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Abstract

For years, extensive efforts have been made to use mammalian sperm as the mediator to generate
genetically modified animals; however, the strategy of sperm-mediated gene transfer (SMGT) is un-
able to produce stable and diversified modifications in descendants. Recently, haploid embryonic
stem cells (haESCs) have been successfully derived from haploid embryos carrying the genome
of highly specialized gametes, and can stably maintain haploidy (through periodic cell sorting
based on DNA quantity) and both self-renewal and pluripotency in long-term cell culture. In partic-
ular, haESCs derived from androgenetic haploid blastocysts (AG-haESCs), carrying only the sperm
genome, can support the generation of live mice (semi-cloned, SC mice) through oocyte injection.
Remarkably, after removal of the imprinted control regions H19-DMR (differentially methylated
region of DNA) and IG-DMR in AG-haESCs, the double knockout (DKO)-AG-haESCs can stably
produce SC animals with high efficiency, and so can serve as a sperm equivalent. Importantly,
DKO-AG-haESCs can be used for multiple rounds of gene modifications in vitro, followed by ef-
ficient generation of live and fertile mice with the expected genetic traits. Thus, DKO-AG-haESCs
(referred to as ‘artificial spermatids’) combed with CRISPR-Cas technology can be used as the ge-
netically tractable fertilization agent, to efficiently create genetically modified offspring, and is a
versatile genetic tool for in vivo analyses of gene function.

Key words: haploid embryonic stem cells, androgenetic haESCs, ‘artificial spermatids’, semi-cloned mouse (SC
mouse), CRISPR-Cas9, gene editing.

Introduction

In mammals, sperm and oocytes are gametes: specialized haploid
cells that combine at fertilization to form a diploid totipotent zy-

gote, which undergoes development. In adult sexual organs, gametes
are developed through the process of meiosis. This fluctuation be-
tween diploid and haploid phases lays the foundation for sexual
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reproduction, which is important for biodiversity, adaption to the en-
vironment and evolution [1–3]. The formation of haploid germ cells
(particularly sperm) and the process of fertilization provide a unique
method to deliver exogenous DNA to descendants [4–6]. Initial re-
ports of sperm-mediated gene transfer (SMGT) in 1989 showed that
sperm could associate with and transfer exogenous DNA molecules
through in vitro fertilization to produce transgenic offspring [7].
Similarly, transgenic mice were efficiently generated by co-injection
of sperm heads and exogenous DNA, particularly so when sperm
membranes were disrupted via physical or chemical methods [8].
SMGT has been proven as a simple, low-cost and rapid strategy to
produce transgenic animals; however, subsequent studies have in-
dicated that the final fate of the transgenes is unpredictable in the
progeny [4–6]. Moreover, sperm are terminally differentiated cells
that cannot divide, possess a highly dense nucleus, and are so far
inaccessible for complex gene modifications such as multiple-gene
editing and gene-targeting experiments.

The advent of haploid embryonic stem cells (haESCs) de-
rived from sperm-originated androgenetic haploid blastocysts (AG-
haESCs) has overcome these problems [9–11]. The AG-haESCs can
divide rapidly and infinitely in vitro, maintain haploidy via periodic
cell sorting, and sustain pluripotency [12, 13]. These cells partially
maintain the gamete-specific imprinting pattern and retain the ability
to mimick the sperm genome and support the full-term embryonic
development through injection into mature oocytes (intracytoplas-
mic AG-haESC injection; ICAHCI) and lead to live animals (semi-
cloned mice; SC mice). Importantly, removal of the differentially
methylated regions (DMRs) of H19 and IG in AG-haESCs mim-
ics the imprinted state of sperm, decreases expression of H19 and
Gtl2, and creates DKO-AG-haESCs (‘artificial spermatids’) capa-
ble of efficient and stable production of SC mice. These ‘artificial
spermatids’ are amenable to complex gene modifications in culture
and efficiently generate mouse models with the expected genetic
traits in one step via ICHACI [14, 15]. Combined with CRISPR-
Cas9 technology, they enable one-step generation of mice with dif-
ferent mutations and provide an efficient tool for genetic screen-
ing [14, 16]. Taken together, ‘artificial spermatid’-mediated genome
editing opens new avenues for functional genetic analysis in vivo
[9–11, 17–19].

SMGT

In 1971, sperm cells were first reported to be capable of incorpo-
rating heterologous genomes and carrying them into oocytes upon
fertilization [20]. Unfortunately, this discovery was ignored for
years until it was rediscovered in 1989 by two independent groups
[7, 21]. In one report, incubation of mature mouse sperm cells with
exogenous DNA prior to in vitro fertilization resulted in the birth
of germline-competent transgenic founders [7]. These studies led to
the development of SMGT: the introduction of foreign genetic in-
formation to produce genetically modified animals, facilitated by
the ability of sperm cells to bind and deliver exogenous DNA to
oocytes [22]. Several months later, a second report claimed that the
original protocol could not be successfully reproduced and raised
controversy over SMGT [7, 23], but the obvious ease and low-cost
of the protocol has drawn attention from the scientists around the
world. Many more SMGT reports have been published since: some
have reported stable genomic modifications in resultant animals,
others that stable transgene integration has rarely been detected in
SMGT productions [6]. Numerous efforts have been made to evolve
SMGT, including the use of linearized DNA (instead of circular

plasmids) [7], incubation of DNA before intracytoplasmic sperm
injection (ICSI) [24], disruption of sperm membranes before injec-
tion of DNA [8], optimization of DNA transfer through the use of
transfection reagents [25, 26], and treating sperm heads with anti-
bodies reactive to a surface antigen [27]. In spite of these efforts,
the efficiency and outcome of SMGT are still unpredictable in sin-
gle experiment, probably for the following reasons: sperm are highly
specialized, non-dividing cells, so it is impractical to select those with
integrated foreign DNA before fertilization, and a large number of
founders must be screened for the presence of the transgene and its
subsequent transmission to progeny; even when transgene presence
is confirmed in founders and F1 progeny, it may remain in an ex-
trachromosomal form rather than integrating into the host genome
[28]. The fact that the interaction between sperm cells and exoge-
nous DNA, expected to be mediated by specific factors, is poorly
understood contributes to the lack of consistent results with SMGT
[5, 29–31]. Consequently, the foreign transgene may be inherited
in a non-Mendelian ratio, expressed in a mosaic distribution or be
lost after serial cell divisions [5]. While SMGT has not yet been
conventionally used as a reliable tool for transgenesis, the concept
of using sperm or sperm replacement as the delivery system for
rapid transgenesis is illuminating and deserves more effort toward
improvement.

Generation of AG-haESCs—the sperm

replacement

Haploidy—a single chromosomal set per nucleus—is rare in verte-
brates, restricted exclusively to mature gametes in mammals and yet
is an essential feature of a sperm replacement [32]. Haploidy permits
rapid analysis of recessive mutations in genetic screening without in-
terference of a second allele. Unicellular eukaryote yeast can grow
in a haploid fashion [33], and haploid-cell-based loss-of-function
screening has made significant contributions to our understanding
of the fundamental mechanisms of biology and disease [34–36]. In
spite of the absence of haploid mammalian individuals, haploidy
does occur in some mammalian somatic cells in a pathological con-
dition: during cancer development, human tumor cells may incur
duplication or loss of chromosomes, the latter of which has allowed
human near-haploid cells to be isolated [37–39]. As with haploid
yeast, these human near-haploid cells can be genetically screened
to understand biological processes [40–50]. However, unknown ge-
nomic alterations in near-haploid tumor cells limit their usefulness
in downstream applications [51]; generation of haploid cells with an
intact genome is essential.

The observation that haploid and diploid cells coexist in the
parthenogenetic blastocysts generated from activated oocytes
implies that they could be used to establish haploid cell lines
[52]. The first attempt to establish haploid embryonic stem cell
(ESC) lines from parthenogenetic mouse blastocysts was reported
in 1983: mature oocytes were artificially activated to extrude the
second polar body, leading to haploid embryos that developed into
blastocysts used to derive pluripotent cell lines. Unfortunately, all
four of the resultant cell lines were diploid with a normal mouse
karyotype of 40 chromosomes [53]. Years later, a group from
Singapore successfully derived medaka fish haploid ESCs from
gynogenetic embryos [54]. The medaka fish haploid ESCs could
sustain pluripotency, genomic integrity, and importantly, support
the production of SC fish when transplanted into mature oocytes
[54]. Inspired by this groundbreaking study, mouse researchers tried
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(A)

(B)

Figure 1. Derivation of haploid embryonic stem cell (haESC) lines from parthenogenetic and androgenetic embryos. (A) Artificial activation of oocytes with-
out fertilization or by removing the paternal pronucleus from the zygote result in parthenogenetic embryos, from which parthenogenetic haploid ES cells
(PG-haESCs) can be derived with the aid of fluorescence-activated cell sorting (FACS). (B) Injection of sperm into enucleated oocytes or removal of the ma-
ternal pronucleus from the zygote result in androgenetic embryos, from which androgenetic haploid ES cells (AG-haESCs) can be derived with the aid of
FACS.

again and successfully generated the first mouse parthenogenetic
haploid ESCs (PG-haESCs) [55, 56] by employing fluorescence-
activated cell sorting (FACS) to enrich for haploid cells (Figure 1A).
Consistent with previous observations [53], mouse haploid cells
spontaneously converted into diploid cells during cell proliferation,
so haploidy was maintained through FACS-based isolation of
haploids from cell mixtures according to differences in DNA
content [55, 56]. Shortly following the generation of PG-haESCs,
also with the aid of FACS technique, mouse androgenetic haploid
ESCs (AG-haESCs) were generated from haploid androgenetic
embryos, obtained either by injecting sperm into enucleated oocytes
or removing the maternal pronucleus from the zygote (Figure 1B)
[12, 13]. Similar strategies have been used to successfully generate
haESCs from parthenogenetic or androgenetic embryos of other
mammalian species, including rat [57], monkey [58], and human
[59, 60].

HaESCs exhibit typical diploid ESC features, including stable ge-
nomic integrity, infinite self-renewal and developmental pluripotency
[61–64]. Moreover, haESCs possess only one allele for each gene (so
allele disruption would likely cause a loss-of-function phenotype)
and offer a yeast-like platform to identify novel genes involved in X-
chromosome inactivation, DNA mismatch repair, ESC self-renewal
and toxin resistance in mammals [55, 56, 58, 59, 65–68]. Inter-

estingly, differentiation of haESCs into haploid epiblast stem cells
(haEpiSCs) and somatic cells [59, 69–72] enables large-scale muta-
genesis in different cell lineages [69, 70]. Strikingly, the reversible
mutagenesis strategy mediated by conditional insertional mutagen-
esis vectors was successfully introduced into haESCs, leading to a
repairable mutant Haplobank of 16 970 genes that permits high-
throughput, genome-scale gene functional annotations directly in
sister cells [70].

Similar to diploid ESCs carrying genetic modifications that can
be extended to the organismal level through blastocyst injection,
both PG-haESCs and AG-haESCs are germline competent [12, 57,
73], suggesting that they are suitable for being vehicles for the trans-
mission of genetic modifications from chimeras to descendants in
a conventional way. However, germline transmission of chimeras
needs additional mating with wildtype mouse, a time-consuming
and somehow unpredictable process. Sperm-originated AG-haESCs
generally maintain parental genomic imprints and can be injected
into oocytes to produce live and fertile SC mice through ICAHCI, a
procedure that is similar to ICSI (Figure 2). Thus, ICAHCI is a novel
approach for the one-step transmission of genetic modifications in
AG-haESCs to animals. In this approach, genetic manipulations
(introduced into AG-haESCs either by homologous recombination-
mediated gene-targeting [12] or electroporation-mediated transgene
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(A)

(B)

Figure 2. Schematic diagram of mouse generation via ICSI and ICAHCI.

integration [13]) can be transmitted to all the descendants in a con-
trollable and non-randomized manner through ‘fertilization’. In gen-
eral, AG-haESCs act as a genetically tractable fertilization agent for
the production of animal models [12].

Generation of ‘Artificial Spermatids’

The generation of mouse AG-haESCs provided a sperm replacement
that could be genetically manipulated in vitro and used to produce
animal models with desired genetic traits in a single step through
oocyte injection; however, the birth rate of healthy SC mice using this
technique was extremely low (∼2% of transferred embryos) [12].
Another approximately 2% of transferred embryos developed into
growth-retarded pups, which died shortly after birth. Live birth rates
were worse still with higher passage number or after genetic manipu-
lation that required more culture time in vitro [12, 13], greatly limit-
ing the application of AG-haESCs to generate gene-modified mouse
models. Further analyses revealed an aberrant epigenetic state in two
paternally imprinted genes, H19 and Gtl2, which are not expressed
in sperm but are overexpressed in both AG-haESCs and growth-
retarded pups. Consistently, DNA methylation of H19-DMR
(differentially methylated regions) and IG-DMR, which control the
expression of H19 and Gtl2 respectively, was reduced in AG-haESCs
and lost in growth-retarded pups [12, 74]. Surprisingly, removal of
H19-DMR and IG-DMR from AG-haESCs markedly improved the
birth rate of SC pups to approximately 20% of transferred embryos
(Figure 3A) [14, 75]. More importantly, AG-haESCs with both
genes deleted (DKO-AG-haESCs) could stably support the SC pup
generation after multiple rounds of gene editing, even with high pas-
sage numbers. For example, two gene families (Tet1/Tet2/Tet3 and
p53/p63/p73) were successfully mutated in DKO-AG-haESCs and
led to stable cell lines, which were employed as fertilization agents
for efficient, one-step generation of mice carrying the corresponding
heterozygous triple mutations [14]. Meanwhile, DKO-AG-haESCs

with Tet1-EGFP/Tet2-mCherry/Tet3-ECFP knock-in alleles were
established in vitro and used for reproducibly production of live SC
pups through ICAHCI [14]. In summary, the genetic deletions in H19
and IG DMRs improve the ‘fertilization’ capability of AG-haESCs,
making it an efficient tool for production of genetically modified
animals. We, therefore, refer to DKO-AG-haESCs as ‘artificial
spermatids’.

One obstacle in haESC application is the inclination to spon-
taneously convert into diploid cells during cell passages. Although
regular FACS-based enrichment of haploid cells can be used to sta-
bly maintain the haploidy, this method is complicated, expensive,
and requires large equipment; stabilization of the haploid state by
optimizing culture conditions or establishing a simple method to
enrich haploid cells is preferable. Recent studies have shown that
diploidization in culture is largely due to endoreduplication [73] or
prolonged metaphase in haESCs compared to that of diploid ESCs
[76], and chemically induced acceleration of S-G2/M phases has
been shown to stabilize haploidy for several weeks longer [77–79];
we and others have established physical filtration methods to en-
rich haploid cells based on differences in cell diameter (Figure 3B)
[80, 81].

Recent application of the CRISPR-Cas9 system in early-stage em-
bryos enables one-step generation of mice carrying knock-out/knock-
in modifications at one or multiple sites [82–85]; however, the geno-
types were varied in founders generated through direct injection of
CRISPR-Cas9 into zygotes. Furthermore, a portion of the founders
exhibited somatic mosaicism and allele complexity, making it diffi-
cult to analyze founder phenotype [86]; some had additional muta-
tions in germ cells and generate offspring with different genotypes
[87]. Thus, the approach of zygote injection is simple, but subse-
quent analysis of founders is complicated. In contrast, the strategy
of ‘artificial spermatid’-mediated gene editing, although it requires
maintenance of haploid ESC in culture, can produce gene modifi-
cations in cultured cells in vitro and select haploid cells with the
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(A)

(B)

Figure 3. Refinements of haESCs. (A) H19-DMR and IG-DMR deletions in AG-haESCs markedly improve the birth rate of SC pups to approximately 20%. (B)
Physical filtration using commercialized membranes with pore size of 5 or 8 μm enriches haploid cells, and provides a convenient and harmless way to maintain
haploidy as an alternative to FACS.

expected genetic traits for ICAHCI and produce SC founders with
homogenous genotypes at lower cost than zygote injection. This is
particularly true for animals with multiple modifications at DNA
loci: genotyping in haploid cells before making animals is easier and
relatively lower in cost than sorting through founders derived from
zygote injection.

Applications of ‘Artificial Spermatids’

Investigating the function of imprinting
in embryonic development
Imprinting plays critical roles in biparental embryonic development
in mammals through inhibition of uniparental embryonic develop-
ment [88–90]. Fifteen years ago, the bimaternal mouse was suc-
cessfully produced by genetically removing H19-DMR from a non-
growing oocyte before maternal-specific imprinting had been estab-
lished, followed by fusion with a fully grown oocyte to form diploid
embryos [91]. Although the birth rate was very low, this result sug-
gests that genomic imprinting blocks mammalian parthenogenetic
development. Consistent with this theory, after removal of IG-DMR,
non-growing oocytes that lack both H19-DMR and IG-DMR effi-
ciently supported bimaternal development following fusion with a
mature oocyte, and generated live animals at a high rate [92, 93].
PG-haESCs, originally derived from oocytes, maintained the typi-
cal pattern of maternal imprinting of oocytes at early passages but
gradually lost it during later cell passaging [75, 94–96]. Meanwhile,
although PG-haESCs and AG-haESCs are derived from oocytes and
sperm respectively, both exhibited a hypomethylation state and sim-
ilar global expression profiles after long-term in vitro ESC culture
[75]. Moreover, the removal of H19-DMR/IG-DMR in AG-haESCs
or non-growing oocytes could result in high-efficiency generation
of SC or bimaternal mice, respectively [14, 92]. Based on these ob-
servations, we and others proposed that deleting H19-DMR and
IG-DMR in PG-haESCs may also lead to efficient production of
bimaternal mice. As expected, PG-haESCs with H19-DMR and IG-
DMR deletions gained the ability to efficiently support the full-term

embryonic development after injection into oocytes, with a striking
birth rate comparable to that of round sperm injection (Figure 4A)
[75, 94]. Therefore, PG-haESCs with deletions in both H19 and IG
DMRs can also be used as ‘artificial spermatids’.

Given that the deletion of two paternally imprinted regions (H19-
DMR and IG-DMR) allows PG-haESCs to be a sperm replacement
to support the generation of bimaternal mice, we hypothesized that
it might also be possible to produce modified AG-haESCs with dele-
tions in certain imprinting regions to replace the oocyte genome
and support bipaternal development. To test this, seven maternally
imprinted regions (Nespas, Grb10, Igf2r, Snrpn, Kcnq1, Peg3 and
Gnas) were deleted in AG-haESCs. AG-haESCs carrying seven mu-
tant imprinted genes (7KO-AG-haESC) were subsequently used as
maternal genome donors for successful production of bi-paternal
pups through a two-step strategy: the androgenetic diploid ESCs
were derived from diploid embryos reconstructed by co-injection of
the 7KO-AG-haESC and sperm into enucleated oocytes, and then
injected into tetraploid blastocysts to produce all-ESC-derived mice
[95]. While this procedure resulted in the birth of two live pups,
both died shortly after birth, suggesting that further optimization is
required (Figure 4A).

Genetic screens at the organismal level
Genetic screening in mice has been hampered by technical bottle-
necks including low-efficiency production of mutant mice and dif-
ficulty of large-scale gene targeting. Using the recently developed
cutting-edge technologies of ‘artificial spermatids’ as fertilization
agents for reproducible production of genetically modified mice and
CRISPR-Cas9 for genome-wide mutagenesis in cells we have es-
tablished three protocols that can be used to generate mice with
different biallelic mutations in a single step (Figure 4B) [14]. In the
first strategy (termed ‘lenti-sgRNA + Cas9 injection’), lentivirus con-
taining a single guide RNA (sgRNA) library [97] was first infected
into ‘artificial spermatids’ to establish a cell line with constitutive
expression of sgRNA, which was then injected into oocytes and
followed by Cas9 mRNA injection to produce biallelic mutant mice

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/article/101/3/538/5488429 by guest on 10 April 2024



‘Artificial spermatid’-mediated genome editing, 2019, Vol. 101, No. 3 543

(A)

(B)

(C)

(D)

Figure 4. Applications of haESCs. (A) PG-haESCs with H19-DMR and IG-DMR deletions efficiently support the full-term embryonic development after injection
into oocytes. AG-haESCs with Nespas, Grb10, Igf2r, Snrpn, Kcnq1, Peg3, and Gnas maternal imprinted regions deletions can be used as maternal genome
donors for production of bipaternal pups through a two-step strategy: androgenetic diploid ESCs are derived from diploid embryos (reconstructed by co-
injection of the 7KO-AG-haESC and sperm into enucleated oocytes) and are then injected into tetraploid blastocysts to produce all-ESC-derived mice. (B)
Conventional CRISPR-Cas9 library and base editor library can be introduced into ‘artificial spermatids’ to obtain haploid cell pools carrying mutated genes and
point mutations, respectively. After injection into oocytes, these modified ‘artificial spermatids’ give rise to collections of mice with different mutations, which
can be screened for pivotal genes or amino acids in vivo. (C) Single or multiple genomic alterations can be installed into ‘artificial spermatids’. After genotyping
and expansion, these modified haploid cells could be injected into oocytes to obtain mouse models that can recapitulate major symptoms of human diseases.
(D) CRISPR-Cas9-mediated tagging of protein-coding genes in ‘artificial spermatids’, followed by ICAHCI, gives rise to tagged mice, which can be used to depict
protein-protein or protein-DNA interaction networks in vivo at a large scale using a standard tag antibody.
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[14]. Genotyping of the SC pups born showed that 24% carried bial-
lelic mutations. To increase efficiency, in the second strategy (termed
‘lenti-sgRNA + pX330 + Cas9 injection’) ‘artificial spermatids’ with
constitutively expressed sgRNA were transiently transfected with
pX330 plasmids [98] before ICAHCI, followed by Cas9 mRNA in-
jection. With this protocol, 42% of the total born SC pups carried
biallelic mutations. In the third strategy (termed ‘lenti-Cas9 + lenti-
sgRNA’), ‘artificial spermatids’ with constitutively expressed Cas9
and sgRNA were established and then used as donors for ICAHCI.
Although the overall biallelic mutation rate of 30% of total born SC
pups was lower than that of the second strategy, the one-step mi-
croinjection involved in this strategy could make it a more accessible
tool for genetic screening in mice [14].

The recent development of a modified CRISPR-Cas9 technology
called base editor (BE) that combines the application of cytidine
deaminases and nickase Cas9 (nCas9) or dead Cas9 (dCas9) has en-
abled targeted point mutation installation or correction in genomic
DNA without inducing double stranded DNA cleavage [99–106].
An intriguing application of ‘artificial spermatids’ combined with
BE system is genetic screening for pivotal amino acids of a spe-
cific protein at the organismal level. To test this, we transfected
‘artificial spermatids’ with an enhanced third-generation base edi-
tor (BE3) containing two additional nuclear localization sequences
and a library of 77 sgRNAs targeting Dnd1 (essential for primordial
germ cell development) to generate a cell line with expressed BE3
and sgRNAs. These cells were used as donors to produce SC pups
carrying different point mutations in Dnd1. Using this strategy we
quickly identified four essential amino acids for DND1 function in
vivo: E59, V60, P76, and G82, whose mutation led to primordial
germ cell developmental failure. We further performed in vitro struc-
ture and biochemistry analyses and found that these amino acids
are essential for DND1 stability and protein–protein interactions
[16]. This combined application of ‘artificial spermatids’ and the
CRISPR-Cas9-mediated BE system allows for the protein functional
analyses in vivo, and shows the potential for quick identification
of single-nucleotide variations related to human diseases, especially
developmental defects (Figure 4B) [107].

Taken together, ‘artificial spermatids’ together with CRISPR-
Cas9 technologies, provide new options for functional screening
at the organismal level in mice [14, 16]. In the future, the ‘artifi-
cial spermatid’-based screening systems could be further strength-
ened with the development and involvement of new Cas9 variants to
broaden the coverage of targeting sites, reduce off-targeted effects,
and improve editing efficiency [107–111].

Modeling human genetic disorders in mice
Genomic alterations, including small indels of bases, copy number
variants (CNVs), and structural rearrangements, are closely related
to human genetic disorders [112–116]. The basis for all diagnoses
(preimplantation, prenatal, or conformational) of genetic disorders
is the establishment of a correlation between genotype and pheno-
type [117]. Recently, the development of high-throughput sequenc-
ing techniques has facilitated the discovery of genomic alterations
underlying a patient cohort [118]; however, the large amount of
data generated from these techniques makes it difficult to identify
pathogenic alternations. The dilemma is solved by introducing ge-
nomic alterations into mammalian cells (e.g. induced pluripotent
stem cells) or animals to test their biological effects at a cellular
or organismal level, respectively [112, 119]. Previous studies have
demonstrated that desired DNA variations, such as point mutations

[15, 16], indels [14], large deletions [81], or DNA fragments [14],
could be effectively introduced into ‘artificial spermatids’ and fur-
ther transmitted to mouse individuals via ICAHCI. Therefore, it is
possible to install genomic alterations discovered in patients into
‘artificial spermatids’ in a short period, either individually or as a
library. Subsequently, the gene modified ‘artificial spermatids’ could
be injected into oocytes to obtain large quantities of SC mice, en-
abling the evaluation of genomic alterations in mice on a large scale
in a limited time. Furthermore, for diseases which are associated
with lethality [120–122] or polygenic factors [123, 124], ‘artificial
spermatids’ also have potential for one-step generation of mouse em-
bryos or adults (without laborious breeding and regular genotyping)
for disease modeling. ‘Artificial spermatids’ provide a platform to
rapidly evaluate genomic alterations related to human diseases at
the organismal level at a large scale and in complex conditions, and
generate disease models for subsequent mechanistic investigations
(Figure 4C).

In vivo tagging every protein
Illustration of protein in vivo dynamic localization and physical in-
teractions is challenging when a reliable antibody is unavailable.
High-throughput functional analyses of mammalian proteins are of-
ten cost- and time-prohibitive, even if appropriate antibodies are
available. This problem has been solved in yeast by tagging nearly
all protein-coding genes at their endogenous genome loci, allowing
standard tag-based assays to be used for global protein analysis.
To overcome the challenge in mammals, we have recently launched
the ‘Genome Tagging Project (GTP)’ with the goal of labeling every
endogenous protein in mice by introducing a tag (HA) into each
protein-coding gene. In this way, all tagged proteins can be consis-
tently detected by a standard tag antibody to depict the protein–
protein or protein–DNA interaction networks in less and at a re-
duced cost compared to producing endogenous protein antibodies.
To achieve this, a two-step workflow has been established: first an
appropriate tag is introduced to a target gene in ‘artificial spermatids’
by CRISPR-Cas9, and a correctly targeted clone is selected and ex-
panded; the clone is subsequently subjected to ICAHCI to produce a
collection of identical descendants, allowing for protein analysis at
the organismal level (Figure 4D).

Outlook

‘Artificial spermatid’-mediated semi-cloned technology has demon-
strated great potential in a wide range of applications in vivo in-
cluding gene imprinting analyses, genetic screening, disease mod-
eling and protein tagging. In the future, it is intriguing to apply
this technology to more fields that include: combining CRISPR-Cas9
activation/repression systems with ‘artificial spermatid’ technology
to activate or repress gene expression in vivo [125–127]; screening
in non-coding regions for disease related DNA alterations at the
organismal level [128–130]; validation of transgenerational epige-
netic inheritance through adding epigenetic marks in ‘artificial sper-
matids’ to make mouse models with corresponding epigenetic traits
or to test the potential mechanisms underlying epigenetic inheri-
tance [131]; producing humanized SC mice by introducing human
DNA fragments into SC mice to facilitate gene regulation study or
drug testing [132–135]. It is worth noting that future technical ad-
vances in blocking the spontaneous diploidization of ‘artificial sper-
matids’, as well as reducing the degree of difficulty of the ICAHCI
procedure, may further accelerate the applications of the ‘artificial
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spermatid’-mediated SC technology. In summary, combined applica-
tions of ‘artificial spermatid’ and CRISPR-Cas9 technologies enable
complex gene modifications in mice in one step and greatly enhance
functional analyses of genes in vivo.
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