archaea whole gene families 0.243 0.27 0.486

Micrococcales top 10% 0.231 0.153 0.617

Micrococcales whole gene families 0.300 0.251 0.449

Fungi top 10% 0.348 0.238 0.414

Fungi whole gene families 0.427 0.300 0.273

The bold letter means that genes in the supercategory are likely to appear in top 10% gene families compared to the whole gene families

Table 3. Enrichment of COG categories in the metabolism supercategory by frequent gene gain/loss events

COG category C E F G H I P Q

Archaea top 10% 0.146 0.098 0.018 0.058 0.048 0.022 0.135 0.028

Archaea whole gene families 0.097 0.089 0.034 0.076 0.055 0.030 0.069 0.029

Micrococcales top 10% 0.071 0.123 0.021 0.137 0.040 0.040 0.128 0.037

Micrococcales whole gene families 0.067 0.085 0.028 0.087 0.046 0.030 0.072 0.026

Fungi top 10% 0.056 0.056 0.025 0.093 0.026 0.051 0.051 0.026

Fungi whole gene families 0.042 0.035 0.013 0.066 0.016 0.030 0.046 0.013

COG category symbols: C, energy production and conversion; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; G, carbohy-

drate transport and metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q, second-

ary metabolites biosynthesis, transport, and catabolism. The bold letter means that genes in the category are more than 1.2 times more likely to appear in top

10% gene families compared to the whole gene families.
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evolutionary history by Mirage would contribute to the improve-
ment of the phylogenetic profiling method.

With the present Mirage implementation, it is still difficult to re-
construct gene-content evolutionary histories of all genome-
sequenced species to the last universal common ancestor of life be-
cause of the huge computation time required. Thus, improving the
computation time of Mirage is essential. In particular, application of
the series acceleration method, which improves the convergence rate
of a series, to the iteration steps of the EM algorithm seems promis-
ing. Specifically, the vector-� acceleration technique, which does not
require derivation of acceleration formula for each statistical model,
may be readily applied to Mirage (Kuroda and Sakakihara, 2006).
Another powerful approach would be a partitioning method, which
does not use probabilistic but deterministic assignment of gene fami-
lies to each gene cluster in the mixture model. This method has been
widely used in molecular evolutionary analyses, but not in gene-
content evolutionary analyses (Brown and Lemmon, 2007; Frandsen
et al., 2015; Lanfear et al., 2017). Although the partitioning method
can be less accurate due to the deterministic approximation, its com-
putational efficiency would be high.

Although Mirage can model differences in the evolutionary rates
among gene-content clusters, it assumes the same evolutionary rate
among all branches of the phylogenetic tree. However, this assump-
tion does not always hold true. For example, polyploidization events
cause massive gene gains (Inoue et al., 2015; Sriswasdi et al., 2016),
and parasitization events cause massive gene losses (Sun et al.,
2018). Moreover, heterogeneity of evolutionary rates among
branches may also be caused by changes in survival strategies
(Sriswasdi et al., 2017) or large-scale extinction events (Wolf and
Koonin, 2013). Although various programs for modeling heterogen-
eity among branches have been developed (Han et al., 2013; Iwasaki
and Takagi, 2007; Zwaenepoel and Van de Peer, 2020), there are no
software that can take various gene gain/loss models and heterogen-
eity models into account. Therefore, the expansion of Mirage in this
direction would be needed to deepen our understanding.
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