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An antitropical distribution represents an intriguing disjunction, in which a given species or sister lineages occupy
regions north and south of the tropics but are absent from the intervening areas. Solenogyne mikadoi endemic to
the Ryukyu Archipelago is regarded as an Australian element. Testing the phylogenetic relationship with
Australian congeners and discussing the onset timing and causes of the disjunction would potentially enhance the
understanding of antitropical distribution. A nuclear ribosomal DNA phylogeny was reconstructed using Bayesian
and most parsimonious criteria with allied genera. Solenogyne was monophyletic and clustered with Lagenophora
huegelii endemic to Australia, indicating the antitropical distribution and Australian origin of Solenogyne.
Multispecies coalescent analysis based on nuclear ribosomal DNA and chloroplast DNA indicated the divergence
of S. mikadoi and Australian congeners in the Plio-Pleistocene. Phylogenetic network analyses suggested that the
ancestral lineage of S. mikadoi first colonized the southernmost island in the archipelago and then dispersed
northward. The migration to the archipelago likely followed the flourishing of Solenogyne in open vegetation
communities that radiated in south-eastern Australia during the late Pliocene. This disjunction might arise
through long-distance dispersal across the tropics or, alternatively, through extinction in the tropics as a result of
unsuitably high temperatures during climate oscillation and/or competitions from diverse tropical flora surviving
since the early Tertiary. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012,
105, 197–217.

ADDITIONAL KEYWORDS: Astereae – extinction – intercontinental disjunction – Lagenophora –
long-distance dispersal – Pleistocene – Pliocene – South-east Asia – tropics.

INTRODUCTION

An antitropical (or amphitropical) distribution repre-
sents an intriguing pattern of disjunct occurrence of

organisms at a global scale, in which the same taxon
or sister taxa occupy regions north and south of
the tropics but are absent from the intervening tropi-
cal regions (Hubbs, 1952; Randall, 1981; Donoghue,
2011). Such a distribution has mostly been observed
for marine organisms (e.g. algae, fishes, molluscs
and seals in North and South America, Asia and
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Australasia, and Europe and Africa; Ekman, 1953;
Pielou, 1979; Santelices, 1980; Briggs, 1995; Hilbish
et al., 2000; Burridge, 2002; Mabuchi, Nakabo &
Nishida, 2004). Reports of land plants showing anti-
tropical distributions are mainly limited to disjunc-
tions between North and South America (Constance,
1963; Raven, 1963; Wen & Ickert-Bond, 2009; Spalik
et al., 2010; Popp, Mirré & Brochmann, 2011). To
increase our understanding of this phenomenon in
plants, more studies in other regions are needed.
These would potentially increase our knowledge on
intercontinental disjunctions, for which taxonomists
and biogeographers have attempted to elucidate their
onset timing and causes (Gray, 1878; Raven, 1963;
Thorne, 1972; Raven & Axelrod, 1974; Wu, 1983; Wen,
1999; Parris, 2001; Wen & Ickert-Bond, 2009).

The Ryukyu Archipelago is an assemblage of con-
tinental islands between the main Japanese islands
and Taiwan (Fig. 1). The archipelago lies in the sub-
tropics and, as a result of the moderate climate

throughout the year and an annual precipitation of
> 2000 mm with no dry season, the dominant natural
vegetation of the islands is broad-leaved and ever-
green (Maekawa, 1974; Nakamura et al., 2009). The
flora of the Ryukyu Archipelago can be divided
approximately into six groups according to their
assumed origins: from main Japanese islands, the
East Asian continent, the East Asian continent via
migration initially to the island of Taiwan, from
South-east Asia without migration via Taiwan, from
Pacific islands, and from Australia (Hatusima, 1975,
1980). Among the six groups, the most intriguing are
the Australian elements because the Ryukyu Archi-
pelago and Australia are more than 7000 km apart,
in the northern and southern hemisphere, respec-
tively. Among the Australian components, multiple
species show disjunct distributions or have close
relatives in eastern Australia; for example Cassytha
glabella R.Br. and Cassytha pubescens R.Br. (Lau-
raceae), Oxalis exilis Cunn. (Oxalidaceae), Lobelia
loochooensis Koidz. (Campanulaceae), Solenogyne
mikadoi Koidz. (Asteraceae), and Eriachne armitii
F.Muell. ex Benth. (Poaceae) (Adams, 1979;
Hatusima, 1985; Murata, 1992; Shinjyo & Ikehara,
2006; Yokota & Hiraiwa, 2006; Yokota & Shinzato,
2006a, b). Thus, these are typical examples of
antitropical distributions.

In the present study, we investigated in detail the
genus Solenogyne Cass., a small genus in the tribe
Astereae that comprises four species: Solenogyne
bellioides Cass., Solenogyne dominii L.G.Adams,
Solenogyne gunnii (Hook.f.) Cabrera, and S. mikadoi
Koidz. (Adams, 1979). These are all small rosette-
forming perennial herbs. The genus exhibits an
extremely disjunct distribution (Fig. 1); S. mikadoi is
endemic to the Ryukyu Archipelago, whereas the
other three species are endemic to temperate south-
eastern Australia (Brown & Porteners, 1992). Solen-
ogyne mikadoi occurs on four relatively large islands
with well-developed river systems, namely, Amami-
oshima, Tokunoshima, Okinawajima, and Iriomote-
jima (Fig. 2, Table 1), and grows on rocky beds of
mountain streams (Yokota & Hiraiwa, 2006). In Aus-
tralia, S. bellioides is reported from New South Wales
and Queensland, S. dominii from New South Wales
and Victoria, and S. gunnii from New South Wales,
Victoria, and Tasmania (Fig. 1) (Brown & Porteners,
1992). The three Australian species grow in open
sclerophyll vegetation with sparse overstorey trees or
in anthropogenic pastures, and their habitats are
drier than those of S. mikadoi in the Ryukyu Archi-
pelago. The achenes (fruits) of Solenogyne have no
pappi (feather-like appendages) commonly observed
in Asteraceae (Davis, 1950), and thus do not appear to
be adapted for long-distance dispersal. Solenogyne is
considered to be closely allied to Lagenophora Cass.

Figure 1. Disjunct distribution of Solenogyne in the
Ryukyu Archipelago and south-eastern Australia. Col-
lection localities: 1–9, S. mikadoi; 10, S. bellioides;
11, S. dominii; 12, S. gunnii. The numbers correspond to
those in Table 1 and Fig. 2.
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(Davis, 1950; Cabrera, 1966; Adams, 1979) and some
studies have synonymized Solenogyne with Lageno-
phora (Bentham, 1867; Maiden & Betche, 1916;
Drury, 1974). Therefore, to represent an antitropical
distribution, the monophyly of Solenogyne needs to be
demonstrated. Lagenophora comprises 15–36 species
and is broadly distributed in India, South-east and
East Asia, Australia, New Zealand, the Pacific
islands, and Central and South America (Cabrera,
1966; Porteners & Brown, 1992; Mabberley, 1997;
Mill, 1999). Lagenifera Cass. is an etymological
variant of Lagenophora, and the latter is the con-
served name for this genus (Australian National
Botanic Gardens, 2009). Although S. mikadoi was
once named L. mikadoi (Koidz.) Koidz. ex H.Koyama
(Koyama, 1995), the two genera are morphologically
distinct; in Solenogyne, ray florets are tubular and
the achenes have neither beaks nor glands, while in
Lagenophora, ray florets are ligulate and the achenes
have glandular beaks (Davis, 1950; Cabrera, 1966;
Adams, 1979). However, their phylogenetic relation-
ship has not been studied using molecular data.
Molecular phylogenetic studies can reveal interconti-
nental disjunct distributions and can provide infor-
mation on the timing of the onset of disjunctions
(Vijverberg, Mes & Bachmann, 1999; Xiang et al.,
2000; Givnish & Renner, 2004; Barker et al., 2007;
Namoff et al., 2010; Rowe et al., 2010). In previous
studies, it was found that some taxa, which had been
assumed to be typical examples of intercontinental
disjunct distributions, were not monophyletic (Soltis
et al., 1991; Qiu, Chase & Parks, 1995; Soltis &
Kuzoff, 1995; Soltis, Xiang & Hufford, 1995; Kim &
Jansen, 1998), hence reinforcing the need for phylo-
genetic analyses of taxa exhibiting global scale
disjunct distributions. Antitropical distributions for
vascular plants in the Ryukyu Archipelago and
eastern Australia have not previously been tested
with molecular phylogenies.

In the Ryukyu Archipelago, the distribution of
S. mikadoi is scattered on four islands and their mode
of migration into the archipelago and range expansion
is also of interest. The archipelago warrants attention
from a biogeographical perspective because of the
geohistory of island connections and separations
(Ota, 1998; Otsuka, Ota & Hotta, 2000; Kimura,
2002a; Nakamura et al., 2009, 2010). These islands

are of continental origin, and represent exposed por-
tions of the Ryukyu Cordillera. This region under-
went extensive changes in land configuration during
the Cenozoic as a consequence of the subduction of
the Philippine plate at the Ryukyu trench and sub-
sidence of the Ryukyu trough (Ota, 1998), leading to
crustal deformation and faulting. In addition, climatic
oscillations have resulted in eustatic sea level
changes. In the Neogene, the Ryukyu region formed
the eastern margin of the East Asian continent. Sub-
sequently, the island arc began to take its present day
shape (Ota, 1998). Any discussion on plant migratory
processes requires consideration of this geohistory.

In the present study, we conducted molecular phy-
logenetic analyses based on nuclear ribosomal DNA
(nrDNA) and chloroplast DNA (cpDNA) sequences,
aiming to: (1) test the Ryukyu–Australia antitropical
distribution of Solenogyne; (2) discuss its onset timing
and causes; and (3) elucidate the migratory processes
of S. mikadoi in the Ryukyu Archipelago.

MATERIAL AND METHODS
PLANT MATERIALS AND DNA SAMPLING

Solenogyne mikadoi is reported from nine river
systems (Yokota & Hiraiwa, 2006) and we collected
samples from almost all known localities, from one
river system on Iriomotejima, from five on Okinawa-
jima, from one on Tokunoshima, and from two on
Amamioshima, respectively (Table 1). Because of
the scarcity of the plants in each river system, we
collected two to six plants per river system; in total 38
plants were collected. For the three Australian
species, the collection of plants from many localities
was difficult because the known sites (gathered from
herbarium specimen data) were scattered very widely.
Instead, multiple plants were collected from one local-
ity for each species (three plants for S. bellioides, two
for S. dominii, and four for S. gunnii, respectively;
Fig. 1, Table 1). The three species were collected from
different localities where only one species occurred;
this was carried out to avoid collecting possible
hybrids between them in mixed populations (Adams,
1979). These 47 plants in total were used for the
analyses of nrDNA and cpDNA sequences.

To test the monophyly of Solenogyne, the internal
transcribed spacer (ITS) region of nrDNA was used.

Figure 2. Geographical distributions of the internal transcribed spacer (ITS) types (A–C) and chloroplast DNA (cpDNA)
haplotypes (A–D) of Solenogyne mikadoi in the Ryukyu Archipelago and their statistical parsimony networks. CpDNA
haplotypes E, F, and G were found in S. bellioides, S. dominii, and S. gunnii, respectively. Small open circles indicate
hypothetical (i.e. extinct or not sampled) types, and each line connecting the ITS and cpDNA types indicates one
mutational change. The numbers indicate the collection localities; for details, see Table 1. Shaded areas in the map
indicate land configuration in the early Pleistocene after splitting of the land bridge by the formation of the Tokara and
Kerama gaps (Ota, 1998).
�
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For Lagenophora, eight species and one variety were
analyzed (Table 2). We collected three species:
Lagenophora gracilis Steetz, Lagenophora huegelii
Benth., and Lagenophora lanata A.Cunn. For the
other five species and the variety, the ITS sequences
were obtained from databases (DDBJ/EMBL/
GenBank). The analysis included all species of
Lagenophora reported from Japan (one species;
Hatusima, 1975), Australia (four species; Porteners &
Brown, 1992; Australian National Botanic Gardens,
2009), and surrounding areas, namely, Taiwan, con-
tinental China, India, New Zealand, and Java
(Hooker, 1881; Backer & van den Brink, 1965;
Soejima & Peng, 1998; Chen & Jin, 2005), except
Lagenophora pinnatifida Hook.f., which is endemic to
New Zealand (five species, Allan, 1982). In addition,
the analysis included 25 species from 24 Astereae
genera (Table 2) to ensure that Lagenophora is the
sister genus of Solenogyne and appropriate to test
the monophyly of Solenogyne. It was reported that the
major genera of Astereae are clearly separated into
two groups based on the ITS sequence (Noyes &
Rieseberg, 1999); we selected the genera from the
group that included Lagenophora. We added some
other genera not included in the above study, refer-
ring to the results of a phylogenetic study of the tribe
based on the ITS sequences (Wagstaff & Breitwieser,
2002). The ITS sequences for genera other than
Solenogyne and Lagenophora were obtained from
databases (DDBJ/EMBL/GenBank). As outgroups,
we selected Chiliotrichum diffusum and Olearia
argophylla of basal Astereae clades (Noyes &
Rieseberg, 1999) and phylogenetic trees were rooted
on C. diffusum.

Voucher specimens of our collections were deposited
in the herbarium of the Faculty of Science, University
of the Ryukyus (RYU; Tables 1, 2).

DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING

Total DNA was isolated from leaf tissue by using
the cetyl trimethyl ammonium bromide method of
Doyle & Doyle (1987). The following three molecular
markers were amplified using polymerase chain reac-
tion (PCR): the ITS region (including ITS1 and ITS2
spacer regions and the 5.8S rRNA gene) of nrDNA,
the intergenic spacer of the atpB and rbcL genes
(atpB–rbcL), and the 3′ intron of the trnK gene
(trnK3′ intron) of cpDNA. The PCR mixtures con-
sisted of the reagents: 10–40 ng of genomic DNA, 1.0
unit of rTaq polymerase (TOYOBO, Osaka, Japan),
10 mL of rTaq DNA polymerase buffer containing
1.5 mM magnesium chloride, 0.2 mM of each dNTP,
0.25 mM of each primer, and 70.5 mL sterile water.
With respect to the primers used for PCR amplifica-
tion and the PCR cycle conditions: for the ITS region,

we used universal primers 1 and 4 (White et al.,
1990), with an initial template denaturation at 95 °C
for 5 min. This was followed by one cycle at 97 °C for
2 min, 50 °C for 1 min, and 72 °C for 1 min; 25 cycles
at 95 °C for 1 min, 50 °C for 2 min, and 72 °C for
3 min; and a final extension at 72 °C for 10 min. For
the atpB–rbcL spacer, the primers atpB2F and
rbcL2R were used (Nakamura et al., 2006), with an
initial template denaturation at 95 °C for 5 min. This
was followed by 25 cycles at 95 °C for 1 min, 57 °C for
1 min, and 72 °C for 2 min, and a final extension at
72 °C for 10 min (Nakamura et al., 2007). For the
trnK3′ intron region, the universal primers trnK-
3914F and trnK-2R (Johnson & Soltis, 1994) were
used, with an initial template denaturation at 95 °C
for 5 min, followed by 30 cycles at 94 °C for 1.5 min,
51 °C for 2 min, 72 °C for 3 min, and a final extension
at 72 °C for 10 min. The PCR fragments were purified
with shrimp alkaline phosphatase and exonuclease
I (Promega). These were used as templates for cycle
sequencing reactions, and direct sequencing was per-
formed in accordance with the manufacturer’s proto-
col on an ABI Prism 3730 DNA analyzer (Applied
Biosystems). The sequences were deposited in the
DDBJ/EMBL/GenBank databases (Tables 1, 2).

ANALYTICAL SCHEME AND DNA DATA SETS

To test the monophyly of Solenogyne, the ITS data set
of Solenogyne plus the other Astereae genera was
constructed (henceforth the Astereae data set) and
analyzed based on Bayesian and maximum parsi-
mony (MP) criteria. Because there was no variation in
ITS within populations (Table 1), we used a single
sample from each population as sufficient to test the
monophyly of Solenogyne. To elucidate phylogenetic
relationships among Solenogyne species and their
divergence times, ITS and cpDNA data sets compris-
ing only Solenogyne were made (including all the
samples in Table 1; henceforth the Solenogyne data
set). The analyses of the Solenogyne data set were
conducted using Bayesian methods implemented in
BEAST, version 1.6.1 (Drummond et al., 2006), which
estimates the root of a phylogeny without using an
outgroup by enforcing the (relaxed) molecular clock
constraint (Drummond & Rambaut, 2007). BEAST
calculates the proportion of trees that have a particu-
lar root based on Markov chain Monte Carlo (MCMC)
simulation, and obtains a posterior probability for
this root position. The ITS and cpDNA Solenogyne
data sets were also used to elucidate phylogeny of
S. mikadoi samples and their divergence times.

In the data set construction, the DNA sequences
were aligned using CLUSTALX version 1.8 (Thomp-
son et al., 1997) and then adjusted manually. The
combinability of the atpB–rbcL and trnK3′ intron
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Table 2. Subtribe assignation, sampling localities and GenBank accession number of internal transcribed spacer (ITS)
nuclear ribosomal DNA sequences of 34 taxa from 25 genera of the tribe Astereae

Species Subtribe* Locality** or source ITS accession

Lagenophora Cass.
L. cuneata Petrie LAG New Zealand, South Island EU352246
L. gracilis Steetz LAG Australia, Queensland. 650 m alt.

NK20100013 (RYU)
AB550254

L. huegelii Benth. LAG Australia, Victoria. 260 m alt. NK20100014
(RYU)

AB550255

L. lanata A.Cunningham LAG Japan, Amamioshima Island 670 m alt.
NK20100015 (RYU)

AB550256

L. panamensis S. F. Blake LAG Panama, Chiriqui AF046965
L. pumila (G.Forst.) Cheeseman LAG New Zealand, South Island AF422124
L. pumila (G.Forst.) Cheeseman LAG New Zealand, S. A. Norton 598 (NO) DQ479037
L. pumila (G.Forst.) Cheeseman LAG New Zealand EU352244
L. stipitata (Labill.) Druce var. stipitata LAG Australia AB435145
L. stipitata (Labill.) Druce var. montana

(Hook.f.) Cabrera
LAG New Zealand EU352243

L. strangulata Colenso*** LAG New Zealand, North Island, Erua EU352245

Other genera
Aster amellus L. AST Russia, Northern Caucasus AF046961
Baccharis dracunculifolia DC. BAC Bolivia, La Paz AF046958
Bellis perennis L. BEL Bolivia, La Paz AF046950
Brachycome breviscapis C.R.Carter BRA Australia, South Australia AB435100
Calotis dentex R.Br. BRA Australia, Queensland AF046956
Celmisia mackaui Raoul HIN New Zealand, South Island AF422115
Chiliotrichum diffusum (Forst.) O.Kuntze HIN Chile, Cape Horn Island AF046945
Conyza gouanii (L.) Willd. CON Tanzania, Iringa AF046948
Conyza pyrrhopappa A.Rich. CON Tanzania, Tanga AF046953
Crinitaria linosyris (L.) Less. AST Russia, Saratov AF046949
Damnamenia vernicosa (Hook.f.) Given HIN New Zealand, Campbell Island AF422119
Diplostephium rupestre (H.B.K.) Wedd. HIN Ecuador, Napo AF046962
Kalimeris integrifolia Turcz. ex DC. AST China, Jiangsu AF046960
Laennecia sophiifolia (Kunth) Nesom POD Mexico, Oaxaca AF046964
Minuria integerrima (DC.) Benth. POD Australia, Queensland AF046957
Myriactis humilis Merr. LAG Taiwan, Pingtun Hsien AF046959
Nidorella resedifolia DC. GRA South Africa, Cape AF046952
Olearia argophylla (Labill.) F.Muell. ex

Benth.
HIN Australia, New South Wales AF046944

Oritrophium peruvianum (Lam.) Cuatrec. HIN J. Jaramillo et al. 21020 (QCA) DQ479117
Pachystegia insignis (Hook.f.) Cheeseman HIN New Zealand, South Island AF422132
Pleurophyllum speciosum Hook.f. HIN New Zealand, Campbell Island AF422133
Podocoma notobellidiastrum (Griseb.)
Nesom

POD Paraguay, Caazapa AF046963

Psiadia punctulata (DC.) Vatke BAC South Africa, Transvaal AF046954
Pteronia incana (Burm.) DC. HIN South Africa, Cape AF046947
Vittadinia australis A.Rich. POD New Zealand, South Island AF422140

*Subtribes sensu Nesom & Robinson (2007): AST, Asterinae; BAC, Baccharidinae; BEL, Bellidinae; BRA, Brachycominae;
CHR, Chrysopsidinae; CON, Conyzinae; FEL, Feliciinae; GRA, Grangeinae; HIN, Hinterhuberinae; LAG, Lageniferinae;
MAC, Machaerantherinae; POD, Podocominae; SOL, Solidagininae; SYM, Symphyotrichinae.
**For cited sequences, localities were referred from Noyes & Rieseberg (1999), Wagstaff & Breitwieser (2002), and the
DDBJ/EMBL/GenBank databases.
***Lagenophora strangulata is synonymized with Lagenophora petiolata Hook.f. in Cheeseman (1925).
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regions was determined with the incongruence length
difference test (P = 1.00) (Farris et al., 1994) using
the partition homogeneity test implemented in
PAUP* version 4.0b10 (Swofford, 2002) and subse-
quent analyses were conducted on the combined data.

TESTS OF DNA SUBSTITUTION MODEL AND

MOLECULAR CLOCK HYPOTHESIS

Estimation of the appropriate DNA substitution
models were conducted based on the Akaike infor-
mation criterion using MODELTEST version 3.7
(Posada & Crandall, 1998); the model GTR+I+G was
selected for the Astereae data set of ITS, the model
TrN (also called TN93 in some software) for the
Solenogyne data set of ITS, and the model HKY for
the Solenogyne data set of cpDNA. Note the model
TrN was also selected for the Astereae data set
by hierarchical likelihood rate tests implemented in
MODELTEST.

The molecular clock hypothesis was tested for
each data set using the two-cluster test (Takezaki,
Rzhetsky & Nei, 1995) and a molecular clock likeli-
hood ratio test (LRT) (Felsenstein, 1988). The two-
cluster test, implemented in LINTREE (Takezaki
et al., 1995), examines whether there are significant
differences in substitution rates in sister lineages in a
given tree. Identical sequences in each data set were
collapsed (Quek et al., 2004) and Neighbour-joining
trees were constructed using the model TrN, because
the models GTR+I+G and HKY were not implemented
in the LINTREE software and the model TrN was
similar to the models. The hypothesis of rate con-
stancy for all sequences in a tree was tested simul-
taneously by Q-values of the U-statistic, which
approximately follows a c2 distribution with n - 1
degrees of freedom (d.f.), where n is the number of
sequences. The molecular clock hypothesis was
rejected at the significance level of P = 0.05 for the
Astereae data set for ITS (Q = 1103.8, d.f. = 41,
P < 0.0001) but not rejected for the Solenogyne data
sets (ITS, Q = 7.8, d.f. = 5, P = 0.17; cpDNA, Q = 3.0,
d.f. = 6, P = 0.70). The molecular clock LRT was con-
ducted using PAUP*, by comparing the log likelihood
(L) of maximum likelihood trees with and without
assuming a molecular clock, based on the determined
DNA substitution models. The likelihood ratio was
calculated as 2(ln Lnoclock - ln Lclock) and assumed to
follow a c2 distribution with n - 2 degrees of freedom,
where n is the number of sequences (Muse & Weir,
1992). Identical sequences in each data set were col-
lapsed in the analyses. The results of the LRT agreed
with the results of the two-cluster test. The molecular
clock hypothesis was rejected for the Astereae
data set (-ln Lnoclock = 4587.48, -ln Lclock = 4647.28,
LRT = 119.60, d.f. = 40, P < 0.0001) but not rejected

for the Solenogyne data set (ITS, -ln Lnoclock = 1064.83,
-ln Lclock = 1069.60, LRT = 9.54, d.f. = 4, P = 0.05;
cpDNA, -ln Lnoclock = 2389.11, -ln Lclock = 2393.57,
LRT = 8.93, d.f. = 5, P = 0.11). Note, however, that the
Solenogyne data set for ITS showed the marginal
value of P = 0.05.

PHYLOGENETIC ANALYSIS BASED ON

ASTEREAE DATA SET

The first Bayesian phylogenetic analysis was con-
ducted using MrBayes version 3.1.2 (Ronquist &
Huelsenbeck, 2003) and the second analysis was con-
ducted using BEAST version 1.6.1 (Drummond et al.,
2006). MrBayes does not consider across-lineage
variability of substitution rate, whereas BEAST can
incorporate this into tree construction (Drummond &
Rambaut, 2007). Both the complex (GTR+I+G) and
simple (TrN) models were used for comparison.

With MrBayes, two separate runs of Metropolis-
coupled Metropolis-coupled Markov chain Monte
Carlo (MCMCMC) analyses were performed based on
the models of GTR+I+G or TrN, with a random start-
ing tree and four chains (one cold and three heated).
The MCMCMC length was two million generations,
and the chain was sampled every 100th generation
from the cold chain. The mixing and convergence of
the MCMC chains of the two runs was assessed by
inspection of the trace plots of parameters using
TRACER version 1.5.0 (Drummond & Rambaut,
2007); the first 2000 sample trees (10% of the total
20 000 sampled trees) were discarded as burn-in.
After the burn-in, the effective sample sizes (ESS) of
all parameters were > 200, indicating that the analy-
ses sampled the posterior distributions of each
parameter satisfactorily, and the values of Average
Standard Deviation of Split Frequency (ASDSF) were
below 0.01. The 50% majority rule consensus tree
of all the post-burn-in trees was generated using
TREEVIEW version 1.6.6 (Page, 1996).

To determine the models for BEAST analyses, we
compared clock and relaxed-clock models to avoid
over-parameterization although the molecular clock
hypothesis was rejected (see above), and compared
Yule and birth-death speciation priors for the branch-
ing rates. We used the Bayes factor (BF) [i.e. the ratio
of the marginal likelihoods (L) of two models] (Kass &
Raftery, 1995; Suchard, Weiss & Sinsheimer, 2001).
The marginal likelihood for each model was estimated
by calculating the harmonic mean of the sampled
likelihoods from a MCMC chain with 1000 bootstrap
replications. The calculations were performed using
BEAST and TRACER version 1.5. An unweighted
pair-group method of arithmetic averages (UPGMA)
was used to construct the starting trees and the
MCMC chain length was 10 million (with 10% burn-

204 K. NAKAMURA ET AL.

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 197–217

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article/105/1/197/2452495 by guest on 09 April 2024



in). Evidence against the null model (i.e. the one with
lower marginal likelihood) is indicated by 2ln (BF) > 2
(positive) and > 10 (very strong) (Kass & Raftery,
1995). As a relaxed-clock model, we used an uncorre-
lated lognormal distribution (UCLN) model for rate
variation among lineages, which was, in a simulation
study, robust in rate estimation even when the data
are generated based on a lognormally autocorrelated
rate variation model (Drummond et al., 2006). The
strict clock and UCLN models were compared under
the conditions of the Yule model plus the GTR+I+G or
TrN models; the UCLN model was selected [under
the GTR+I+G model, ln L = -4676.329 in the strict
model, ln L = -4642.553 in the UCLN model, 2ln
(BF) = 67.552; under the TrN model, ln L = -4965.295
in the strict model, ln L = -4932.799 in the UCLN
model, 2ln (BF) = 64.990]. In addition, the frequency
histogram of the SD of the uncorrelated lognormal
relaxed clock (ucld.stdev parameter) did not include
or abut 0 under the GTR+I+G and TrN models, hence
rejecting a strict molecular clock (Drummond et al.,
2007). The Yule and the birth-death models were
compared under the conditions of the UCLN model
plus the GTR+I+G or TrN models. The Yule model is
parameterized by a rate of lineage birth (i.e. bifurca-
tion) and the birth-death model is parameterized by
lineage birth and death rates. Under the GTR+I+G
model, both models indicated insignificantly different
marginal likelihood values [ln L = -4642.553 in the
Yule model, ln L = -4643.046 in the birth-death
model, 2ln (BF) = 0.986] and the Yule model was
selected because it is simpler than the birth-death
model. Under the TrN model, the birth-death model
was selected [ln L = -4932.799 in the Yule model,
ln L = -4931.390 in the birth-death model, 2ln
(BF) = 2.818]. Based on these results, the BEAST
analyses used the UCLN and Yule models with the
GTR+I+G model, and the UCLN and birth-death
models with the TrN model. Empirical base frequency
setting was applied, and the UPGMA starting tree
was used. Default priors were used for the remaining
parameters. MCMC chains were run for 10 million
generations and sampled every 1000 generations. We
ran two separate analyses. We checked the conver-
gence of all parameters using TRACER and the first
1000 of the 10 000 sampled generations in each run
were discarded as burn-in. The log files from the two
runs were combined using LOGCOMBINER version
1.5.4 (Drummond & Rambaut, 2007), and the ESS
of all parameters were > 200 after the burn-in. A
maximum clade credibility tree was estimated with a
burn-in of 10% of the sampled trees and a posterior
probability limit of 0.5 by TREEANNOTATOR version
1.5.4 (Drummond & Rambaut, 2007), and generated
by FIGTREE version 1.3.1 (Drummond & Rambaut,
2007).

The MP analysis was conducted using PAUP*.
Indels were treated as missing data. Characters were
treated as unordered, and character transformations
were weighted equally. The branch collapse option
was set to collapse at a minimum length of zero. A
heuristic parsimony search was performed with 200
replicates of random additions of sequences, with the
ACCTRAN character optimization, tree bisection–
reconnection (TBR) branch swapping, MULTREES,
and STEEPEST DESCENT options on. Statistical
support for each clade was assessed by bootstrap
analysis (Felsenstein, 1985). One thousand replicates
of heuristic searches, with the TBR branch swapping
and MULTREES options off, were performed to
calculate bootstrap values.

PHYLOGENETIC AND DATING ANALYSIS OF

SOLENOGYNE DATA SETS

To elucidate phylogenetic relationships among the
four Solenogyne species and to conduct molecular
dating analyses simultaneously based on ITS and
cpDNA, the Solenogyne data sets were analyzed using
*BEAST (Heled & Drummond, 2010) implemented in
BEAST version 1.6.1. *BEAST conducts multispecies
coalescent analysis to estimate a species tree that
is most probable given the unlinked multi-locus
sequence data (i.e. the ITS data and the combined
cpDNA data). Multispecies coalescent analysis consid-
ers that gene trees are embedded in a shared species
tree by following the stochastic coalescent process.
This analysis requires multiple samples per species to
examine coalescent events for that species (Heled &
Drummond, 2010). Because we could not use multiple
samples for most Lagenophora species except Lageno-
phora pumila, and because the monophyly of Solen-
ogyne was indicated by the analyses of the Astereae
data set (see Results), we used only the Solenogyne
samples in this analysis. Thus, the root of a phylog-
eny was estimated without using an outgroup by
enforcing the molecular clock constraint (Drummond
& Rambaut, 2007).

The models of TrN and HKY were used for ITS and
cpDNA data, respectively, with empirical base
frequency setting and UPGMA starting trees. The
piecewise linear population size model, which is more
realistic for natural populations than piecewise con-
stant population size model (Heled & Drummond,
2010), was used. Because the Solenogyne data set for
ITS showed the marginal value in the molecular clock
LRT for the molecular clock hypothesis (P = 0.05), we
compared the strict clock and UCLN relaxed-clock
models for ITS under the strict clock model for
cpDNA and the Yule model using the BF. The result
selected the simpler strict clock model [ln
L = -3480.868 in the strict model, ln L = -3480.214 in
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the UCLN model, 2ln (BF) = 1.306]. Also, the fre-
quency histogram of the ucld.stdev parameter
abutted 0, failing to reject a strict molecular clock
(Drummond et al., 2007). The Yule and the birth-
death models were compared under the conditions of
the strict clock models for ITS and cpDNA; the
simpler Yule model was selected [ln L = -3480.868 in
the Yule model, ln L = -3480.393 in the birth-death
model, 2ln (BF) = 0.948]. Based on these preliminary
tests, the multilocus estimation of species tree was
performed under the strict clock models for ITS and
cpDNA and the Yule model.

There are no fossils to calibrate the molecular clock
for Solenogyne and its allied taxa, and thus diver-
gence times were calculated using reported sub-
stitution rates. There are multiple estimates of ITS
substitution rates in Asteraceae with a minimum
generation time of 2–3 years. These range from
7.83 ¥ 10-9 (the highest) to 2.51 ¥ 10-9 (the lowest)
substitutions per site per year (Richardson et al.,
2001; Kay, Whittall & Hodges, 2006). Because it is
inappropriate to apply one of these rates from a
different lineage, we used a normal distribution prior
with the mean (5.17 ¥ 10-9) equal to the mean of
the highest and lowest values and with a SD of
1.36 ¥ 10-9, which includes the highest and lowest
values in the 95% range (mean ± 1.69 SD) of the
distribution. In the analysis of cpDNA data, we
used a normal distribution prior with the mean
(4.36 ¥ 10-9) and SD of 2.29 ¥ 10-9, which covered a
range from 4.87 ¥ 10-10 to 8.24 ¥ 10-9 (the lowest and
highest rates for cpDNA noncoding region of plants
with a minimum generation time of 2–3 years,
Richardson et al., 2001) in the 95% range of the
distribution.

MCMC chains were run for 30 million generations
and sampled every 1000 generations. We ran two
separate analyses. We checked the convergence of all
parameters using TRACER and the first 3000 of the
30 000 sampled generations in each run were dis-
carded as burn-in. The log files from the two runs
were combined, and the ESS of all parameters were
greater than 200 after burn-in. A maximum clade
credibility tree was estimated with a burn-in of 10%
of the sampled trees and a posterior probability limit
of 0.5.

DIVERGENCE TIME ESTIMATION FOR S. MIKADOI

Bayesian estimation of divergence times among the
lineages of S. mikadoi was performed based on each
ITS and cpDNA sequence, using BEAST. The analy-
ses employed the strict clock models and the models
TrN for ITS and HKY for cpDNA with empirical base
frequency settings. For ITS and cpDNA substitution
rates, the normal distribution priors described above

were used. The analyses used a coalescent tree prior,
which is adequate to study intraspecific diversifica-
tion (Drummond et al., 2007), under the most simple
assumption of a constant population size. Because
the coalescent tree prior is suited for within species
data, the sequences of the other three Solenogyne
species were excluded from the analyses, and the
root of a phylogeny was estimated by enforcing the
molecular clock constraint. Random starting trees
were used for ITS and cpDNA. Default priors were
used for the remaining parameters. MCMC chains
were run for 10 million generations and sampled
every 1000 generations. We ran two separate analy-
ses for each ITS and cpDNA. We checked the con-
vergence of all parameters using TRACER and the
first 1000 of the 10 000 sampled generations in each
run were discarded as burn-in. The log files from the
two runs were combined, and the ESS of all param-
eters were greater than 200 after the burn-in. A
maximum clade credibility tree was estimated with a
burn-in of 10% of the sampled trees and a posterior
probability limit of 0.5.

PHYLOGEOGRAPHICAL ANALYSIS OF S. MIKADOI

A statistical parsimony network, suited to the analy-
sis of intraspecific and/or recently diverged genetic
lineages, was estimated based on each of the Solen-
ogyne data sets of ITS and cpDNA. The analyses were
conducted by a 95% parsimony criterion using TCS
version 1.21 (Clement, Posada & Crandall, 2000).
Indels were scored as binary states indicating
presence/absence, in accordance with the simple indel
coding strategy of Simmons & Ochoterena (2000). The
other three Solenogyne species were used as outgroup
taxa because an Australian origin of Solenogyne was
indicated by the analyses of the Astereae data set (see
Discussion).

RESULTS
DATA MATRIX CHARACTERISTICS

The length of the ITS sequences was in the range
627–634 bp among Solenogyne and the other species,
and the aligned sequence length was 650 bp. In Sole-
nogyne, 30 nucleotide substitutions were found in 29
variable sites. Within S. mikadoi, four nucleotide
substitutions were found in four variable sites and
three unique ITS types were found (A–C), and each of
the three Australian Solenogyne species had an
unique ITS type (D–F) (Table 1). The length of the
atpB–rbcL spacer and trnK3′ intron region was 994–
1001 bp and 752 bp in the four Solenogyne species,
and their alignment resulted in matrices of 1001 and
752 characters, respectively, resulting in the com-
bined data of 1753 bp. Across all Solenogyne samples,
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seven nucleotide substitutions and one length poly-
morphism were found. In all accessions of S. mikadoi,
three nucleotide substitutions were found and four
haplotypes (A–D) were recognized. Each of the three
Australian species had one unique haplotype (E–G).

NRDNA PHYLOGENY OF SOLENOGYNE

AND ALLIED GENERA

The 50% majority rule consensus tree by MrBayes
based on the model TrN is depicted with mean branch
length of all the post-burn-in trees and Bayesian
posterior probabilities (PP) (Fig. 3).

The maximum clade credibility tree by BEAST
based on the model TrN were topologically compatible
with the 50% majority rule consensus tree (not
shown). The MrBayes and BEAST analyses based on
the model GTR+I+G indicated lower posterior prob-
ability values for some nodes but showed the same
topologies (not shown) as the model TrN. In the
MP analysis, 107 of 275 variable sites were parsi-
moniously informative in Solenogyne and the other
Astereae taxa. Seventy-three equally parsimo-
nious trees were obtained (709 steps, consistency
index = 0.536, retention index = 0.666, rescaled con-
sistency index = 0.357, homoplasy index = 0.464). The
topology of the MP strict consensus tree (not shown)
was compatible with those of the Bayesian trees by
MrBayes and BEAST. The PP for clade support by
BEAST based on the model TrN and bootstrap per-
centages (BP) by the MP analysis are shown on the
50% majority rule consensus tree (Fig. 3). In what
follows, we consider clades supported by BP > 70
and/or PP > 0.95. The Solenogyne and Lagenophora
samples together formed a clade (PPMrBayes/PPBEAST/
BP = 0.99/0.99/51.3), except Lagenophora panamensis
S.F.Blake from Central America that fell in a clade
containing a sample each of three other genera (1.0/
0.96/ < 50). Within the Solenogyne/Lagenophora clade,
all Solenogyne samples and L. huegelii formed a clade
(1.0/1.0/84.7), and Solenogyne was monophyletic (1.0/
0.97/53.2). Each species, S. gunnii (1.0/1.0/99.0),
S. dominii (1.0/1.0/80.3), S. bellioides (0.97/0.99/68.5),
and S. mikadoi (1.0/1.0/100), was monophyletic, and
S. dominii and S. bellioides formed a monophyletic
clade (1.0/1.0/82.6). In the S. mikadoi clade, a clade
composed of plants from Amamioshima and Tokun-
oshima islands (0.98/1.0/62.1) and a clade of plants
from Okinawajima Islands (0.96/0.99/61.6) clustered
in a polytomy with the plant from Iriomotejima
Island.

PHYLOGENY AND DIVERGENCE TIME OF SOLENOGYNE

Species phylogeny of the four Solenogyne species esti-
mated using multispecies coalescent analysis based

on ITS and cpDNA is depicted with clade posterior
probabilities above branches (Fig. 4). Clade depth
indicates mean nodal age and bars indicate 95%
highest posterior density (HPD) intervals for nodal
ages. The phylogenetic tree was rooted at the branch
separating S. mikadoi from the three Australian
congeners (PP = 1.0). The three Australian species
were monophyletic (PP = 0.98) and S. bellioides and
S. dominii formed a clade (PP = 0.95). The estimated
age of the most recent common ancestor (MRCA)
of Solenogyne was 2.38 Mya (95% HPD interval =
0.93–4.16 Mya). The age of the MRCA of the
three Australian species was 1.15 Mya (95% HPD
interval = 0.30–2.21 Mya). The age of the MRCA of
S. bellioides plus S. dominii was 0.63 Mya (95% HPD
interval = 0.15–1.22 Mya).

DIVERGENCE TIME ESTIMATION FOR S. MIKADOI

The maximum clade credibility trees based on ITS
and cpDNA are shown with clade posterior probabili-
ties above branches (Fig. 5). Nodes with identical
sequences are collapsed. Clade depth indicates mean
nodal age (years) and nodes with PP � 0.5 are anno-
tated with the 95% HPD intervals for node ages by
bars. The estimated age of the MRCA of S. mikadoi
was 0.33 Mya (95% HPD interval = 0.03–0.75 Mya)
based on ITS, and 0.13 Mya (95% HPD
interval = 0.003–0.330 Mya) based on cpDNA. The
ages of the MRCAs of terminal clades ranged 0.03–
0.07 Mya (95% HPD interval = 0.00035–0.190 Mya)
based on ITS, and 0.01–0.02 Mya (95% HPD
interval = 0.00008–0.070 Mya) based on cpDNA.

PHYLOGEOGRAPHY BASED ON CPDNA

The geographical distribution of the ITS types and
cpDNA haplotypes is shown in Figure 2, with their
statistical parsimony networks. ITS type A was found
in Iriomotejima Island, ITS type B was found in
Okinawajima Island, and ITS type C was found in
Tokunoshima and Amamioshima islands. In the sta-
tistical parsimony network, ITS type A and the other
types B and C were connected with three mutational
steps; ITS types B and C were distinguished from
each other by two mutational steps. The ITS types of
the Australian species S. bellioides, S. dominii, and
S. gunnii (D–F, not shown) were not connected to the
network of S. mikadoi by the 95% parsimony crite-
rion. CpDNA haplotype A was found in Iriomotejima
Island, haplotypes B and C were found in Okinawa-
jima Island, and haplotype D was found in Tokun-
oshima and Amamioshima islands. In the statistical
parsimony network, the four haplotypes of S. mikadoi
were distinguished from each other by one mutational
step. Haplotype A from Iriomotejima Island was found
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Baccharis dracunculifolia

Bellis perennis
Brachycome breviscapis

Celmisia mackaui

Conyza gouanii

Conyza pyrrhopappa

Crinitaria linosyris

Lagenophora cuneata

Lagenophora gracilis
Lagenophora lanata

Lagenophora pumila

Lagenophora stipitata var. stipitata
Lagenophora stipitata var. montana

Lagenophora strangulata

Myriactis humilis

Nidorella resedifolia

Olearia argophylla

Oritrophium peruvianum
Pachystegia insignis

Pteronia incana

Vittadinia australis

Lagenophora pumila
Lagenophora pumila

Psiadia punctulata

Lagenophora huegelii

Solenogyne bellioides

Solenogyne dominii

Solenogyne bellioides
Solenogyne bellioides

Solenogyne dominii

Solenogyne gunnii
Solenogyne gunnii
Solenogyne gunnii
Solenogyne gunnii

Solenogyne mikadoi (Urauchigawa)
Solenogyne mikadoi (Akirikamigawa)

Solenogyne mikadoi (Arakawa)

Solenogyne mikadoi (Sumiyogawa)
Solenogyne mikadoi (Kawauchigawa)

Chiliotrichum diffusum
Damnamenia vernicosa

Pleurophyllum speciosum

0.1

1.0 / 1.0 / 69.7

0.96 / 1.0 / –

0.83 / 1.0 / –

0.78 / 1.0 / –

0.98 / 0.95 / 52.8

0.99 / 0.86 / –

0.98 / 0.90 / –

0.91 / 0.85 / –

1.0 / 1.0 / 57.4

0.94 / 0.99 / –

0.95 / 0.94 / 53.1

0.76 / 0.87 / 60.1

1.0 / 1.0 / 94.1

1.0 / 1.0 / 89.7

1.0 / 1.0 / 99.8

1.0/1.0/99.0

1.0 / 1.0 / 80.3

0.97 / 0.99 / 68.5

1.0 /
1.0 /
82.6

0.98 / 1.0 / 62.1

0.96 / 0.99 / 61.6

1.0 / 1.0 / 100

0.92 / 0.85 / 51.9

1.0 / 0.97 / 53.2

1.0 / 1.0 / 84.7

1.00 / 0.99 / –

0.99 / 0.99 / 51.3

1.0 / 1.0 / 90.2

0.71 / 1.0 / 57.8

1.0 / 1.0 / 88.7

Diplostephium rupestre

Laennecia sophiifolia
Lagenophora panamensis

Podocoma notobellidiastrum
0.64 / 0.49 / –

0.76 / 0.63 / –

1.0 / 0.96 / –

Aster amellus

Calotis dentex
Kalimeris integrifolia

Minuria integerrima

1.0 / 1.0 / 100

0.52 / – / –0.83 / 0.63 / –

Solenogyne mikadoi (Taihogawa)
Solenogyne mikadoi (Haramatagawa)
Solenogyne mikadoi (Hijigawa)
Solenogyne mikadoi (Ukagawa)
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in a central position with the other three haplotypes
B, C, and D radiating from haplotype A. The haplo-
types of S. bellioides (E) and S. gunnii (G) were con-
nected to the haplotype of S. dominii (F), which was
connected to haplotype A of S. mikadoi separated by
two mutational steps.

DISCUSSION
SYSTEMATIC CONSIDERATIONS

In the Bayesian tree (Fig. 3), Solenogyne and Lageno-
phora formed a well supported monophyletic clade,
except for L. panamensis from Panama, that clus-
tered with three other Astereae genera from Central
America. Within Lagenophora, two sections, namely
Pseudomyriactis and Lagenophora are recognized
based on the morphological differences in the beak of
the achenes and stem leaves; L. panamensis belongs
to the former, whereas the other congeners analyzed
belong to the latter (Cabrera, 1966; Cuatrecasas,
1986). The Bayesian tree is consistent with this split.
Within the Solenogyne–Lagenophora clade, the first
split separates four Lagenophora species (L. stipitata,
L. strangulata, L. cuneata, and L. pumila) from other
species of Lagenophora (L. gracilis, L. lanata, and

L. huegelii) plus all Solenogyne samples. The latter
three Lagenophora species split off in two grades from
the Solenogyne samples. This supports the hypothesis
that Solenogyne has arisen from a Lagenophora
ancestor and has a more recent origin than Lageno-
phora (Davis, 1950). The clade of Solenogyne plus the
three Lagenophora species shares a monopodial habit,
whereas the other Lagenophora species are sympodial
in growth (Drury, 1974; Adams, 1979). The results
from our phylogenetic analyses demonstrate that
Lagenophora as currently defined is polyphyletic.
Based on this result, one taxonomic option is synony-
mizing Solenogyne with Lagenophora (Bentham,

Figure 3. The 50% majority rule consensus tree of Solenogyne, Lagenophora, and 34 taxa from 25 genera of tribe
Astereae by MrBayes based on internal transcribed spacer sequences under the model TrN. The analysis based on the
model GTR+I+G resulted in the same topology (not shown). The maximum clade credibility trees by BEAST based on the
models GTR+I+G and TrN and the maximum parsimony (MP) strict consensus tree were all topologically compatible (not
shown). Numbers along the branches indicate Bayesian posterior probabilities (PP) with MrBayes and BEAST under the
model TrN and bootstrap percentages (BP) by the MP analysis (PPMrBayes/PPBEAST/BP).
�

S. bellioides

S. dominii

S. gunnii

S. mikadoi

0.5 01.02.0 1.52.5

0.98

0.95

1.00

3.04.0 3.5 Million year ago

Figure 4. Species phylogeny of the four Solenogyne
species estimated using multispecies coalescent analysis
based on internal transcribed spacer (ITS) and chloroplast
DNA (cpDNA). Clade posterior probabilities (PP) are indi-
cated above branches. Clade depth indicates mean nodal
age (million years) and bars indicate 95% highest posterior
density (HPD) intervals for nodal ages.

Okinawajima
  Taihogawa (6)
  Arakawa (4)

Tokunoshima
  Akirikamigawa (6)
Amamioshima
  Kawauchigawa (2)
  Sumiyou (5)

Iriomotejima
  Urauchigawa (5)

Okinawajima
  Haramatagawa (4)
  Hijigawa (3)
  Ukagawa (3)

0.98

0.99

0.99

0.61

0.24

0.23
1.00

Tokunoshima
  Akirikamigawa (6)
Amamioshima
  Kawauchigawa (2)
  Sumiyou (5)

0.26

1.00

0.98

1.00

1.00

Iriomotejima
  Urauchigawa (5)

Okinawajima
  Taihogawa (6)
  Haramatagawa (4)
  Hijigawa (3)
  Ukagawa (3)
  Arakawa (4)

100,000 0200,000300,000

100,000 0200,000300,000

400,000600,000700,000 500,000

ITS

CpDNA

Year before present

Year before present

Figure 5. Maximum clade credibility trees based on inter-
nal transcribed spacer (ITS) and chloroplast DNA (cpDNA).
Nodes with identical sequences are collapsed. Clade poste-
rior probabilities (PP) are indicated above branches. Clade
depth indicates mean nodal age (year) and nodes with
PP � 0.5 are annotated with the 95% highest posterior
density (HPD) intervals for node ages by bars.
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1867; Maiden & Betche, 1916; Drury, 1974; Koyama,
1995). Transferring the three Lagenophora species
(L. gracilis, L. lanata, and L. huegelii) into Solen-
ogyne is another option (Adams, 1979) because they
share similar habit with Solenogyne species. However,
the type species of Lagenophora, L. nudicaulis
(Comm. ex Lam.) Dusén, was not collected and exam-
ined in the present study. Thus, a taxonomic revision
is beyond the scope of the present study, but it is a
topic for future investigation.

RYUKYU–AUSTRALIA ANTITROPICAL DISTRIBUTION

Solenogyne mikadoi formed a clade with the three
Australian congeners and this clade was sister to
L. huegelii, which is also endemic to southern Austra-
lia (Fig. 3). In the present study, L. pinnatifida, which
is endemic to New Zealand, was not analyzed,
and therefore we cannot rule out the possibility
that L. pinnatifida is included in the Solenogyne–
L. huegelii clade or Solenogyne clade. The four Sole-
nogyne species and L. huegelii share a monopodial
habit (Drury, 1974) and the four Solenogyne species
share tubular ray florets and achenes with neither
beak nor gland (Davis, 1950; Cabrera, 1966; Adams,
1979), whereas L. pinnatifida does not have these
character states. The ITS phylogeny (Fig. 3) indicated
that these morphological characters have phyloge-
netic signals. Furthermore, morphologically, L. pin-
natifida is regarded to form a species complex with
L. stipitata (Drury, 1974), which formed a distinct
clade with L. strangulata, L. cuneata, and L. pumila.
Therefore, the possibility raised above appears to
be low. The reconstructed phylogeny indicates a
direction of dispersal from Australia to Japan.
Overall, it can be safely stated that S. mikadoi is
disjunctly distributed from its sister species more
than 7000 km away, and has derived from an Austra-
lian congener. To our knowledge, this is the first
molecular phylogeographical evidence for an anti-
tropical distribution of a vascular plant between East
Asia and Australia.

The age of the MRCA of Solenogyne was 2.38 Mya
(0.93–4.16 Mya), when the lineage of S. mikadoi and
the Australian lineage diverged (Fig. 4). This is much
more recent than the collision of the Australian con-
tinent with the Philippine Sea plate arc which started
by approximately 25 Mya (Hall, 2001). Thus, it was
not the collision which facilitated the range expansion
of Solenogyne. In plant species pairs showing anti-
tropical distributions in North and South America,
divergence times based on molecular data fall gener-
ally in the late Neogene to the Holocene (i.e. from 8.4
Mya to very recent) (Bell & Patterson, 2000; Fukuda,
Yokoyama & Ohashi, 2001; Lia et al., 2001; Wen et al.,
2002; Beier et al., 2004; Hughes & Eastwood, 2006;

Moore, Tye & Jansen, 2006; Spalik et al., 2010; Popp
et al., 2011). If we take other types of intercontinental
disjunctions, divergence times for plant species pairs
in Eastern Asia and Eastern America occurred in the
late Miocene or later (0.31–16.77 Mya with average
4.98 Mya; Xiang et al., 2000), and for pairs in
Eurasian and western North American deserts with
the Mediterranean climate, fall in the Miocene to
the Holocene (0.021–21.90 Mya; Wen & Ickert-Bond,
2009). Therefore, the oldest estimates for the anti-
tropical distributions are younger than the oldest
estimates for other intercontinental disjunctions,
although it is certainly premature for generalizations
because not enough lineages have been analyzed with
antitropical distributions. In Miocene, positions of the
North and South American, African, Australian, and
Eurasian continents have already been similar to the
modern positions (Torsvik et al., 2010). Thus, we con-
sider that the timing of continental drift does not
explain the different oldest estimates. Generally
speaking, long-distance dispersals are more likely to
occur within the same latitudinal climatic zone (e.g.
between East Asia and North America) than between
climatic zones (i.e. antitropical pairs) because dispers-
als are not successful unless the climates in a new
land or stopovers are appropriate (Morley, 2003).
Climatic oscillations during the Plio-Pleistocene
(Hall, 2001) may have provided a corridor of suitable
climate at some time and enabled latitudinal dis-
persal through the tropics. In Australia, dense closed
forest cover rapidly changed to dry, open vegetation in
the Pliocene (approximately 1.8–5.0 Mya) in response
to climatic oscillations (Hill, 2004). In the late
Pliocene, temperate rainforests in south-eastern Aus-
tralia dramatically shifted to a landscape dominated
by plants of Asteraceae and Poaceae and with very
few sclerophyll trees (Hill, 2004; Martin, 2006). This
landscape is very similar to the present-day habitats
Solenogyne occupies in Australia. Population expan-
sion and large production of fruits in such landscapes
may have increased the chance of the range expan-
sion from Australia to the Ryukyu Archipelago.

The age of the MRCAs of three Australian Solen-
ogyne species was 1.15 Mya (0.30–2.21 Mya) and, of
S. bellioides and S. dominii, was 0.63 Mya (0.15–
1.22 Mya) (Fig. 4). In the Pleistocene (approximately
0.01–1.80 Mya), there was very little glaciation in
Australia and it was restricted to the south-eastern
highlands and Tasmania (Martin, 2006). In south-
eastern Australia, the alternation of more open or
steppe vegetation in the drier glacial periods and
more wooded vegetation in the wetter interglacial
periods occurred through the Pleistocene (Martin,
2006). Fragmentation of open vegetation habitats as a
result of local recovery of forests during the intergla-
cial periods and genetic isolation may explain the
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divergences of the Australian Solenogyne species.
Their present distribution ranges are overlapping and
their habitat segregation is not evident, and this may
be explained by secondary contacts of the species.

Because Australia and the Ryukyu Archipelago
have never been connected by land, even via the
Sundaland and East Asian continent (Hall, 2001),
media for an over-sea dispersal need to be considered,
although the fruits of Solenogyne have no special
mechanism for long-distance dispersal. Sea-current
dispersal is unlikely because extant species of Solen-
ogyne grow inland. Achenes of the four Solenogyne
species are approximately 1–2.5 mm at the long axis
(K. Nakamura, unpubl. data) and are small enough to
be accidentally dispersed by migratory birds with
exozoochory and/or by strong winds. Dispersal by
migratory birds, which head to terrestrial habitats,
appears more realistic than haphazard dispersal by
strong winds. Eastern Australia and the Ryukyu
Archipelago are situated on the flyway of many
migratory birds called the East Asian–Australasian
Flyway (Wilson & Barter, 1998; Amami Ornithologist
Club, 2009). Thus, it would be possible to assume
indirect or direct dispersal of achenes by these migra-
tory birds, although it is not clear whether the East
Asian–Australasian Flyway has existed for a geohis-
torical time scale. Solenogyne has an autogamous
breeding system (K. Nakamura, unpubl. data), which
is characteristic to antitropical distributions (Raven,
1963; Wen & Ickert-Bond, 2009) and likely facilitates
long-distance migrations because new populations
can be established even when a single plant colo-
nizes and/or when suitable pollinators are absent in
colonized areas (Donoghue, 2011).

It is intriguing that Solenogyne is absent from
intervening areas such as New Guinea, Indonesia,
Philippines, and Taiwan (Fig. 1). The genus may have
been overlooked in these areas because some are
botanically very poorly known (e.g. New Guinea).
Aside from this possibility, antitropical distributions
may arise from long-distance dispersal with no stop-
over at the tropics or, alternatively, are the result of
extinctions of intervening tropical populations of pre-
viously widespread lineages (Hilbish et al., 2000;
Burridge, 2002; Mabuchi et al., 2004). Some migra-
tory birds are known to fly nonstop between Australia
and East Asia (Wilson & Barter, 1998). Such ‘long
jump’ migration may explain the absence of Solen-
ogyne in the intervening areas. The extinction
hypothesis cannot be proven without fossil records
from the tropics, as is the current case for Solenogyne.
However, it cannot be flatly discounted either. Extinc-
tions in the tropics can largely be attributed to two
factors, namely unsuitably high temperatures during
climate oscillation and/or competition with tropi-
cal species (Briggs, 1987; Hilbish et al., 2000). The

climate–extinction hypothesis has been applied to
antitropical distributions of many marine organisms
(Parrish, Serra & Grant, 1989; Hilbish et al., 2000;
Mabuchi et al., 2004) and also to land plants in North
and South America (Raven, 1963; Wen & Ickert-Bond,
2009). This is a possible explanation for Solenogyne,
considering that the three Australian species are dis-
tributed in temperate areas (Adams, 1979; Brown &
Porteners, 1992) and S. mikadoi, although distrib-
uted in the subtropical Ryukyu Archipelago, grows in
cool environments such as rocky beds of mountain
streams (Yokota & Hiraiwa, 2006). Although in
South-east Asian islands there are cooler environ-
ments at high altitudinal areas (Barlow, 1981), such
niches might have been occupied by other species, as
discussed below. On the other hand, the competition–
extinction hypothesis appears more likely because
competition with tropical species would have been
severe on South-east Asian islands. These have an
extremely rich flora characterized by exceptionally
large numbers of relictual, archaic forms of flowering
plants, suggesting persistence of tropical rain forests
since the early Tertiary (Takhtajan, 1986; Morley,
2001, 2003). However, the Ryukyu Archipelago is
younger and did not attain its modern form until 5–6
Mya (Chiang & Schaal, 2006), with less competition
from the comparatively depauperate flora thus
enabling colonization of Solenogyne. Many of the
small islets of Wallacea have emerged from the sea by
tectonic movements and been populated by plants and
animals since approximately 5 Mya (Hall, 2001).
During glacial periods, the huge continental shelf of
Australia–New Guinea and shallow areas of the
South China Sea and Java Sea were exposed as dry
land, and the resulting decrease in moisture from
summer and winter monsoons to the Lesser Sunda
Islands, Java, Borneo, Sumatra, and the Philippines
likely increased the areas of seasonal forests and
grasslands in lowlands (Heaney, 1991). These newly-
emerged open vegetation communities could have
enabled Solenogyne to establish populations there,
and the decrease or disappearance of the habitats in
interglacial periods due to sea level rises and vegeta-
tion changes may explain the present-day absence of
Solenogyne in South-east Asia. The long branch
leading to the S. mikadoi clade may indicate these
extinction events (Fig. 3).

Directions of intercontinental dispersals have been
extensively discussed in the literature. Molecular
phylogenetic studies on land plants distributed in
North and South America reported more examples of
southward migrations (Bell & Patterson, 2000;
Fukuda et al., 2001; Li et al., 2002; Wen et al., 2002;
Beier et al., 2004; Hughes & Eastwood, 2006; Moore
& Jansen, 2006; Moore et al., 2006; Ickert-Bond,
Rydin & Renner, 2009; Spalik et al., 2010; Popp et al.,
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2011) than of northward migrations (Fukuda et al.,
2001; Lia et al., 2001; Bell & Donoghue, 2005;
Simpson, Tate & Weeks, 2005). Dominance of south-
ward dispersal was indicated for land plants showing
antitropical amphiantarctic disjunctions (Spalik
et al., 2010). To determine whether a predominant
direction of dispersal exists in East Asia–Australia
antitropical distributions, more studies are needed,
while the Ryukyu Archipelago, with a much younger
geohistory, might have provided suitable open habi-
tats and acted as a sink for chance migrants from
source Australian populations.

MIGRATORY PROCESS IN THE RYUKYU ARCHIPELAGO

In the statistical parsimony network (Fig. 2), the
cpDNA haplotype A of S. mikadoi from Iriomotejima
Island connected with the haplotype F of S. dominii.
This indicates that an ancestral lineage of S. mikadoi
first colonized Iriomotejima Island. The other three
haplotypes of S. mikadoi radiated from haplotype A.
This indicates that haplotype A migrated northward
throughout the distribution range of the species. The
northward migration was followed by local differen-
tiations (i.e. haplotypes B and C were derived from
haplotype A in Okinawajima Island, and haplotype D
was derived from haplotype A in Amamioshima or
Tokunoshima islands). In the statistical parsimony
network of ITS, the three Australian species (ITS
types D–F) were not connected to the network of
S. mikadoi by the 95% parsimony criterion, and thus
migratory direction cannot be inferred. Assuming that
the ITS network is rooted at the ITS type of Iriomote-
jima Island, with reference to the cpDNA network,
the topology of the ITS types A–C is compatible with
the above migratory process deduced based on the
cpDNA network.

Palaeogeographically, during the Neogene, the
Ryukyu Archipelago formed a land-bridge and con-
nected to the surrounding landmasses more than
once, to Kyushu of the main Japanese islands in the
north and to south-eastern China via Taiwan in the
south (Ota, 1998). These land connections allowed
various lineages of terrestrial organisms to expand
their ranges among the islands (Ota, 1998; Nakamura
et al., 2009). During the Pliocene (approximately 1.8–
5.0 Mya), however, subsidence created two deep-
water passages in the island arc: the Tokara Gap (the
Tokara tectonic strait) to the north of Amamioshima
Island and the Kerama Gap to the south of Okinawa-
jima Island (Fig. 2) (Ota, 1998). Subsequently, any
land connection across these gaps was unlikely even
during Quaternary glacial sea-level minima (Ota,
1998) because the sea is currently more than 1000 m
deep at these two gaps (Kawana, 2002). In the
early Pleistocene, present-day Amamioshima, Tokun-

oshima, and Okinawajima islands formed a large
island (Fig. 2) (Ota, 1998). Subsequently, the islands
were separated during the mid Pleistocene (Kimura,
2002b).

The age of the MRCA of S. mikadoi was estimated
here as 0.33 Mya (0.03–0.75 Mya) based on ITS and
0.13 Mya (0.003–0.330 Mya) based on cpDNA (i.e. the
mid Pleistocene or later). Considering the long isola-
tion of Iriomotejima from the northern islands since
the Pliocene, this result suggests that northward
migration and/or gene flow occurred crossing the
Kerama Gap via over-sea dispersal by wind and/or
birds. Migrants from Iriomotejima Island might have
colonized Okinawajima, Tokunoshima, and Amami-
oshima islands individually, or might have first colo-
nized one island and then the others in a stepwise
manner. The distribution patterns of the ITS types
and cpDNA haplotypes showed genetic discontinuity
between Okinawajima Island and Tokunoshima plus
Amamioshima islands. This genetic differentiation
pattern has been reported for multiple organisms
(Japanese newt Cynops: Hayashi & Matsui, 1988;
Ceratopteris: Watano & Masuyama, 1994; wood-
feeding cockroaches Salganea: Maekawa et al., 1999;
pit vipers Trimeresurus: Toda et al., 1999; Lilium:
Hiramatsu et al., 2001), with a rare exception that
showed a genetic discontinuity between Tokunoshima
and Amamioshima islands (Aster: Maki, 2001). This
general pattern may suggest vicariance events
between Okinawajima Island and Tokunoshima plus
Amamioshima islands (Hiramatsu et al., 2001), which
is consistent with the palaeogeography in the mid to
late Pleistocene (Kimura, 2002b). Alternatively, this
pattern can be simply explained by a geographical
distance effect; the genetic discontinuity was caused
by the larger geographical distance between Oki-
nawajima Island and the other two islands than
between Tokunoshima and Amamioshima islands
(Fig. 2).

CONCLUSIONS

A sister relationship between S. mikadoi and the Aus-
tralian congeners was revealed and the antitropical
distribution of Solenogyne was proven. A sister rela-
tionship between Solenogyne and Australia endemic
L. huegelii indicated an Australian origin of Solen-
ogyne. Solenogyne mikadoi and the Australian conge-
ners diverged during the Plio-Pleistocene. The
ancestral lineage of S. mikadoi has likely first colo-
nized the southernmost island in the Ryukyu Archi-
pelago, and from there northwards, most likely by
over-sea dispersals. The antitropical distribution of
Solenogyne might have arisen through long-distance
dispersal across the tropics or, alternatively, through
extinction in the tropics as a result of unsuitably high
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temperatures during climate oscillation and/or com-
petition from the tropical flora that survived there
since the early Tertiary. The range expansion from
Australia to the Ryukyu Archipelago likely followed
the flourishing of Solenogyne in open vegetation com-
munities radiating in south-eastern Australia during
the late Pliocene. Climatic oscillations during the
Plio-Pleistocene may have provided a corridor of suit-
able climate. Open vegetation in lowland areas, which
emerged above sea in the Plio-Pleistocene in South-
east Asia via tectonic movements and eustatic sea
level drop could have enabled Solenogyne to pass
through the area. This is the first molecular phylo-
geographical evidence for an antitropical distribution
of land plants between East Asia and Australia, and
contributes to a first insight into our understanding of
this intriguing global phenomenon.
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