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ABSTRACT

Leptin influences satiety, adiposity, and metabolism and is
associated with mechanisms regulating puberty onset, fertility,
and pregnancy in various species. Maternal hyperleptinemia is
a hallmark of mammalian pregnancy, although both the roles of
leptin and the mechanisms regulating its synthesis appear to be
taxa specific. In pregnant humans and nonhuman primates,
leptin is produced by both maternal and fetal adipose tissues, as
well as by the placental trophoblast. Specific receptors in the
uterine endometrium, trophoblast, and fetus facilitate direct
effects of the polypeptide on implantation, placental endocrine
function, and conceptus development. A soluble isoform of the
receptor may be responsible for inducing maternal leptin
resistance during pregnancy and/or may facilitate the trans-
placental passage of leptin for the purpose of directly regulating
fetal development. The steroid hormones are linked to the
regulation of leptin and the leptin receptor and probably interact
with other pregnancy-specific, serum-borne factors to regulate
leptin dynamics during pregnancy. In addition to its effects on
normal conceptus development, leptin is linked to mechanisms
affecting a diverse array of pregnancy-specific pathologies that
include preeclampsia, gestational diabetes, and intrauterine
growth restriction. Association with these anomalies and with
mechanisms pointing to a fetal origin for a range of conditions
affecting the individual’s health in adult life, such as obesity,
diabetes mellitus, and cardiovascular disease, reiterate the need
for continued research dedicated to elucidating leptin’s roles
and regulation throughout gestation.

conceptus, leptin, leptin receptor, placenta, pregnancy

INTRODUCTION

Leptin is the hormone product of the LEP gene and was
originally thought to be produced only by adipocytes to aid in
modulating satiety and energy homeostasis [1, 2]. However,
the polypeptide is now known to be produced in many tissues
and enhanced levels are associated with the advent of

reproductive maturity and fertility [3, 4]. Regulatory mecha-
nisms are linked to gender, as women of reproductive age
exhibit higher serum concentrations than comparably aged
men. Similarly, levels in female fetuses [5, 6] and neonates [7,
8] are higher than in their male counterparts and levels in
premenopausal women may be greater than those following
menopause [as reviewed, 9–11]. Leptin functions via a specific
receptor that is a member of the class I cytokine receptor
superfamily and is manifested in alternatively spliced isoforms
that are distinguished by the relative lengths of their
cytoplasmic regions. These include a long form (LEPR

L
) that

predominates in the hypothalamus, and a short form (LEPR
S
)

that is found in many organs and tissues. LEPR
L

exhibits
consensus amino acid sequences involved in binding to Janus
tyrosine kinases (JAK/STAT), while LEPR

S
has distinct

signaling capabilities involving mitogen-activated protein
kinase (MAPK) [12]. A soluble, circulating leptin receptor
(solLEPR) is generated in humans by the proteolytic cleavage
of membrane-bound receptors [13]. Mice [14] and rats [15]
manifest their own version of the circulating receptor (LEPR

E
),

which is specifically expressed in copious amounts in the
placenta. In pregnancy, as in some forms of obesity, ‘‘leptin
resistance’’ may result from inhibited transport across the
blood-brain barrier [16] or sequestration of bioactive leptin in
the circulation by a soluble receptor [17, 18].

Leptin/Leptin Receptor Ontogeny in Pregnancy

Because of the wealth of research published over the last
decade concerning its importance during pregnancy, we will
focus primarily on the years following our last minireview of
the subject [9]. As previously documented [9–11, 19–21],
serum leptin concentrations are elevated throughout human
pregnancy. Increases in the first trimester, before any
perceptible increase in body weight due to progressive
gestation, imply that factors other than increased adiposity
modulate levels. Leptin concentrations rise along with estrogen
and are correlated in early pregnancy with those of hCG. Fetal
adipose tissue produces leptin [22], although the decline in
neonatal levels following birth may denote the placenta’s role
as an important contributor to fetal concentrations [23]. The
presence of leptin mRNA transcripts in the placental
syncytiotrophoblast initially lead to the contention that the
increase in maternal levels with advancing gestation might
originate there [24]. In this regard, we have reported that
transcripts for LEP, as well as for LEPR

L
and LEPR

S
leptin

receptor isoforms, were expressed both early (7–14 wk) in
gestation and at term, and in situ hybridization localized them
in the endocrinologically active trophoblast [25]. The logical
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presumption of a placental contribution to maternal hyper-
leptinemia can also be traced to two other observations. The
first is the postpartum decline in leptin levels typically
observed after the placenta is delivered, although the decline
in leptin is relatively prolonged for a hormone with such a short
half-life. The second results from the findings of placental
perfusion studies. In contrast, however, we have examined
(unpublished results) the role of placental mass in the rat by
adjusting the number of fetal-placental units shortly after
implantation, so that pregnant rats had 1–2, 4–5, or .10
implantation sites. Maternal serum leptin levels were highest in
animals with fewer implantations and, conversely, were least in
those with the greatest number of implantations. we also
compared maternal serum leptin concentrations in women (15–
20 wk of gestation) with singleton or twin pregnancies, and
mean leptin levels and leptin levels plotted against BMI were
virtually identical for both groups. Serial samples from
singleton, twin, and triplet pregnancies demonstrated that
placental number was not related to maternal serum leptin
levels but rather that maternal adiposity was the controlling
factor. These ongoing studies, as well as our work in
nonhuman primates [as reviewed, 10, 11], suggest that
increases in maternal leptin levels are not directly related to
increases in placental mass, implying rather that the hormonal
milieu of pregnancy upregulates the synthesis of leptin by
maternal adipose tissue.

Leptin/leptin-receptor regulation and function in rodent
pregnancy [26–28] differ significantly from that during
pregnancy in both humans [25] and nonhuman primates [29–
31]. Thus, although maternal peripheral leptin concentrations
increase with gestational age in the human, LEP mRNA in
placental villous tissue is greater in the first trimester than at
term [25]. In contrast, Amico et al. [32] reported that, in the rat,
placental Lep mRNA increased 4- to 5-fold over the final one
third of pregnancy, while Garcia et al. [33] observed that Lep
mRNA in placenta increased in abundance throughout
gestation. In the mouse, although leptin transcripts may be
expressed in both the placenta and fetus [34], the polypeptide
does not appear to exert any physiological effects in either.
Indeed, there is some disagreement as to whether the mouse
placenta produces any leptin at all [35]. Consequently, Zhao et
al. [36] concluded that the regulation of leptin in pregnancy is
taxa specific and, although representatives of three orders
(Chiroptera, Rodentia, Primate) exhibit pregnancy-associated
hyperleptinemia, they accomplish it by different mechanisms.
The highly conserved nature of this trait indicates, however,
that leptin plays fundamental physiological roles in mammalian
pregnancy.

To better understand the mechanisms regulating leptin
dynamics in human pregnancy, we have employed a well-
characterized nonhuman primate model, the baboon (Papio
sp.), an Old World primate [37–39] that differs in some
respects from New World monkeys [30] with regard to leptin
production. In this species, leptin concentrations in pregnant
animals are much higher than in either cycling or postpartum
baboons and increase approximately 2.5-fold between days 60
and 160 of gestation [29]. Normal term in the baboon is
approximately 184 days. As in humans, leptin transcripts in
placental villous tissue decline between early and late
gestation, but maternal serum leptin levels increase almost 3-
fold with pregnancy and are correlated with advancing
gestational age. Because the presence of both leptin and its
receptor in the placenta [24, 25], amnion, chorion, and
umbilical vasculature [40] suggest important roles in human
pregnancy, we assessed these tissues, as well as omental and
subcutaneous fat at early (Day 60), mid (Day 100), and late

(Day 160) baboon pregnancy [41]. A resurgent corpus luteum
and decidual tissue were also collected on Day 160, as was
fetal brain (hypothalamic region). Expression of LEPR

L
and

LEPR
S

mRNA transcripts were detected by RT-PCR in all
tissues, using human leptin receptor primers. Transcripts for
both isoforms were constitutively expressed throughout
gestation in placenta and adipose tissue, with the short form
expressed in greater abundance than the long form in all tissues
examined. This agrees with prior reports that LEPR

L
transcripts

typically occur in lesser abundance in peripheral tissues than
those encoding short intracellular domain forms [12]. As in
humans [25], in situ hybridization localized transcripts for
leptin and both receptor isoforms in baboon trophoblast.
Expression intensity for leptin was greatest in early pregnancy,
which mirrored the enhanced abundance of LEP transcripts at
that time [29].

Increases in maternal serum leptin levels with advancing
gestation has always presented a conceptual problem for those
attempting to explain the rise in a perceived satiety factor
during gestation, a period of increased nutritional demand.
Although there is some disagreement as to whether soluble
leptin receptor concentrations increase [42] or remain the same
[43] with pregnancy in women, we have advocated that an
increase in the amount of a soluble isoform of the leptin
receptor and, hence, the level of bound/complexed leptin in the
maternal circulation increases with advancing gestational age
[9–11]. This increase would serve to reduce the availability of
the hormone to hypothalamic receptors and prevent any
inhibitory influence on food intake during this developmental
period. In the human, at least two soluble leptin receptor
isoforms bind leptin and perhaps potentiate leptin resistance
[44, 45], with an increase in this protein having been proposed
to explain the enhancement in maternal leptin typical during
mammalian pregnancy [46]. A report by Schulz et al. [47]
identified two isoforms of the leptin receptor in human placenta
that are similar in size to those we have identified in the baboon
[48]. Collectively, results associate pregnancy-specific tissues
with the production of leptin receptor and suggest that
increasing receptor concentrations could play a role in
regulating leptin availability in primates.

Roles of Leptin in Pregnancy

Many physiological roles have been suggested for leptin in
human pregnancy [9–11, 19–21]. As in the corpus luteum of
luteal-dependent species [49, 50], both leptin and leptin
receptors have been identified in the placental syncytiotropho-
blast, which suggests the potential for autocrine and paracrine
mechanisms in a tissue that produces hormones necessary for
the maintenance of primate pregnancy [37, 51]. Cultured
cytotrophoblast cells produced leptin and the addition of
recombinant leptin enhanced hCG release [52]. Leptin also
stimulated hCG secretion by human placental explants and was
responsible for both the induction of hCG pulses and
enhancement of their amplitude [53]. A recent report indicated
that leptin also activated the release of proinflammatory
cytokines and prostaglandins from human placental explants,
further implicating leptin as a modulator of placental endocrine
function [54]. Intriguingly, the expression of leptin and leptin
receptor in human placenta [55] and uterine endometrium [56]
and the observation that endometrial leptin secretion is
enhanced in the presence of a viable blastocyst link the
polypeptide to early conceptus development [57, 58] and
suggest its place among the array of regulators active during
the aposition and adhesion phases of implantation [59–62].
Recent work also suggests that leptin augments the oocyte’s
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ability to sustain embryonic development and potentiates
a downregulation of apoptosis in the early blastocyst [63].
Because leptin receptor is expressed in maternal decidua and
the uterine endometrium is identified as a target for leptin
action, a definitive role is suggested in the blastocyst-
endometrial dialogue [64–67]. In this capacity, the obligatory
nature of leptin signaling in mammalian implantation [68] was
illustrated by experiments in the mouse that demonstrated that
endometrial leptin receptor expression was pregnancy de-
pendent and that intrauterine injection of a leptin peptide
antagonist or a leptin antibody impaired implantation. To this
end, leptin enhances the invasiveness of mouse trophoblast
cells in vitro via the upregulation of matrix metalloproteinases
and may thereby play its role in early placental development
[69]. Because the expression of leptin mRNA was increased
severalfold in bovine placentomes from conceptuses produced
by nuclear transfer, it was proposed that this effect could
account for the increased fetal/placental macrosomia noted in
conceptuses produced by this technique and be owed to
aberrations in cell migration and invasion [70].

In addition to its relationship with early embryonic
development and implantation, leptin has been linked to the

regulation of fetal growth, as concentrations of the polypeptide
in umbilical cord blood were highly correlated with birth and
placental weights [71, 72], an effect that was unrelated to the
influences of other growth regulators [72–75]. Levels were also
correlated with infant length [7, 75] and head circumference
[75], and postnatal leptin administration restored the depressed
brain weights of leptin-deficient Lepob/Lepob neonates [71, 76].
Interestingly, Smith and Waddell [77] proposed that, in the rat,
a soluble form of the leptin receptor may actually serve as the
physiological vehicle responsible for the transplacental move-
ment of leptin into the fetal circulation for the purpose of
modulating fetal growth. This same investigational team
recently expanded its original observations in rodents to
examine similar mechanisms in a human BeWo choriocarci-
noma cell model [78]. The results of these experiments strongly
suggested a potential for maternal-fetal leptin exchange across
the human placenta, as well.

Because umbilical leptin concentrations have been associ-
ated with whole-body mineral content [79], the polypeptide has
been proposed to directly stimulate fetal bone growth [80].
This effect could be potentiated via changes in the rates of
osteoblast/osteoclast growth and differentiation [81, 82] or by
the inhibition of bone resorption, resulting in a net increase in
bone mass [83]. The ability of adipocyte-derived leptin to
regulate osteogenic cells was also noted by Morroni et al. [84],
who reported that growing rat bone expresses leptin in
chondrocytes and stromal cells that may interact in a paracrine
manner with specific receptors on osteogenic cells. Prior work
had also suggested that leptin not only acted on human marrow
stromal cells to enhance differentiation into osteoblasts and
inhibit differentiation into adipocytes, but influenced endo-
chondral ossification by regulating angiogenesis [85]. This
angiogenic role has been demonstrated in various develop-
mental models [86, 87]. With respect to the means by which it
could facilitate angiogenesis in pregnancy, the polypeptide was
reported to enhance vascular endothelial growth factor
synthesis in cultured human cytotrophoblast cells [88].

Leptin may also be associated with pulmonary development
in utero. In this capacity, insufficient maturation of the fetal
lungs is a condition that can be characterized by inadequate
production of pulmonary surfactant by epithelial type II cells.
Increasing cortisol at term prompts the differentiation of type II
cells and surfactant synthesis [89], although in preterm infants,
surfactant levels are insufficient and pulmonary insults lead to
acute lung injury and, potentially, chronic lung disease. Torday
et al. [90] observed that leptin was expressed by fibroblasts and
that leptin receptor was expressed in fetal rat lung type II cells.
Subsequent experiments indicated that leptin plays a direct role
in enhancing surfactant production in this species [91]. Recent
investigations suggested the need to identify and characterize
the array of growth factors potentially affecting pulmonary
development [92]. Therefore, although it is well accepted that
the maturation of type II cells is modulated by a number of
soluble, low molecular-weight peptides, the identity of
a specific fibroblast pneumocyte factor (FPF) remains elusive.
This putative protein regulator promotes surfactant production
and is downregulated by androgens [90], similarities that exist
between it and leptin. In this respect, lung development in male
fetuses is somewhat delayed when compared with females in
many species, a phenomenon that reflects an inhibition by
androgens [93]. This effect is mirrored by the inhibition of
leptin biosynthesis by androgens, a phenomenon that is linked
to gender [94, 95]. Other regulatory parallels include the effects
of glucocorticoids, which, in addition to upregulating the
putative FPF in the lung [89], increase leptin production by
human adipocytes [96] and enhance leptin levels in preterm

FIG. 1. LEPR
L

(A) and LEPR
S

(B) mRNA transcript abundance, as
determined by competitive RT-PCR in fetal lung tissues collected in early
(n ¼ 4 fetuses), mid (n ¼ 4 fetuses), and late (n ¼ 4 fetuses) baboon
pregnancy. Different lowercase letters indicate significant differences
between means 6 SEM (ab, P , 0.01). As adapted from Henson et al.
[100] by permission of the Society for Reproduction and Fertility.
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infants [97]. Moreover, leptin release was enhanced in human
placental trophoblast cells by glucocorticoids [55] and maternal
glucocorticoid treatment upregulated placental leptin receptor
in rat pregnancy [98]. Therefore, with respect to commonalities
with the proposed FPF [91, 99], leptin might be considered
a logical FPF candidate [90]. We subsequently reported [100]
that, in late baboon pregnancy, the abundance of LEPR

L
mRNA transcripts in fetal lung was approximately 10-fold
greater and LEPR

S
transcript abundance was approximately 8-

fold greater than in early pregnancy (Fig. 1). Leptin receptor
protein, undetectable in fetal lungs at early and midgestation,
was detected by Western blotting in late gestation and localized
immunohistochemically in distal pulmonary epithelial cells,
including type II cells (Fig. 2.). Therefore, because fetal serum
leptin concentrations were significant and upregulation of
leptin receptor occurred in late gestation, when the greatest
progress toward fetal lung maturity is typically made, the
potential exists for leptin to contribute to this vital process in
primates.

Regulation of Leptin and Leptin Receptor
by Steroid Hormones

Gender-based differences in the regulation of leptin
synthesis are mediated by the steroid hormones [101, 102]
and increases in serum leptin levels in early pregnancy may be
owed to the stimulation of maternal adipose tissue by
gestational steroids [103, 104]. Placental estrogens increase
with advancing gestation and regulate multiple endocrine
pathways [37], Thus, estradiol (E

2
) administration enhanced

the expression of leptin mRNA transcripts and protein
secretion by adipocytes, both in vitro [102, 103] and in vivo
[105]. Similarly, Lep expression in isolated rat adipocytes was
inhibited by an estrogen receptor antagonist, while coincuba-
tion with a transcriptional inhibitor, prevented E

2
-induced

increases in mRNA transcripts [106]. Also in rats, ovariectomy
diminished Lep gene expression in white adipose tissue and
caused a decline in serum leptin levels [107, 108], while
administration of E

2
reversed all the effects of ovariectomy.

Ovariectomy was also reported to reduce serum leptin levels in
humans [109]. Although leptin and E

2
demonstrate similar

profiles during the human menstrual cycle [110], disparate
effects of estrogen on leptin synthesis in postmenopausal
women have been reported [111], possibly as a result of
variations in treatment regimens or patient adiposity. Further
reports [112–114] suggest that leptin levels in women were not
affected by the relatively small increases in estrogen associated
with normal menstrual cyclicity, but were upregulated by the
large increases in estrogen that typically result from ovulation
induction, effects that may cast estrogen in the role of a dose-
dependent regulator. However, as commensurate administra-
tion of E

2
and progesterone to normally cycling women

resulted in a dramatic increase in serum leptin concentrations,
mechanisms relying on cooperation between the two steroids
might also be implied [110]. Such cooperation might help
explain the increased leptin concentrations common during the
luteal phase of the menstrual cycle [115], although the reports
that progesterone inhibited leptin secretion by rat adipocytes
[116] and cultured, term human placental cells [117] further
suggest species- and/or tissue-specific regulation by steroids.

Estrogens have been reported to regulate leptin expression
by acting on a portion of the estrogen response element in the
leptin promoter [106, 118]; with leptin production by cultured
first-trimester human cytotrophoblast cells being dose-respon-
sively potentiated by E

2
[as reviewed, 119]. The presence of

estrogen receptor in primate trophoblast [120] suggests that, as
in adipose tissue [121], this is an estrogen receptor-mediated
phenomenon. However, this effect has not yet been reported in
syncytiotrophoblast collected in early pregnancy, or in long-
term cultures of either purified cyto- or syncytiotrophoblast

FIG. 2. Photomicrographs of lung tissue
from fetal baboons in late gestation depict-
ing the results of hematoxylin-eosin staining
(A), and immunohistochemical localization
of surfactant protein A (B), or LEPR (C)
protein in pulmonary epithelial cells. A
negative (D) (without primary antibody)
immunohistochemical control for LEPR is
included. Arrows denote pulmonary type II
cells. Original magnification: A 3200; B–D
3400. Bars ¼ 50 lm. Originally published
in Henson et al. [100] and reproduced by
permission of the Society for Reproduction
and Fertility.
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collected in the second trimester or at term. Certainly,
significant differences with respect to mechanisms influencing
hormone synthesis exist for cells collected in first vs. third
trimesters [122] and Bajoria et al. [21] concluded the potential
effects of gestational age must be elucidated to fully understand
leptin’s role in pregnancy. Estrogen administration was also
reported to elicit an increase in hypothalamic expression of the
long form of the leptin receptor [123] in rats. This potential was
originally put forward by Lindell et al. [124], who reported that
a putative estrogen response element, close to the most
frequently used transcriptional start sites of the leptin receptor
gene in the rat hypothalamus, might be a mechanism by which
estrogen regulates the leptin receptor. Differences in peripheral
leptin concentrations could, therefore, also result from
enhanced concentrations of solLEPR, which could slow
metabolic clearance of the polypeptide and retain it in the
circulation [42]. In this regard, serum E

2
concentrations in

women were correlated with circulating levels of soluble
receptor, further suggesting the potential for alterations in
leptin concentrations during periods of high estrogen avail-
ability, such as pregnancy [125].

We have hypothesized that elevated maternal leptin levels
may be owed to enhanced transcriptional regulation in maternal
adipose tissue and/or placenta, resulting from enhanced
estrogen levels during pregnancy. Like the human, the baboon
possesses a true maternal-fetoplacental unit, which relies on
androgen precursors from the fetal adrenal gland for placental
estrogen synthesis [37]. Thus, the surgical removal of the fetus,
but not the placenta (fetectomy) at Day 100 of gestation
inhibits estrogen production by the syncytiotrophoblast and
reduces maternal serum E

2
levels to near baseline. Therefore,

we collected placental villous tissue, omental adipose tissue,
and subcutaneous adipose tissue from baboons in late (Day
160) pregnancy [126]. In another group of pregnant baboons,
estrogen production was inhibited at Day 100 by fetectomy.
Placentas were left in situ until Day 160 of gestation when,
following laparotomy and hysterotomy, they were retrieved.
Maternal adipose tissues were collected at both Days 100 and
160 of pregnancy. Although fetectomy did not result in
a decline in maternal estradiol to a level that would
approximate levels in nonpregnant baboons, it did elicit an
87% decrease in maternal serum E

2
concentrations. Leptin

levels were essentially unaltered by fetectomy. However, in
subcutaneous fat, the abundance of LEP mRNA transcripts
declined about 5-fold as a consequence of fetectomy, while
transcripts increased almost 3-fold in placental villous tissue.
Leptin protein was quantitated by RIA in tissue homogenates
collected near term. In subcutaneous fat, leptin levels in
fetectomized baboons were approximately one half that of
controls, while in placenta levels were 3-fold higher in
fetectomized animals than in those with intact pregnancies.
Therefore, although adipose leptin expression declined, in-
creased placental expression suggested a compensatory mech-
anism and a tissue-specific regulatory role for estrogen
(stimulatory in adipose tissue, inhibitory in placenta). In this
regard, the potential for divergent transcriptional regulation in
placenta and adipose tissue was previously known to exist due
to the presence of a functional enhancer for the LEP gene in
placental cells that is not present in adipocytes [127, 128]. The
tissue-specific influence of estrogen in baboon pregnancy
reinforces prior reports of divergent, tissue-specific effects of
estrogen on leptin transcription [106, 129, 130].

As in humans, serum estrogen levels in nonpregnant
baboons are dramatically lower than those during pregnancy.
One might hypothesize, therefore, that, because the abundance
of LEP mRNA transcripts in adipose tissue declined following

fetectomy, increased estrogen levels in pregnancy would
prompt commensurate increases in LEP transcripts in adipose
tissue. When venous blood and adipose tissues were collected
from nonpregnant baboons in the midluteal phase of the
menstrual cycle and from pregnant animals throughout
gestation, E

2
concentrations were lowest in cycling animals

(0.06 6 0.02 ng/ml) and increased with pregnancy and
advancing gestation (4.17 6 0.87 ng/ml on Day 160), as
expected. However, although the abundance of LEP mRNA
transcripts in adipose tissue was unchanged with regard to
pregnancy or advancing gestation, tissue leptin concentrations
in subcutaneous fat were significantly higher in pregnant than
in nonpregnant baboons. Further, leptin increased in adipose
tissue with advancing gestation. In addition, leptin receptor was
assessed by immunoblotting in maternal serum, placenta,
decidua, and amniochorion with advancing baboon pregnancy
and with fetectomy [48]. Soluble receptor levels in serum
increased approximately 60% between early and late normal
pregnancy, with levels in fetectomized (estrogen-deprived)
baboons being less than one half that in pregnancy-intact
controls. The 3-fold increase in soluble receptor over that of
nonpregnant baboons was identical to that observed by Kado et
al. [42] in human pregnancy. Soluble receptor was only
minimally detectable postpartum. The enhanced presence of
the serum-borne receptor during pregnancy may implicate it in
the regulation of maternal/fetal leptin levels and perhaps as
a mediator of pregnancy-specific leptin resistance. Perhaps in
this capacity, one 130-kDa isoform of the leptin receptor was
identified in decidua and amniochorion. In decidua, this
receptor increased 4-fold and, in amniochorion, increased 10-
fold from early to late gestation. As shown in Figure 3, two
isoforms (130 kDa, 150 kDa) of the leptin receptor were
present in placental villous tissue. Levels of the 130-kDa
isoform increased 3-fold in placental villous tissue from early
to late normal gestation. Following fetectomy at midgestation,
the 150-kDa isoform declined 50% (P , 0.01).

Glucocorticoids also enhance leptin synthesis and secretion
in adipose tissues [96, 131, 132]. In ovine pregnancy, treatment
with cortisol or dexamethasone increased fetal leptin concen-
trations, while adrenalectomy suppressed them [131], an effect
reminiscent of the impaired leptin production in glucocorticoid-
deficient mice [133]. Yuen et al. [134] reported that leptin
infusion shortly before ovine delivery suppressed fetal cortisol
concentrations by approximately 40%, providing evidence for
a negative feedback loop between leptin and the fetal
hypothalamic-pituitary-adrenal (HPA) axis. Leptin levels in
women suffering spontaneous abortions in the first trimester
were abnormally low, implying a direct role for the polypeptide
in pregnancy maintenance [135]. Indeed, recombinant leptin
infused into the fetal circulation inhibited activation of the
HPA axis in late ovine pregnancy, suggesting that mechanisms
controlling the initiation of labor might be fine tuned by
a metabolic cue that is related to fetal growth and originates in
the placenta or fetal adipocytes [136]. With respect to the leptin
receptor, maternal treatment with dexamethasone reduced
leptin receptor mRNA in both porcine adipose tissue [137]
and rat placenta [138, 139], interruptions in leptin signaling
that might be traced to direct inhibition of the JAK/STAT
pathway [140]. Enhanced cortisol levels in female adolescents,
however, were highly correlated with circulating solLEPR
concentrations [141], perhaps indicative of regulation of the
cleavage of membrane-bound receptor [13]. These effects
suggest that glucocorticoid-induced intrauterine growth re-
striction (IUGR) could be mediated, at least in part, by leptin/
leptin receptor regulation in fetal adipose tissue or the placenta.
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Just as estrogen and corticosteroids are associated with the
enhancement of leptin synthesis, androgens are linked to leptin
inhibition [142]. In healthy men, testosterone concentrations
were negatively correlated with leptin in serum [143, 144],
while in prostate cancer patients treated with a nonsteroidal
antiandrogen, leptin levels rose [145]. These effects may be
mirrored to some degree by the weaker androgens, as
administration of dehydroepiandrosterone (DHEA) to women
exhibiting adrenal insufficiency led to a decline in serum leptin
levels, as compared with placebo-treated controls [146].
Similarly, it was reported that DHEA [147], DHEA-sulfate,
androstenedione, and nonaromatizable dihydrotestosterone
[94] are potent inhibitors of leptin secretion by adipose tissue
[147]. In contrast, Machinal-Quelin et al. [148] reported
a stimulation of leptin production by DHEA and testosterone
in women’s adipose tissue, although such effects may be owed
to subsequent aromatization to estrogens. The relative effects
(stimulatory or inhibitory) of the high levels of androgens in
pregnancy [37, 120] are unknown.

Leptin and Pregnancy-Associated Pathologies

Decreases in placental LEP mRNA have been linked with
decreased leptin concentrations in umbilical vein blood in cases
of IUGR [149], suggesting that leptin influences fetal growth in
response to a fetal demand that is relative to placental supply
[150]. Studies of a twin pregnancy noted that a growth-
restricted twin had markedly lower placental and cord blood
leptin than its normal-size sibling [151] and that low cord-
blood leptin levels directly reflected low concentrations in
placenta. Subsequent observations from monochorionic twin
pregnancies revealed that fetal and cord leptin levels were at
least 2-fold higher in normal-size fetuses than in their growth-
restricted twins [152], indicating a pivotal role in regulating
growth [153]. Decreased leptin levels in cord and placenta of
growth-restricted twins may be indirectly reflected by high
levels in amniotic fluid and an increased rate of premature
delivery that investigators postulated was attributable to
hypoxia and poor cytrophoblastic invasion [154]. Interestingly,
fetuses in the normal-weight range exhibit either no correlation
[155] or an inverse correlation [156] between conceptus mass
and cord leptin concentrations with leptin levels in amniotic
fluid, perhaps indicating a divergence in the mechanisms
regulating leptin synthesis in these compartments. This
specificity of mechanisms among components of the mater-
nal-fetoplacental unit was also proposed in both normal and
IUGR singleton pregnancies [157, 158]. IUGR babies maintain
relatively low leptin levels as adults, suggesting permanently
altered adipocyte function [159].

Perhaps related to leptin’s role in implantation, preeclampsia
is associated with shallow endometrial invasion, the sudden
onset of maternal hypertension, and enhanced maternal and
fetal leptin concentrations that are dramatically enhanced over
the level of hyperleptinemia characteristic of human pregnancy
[160–167]. This exacerbated increase in the maternal periph-
eral circulation, coupled with poor cytotrophoblastic invasion,
typifies the preeclamptic state and serves as a marker for
general placental insufficiency [168] and poor placental
perfusion [169]. In a microarray analysis, placental suscepti-
bility genes most likely to be associated with onset of the
condition were evaluated and LEP was upregulated approxi-
mately 44-fold, an elevation reflected by commensurate protein
levels [165]. Enhanced expression of LEP mRNA transcripts in
placental tissue from preeclamptic women, over that of tissue
from women with normal pregnancies, did not extend to
a similar upregulation in maternal subcutaneous adipose tissue,

further suggesting a specificity of placental involvement [170].
Even in preeclamptic women that had not yet evidenced
elevated peripheral leptin levels, ratios of amniotic fluid leptin
to maternal serum leptin were elevated and identified the very
early stages of the condition [171]. Indeed, leptin has been
found to be associated with maternal hypertension that may or
may not proceed to preeclampsia [172, 173]. Preliminary
evidence suggests that this exaggerated hyperleptinemia is
a compensatory response to increase nutrient delivery to an
underperfused placenta [174] and may be linked to both
maternal adiposity and changes in bioavailable estrogen
concentrations [175]. Although preeclampsia-associated hyper-
leptinemia has also been linked to enhanced solLEPR [176],
conflicting reports [177, 178] call for further investigation.

As previously reviewed [11], pregnancy-associated diabetes
is another pathology characterized by increased placental leptin
contributions to enhanced maternal leptin levels [179, 180].

FIG. 3. Relative abundances of leptin receptor isoforms detected in
placental villous tissue at approximately 60 (n¼2), 100 (n¼2), and 160 (n
¼2) days of gestation (A). Relative densitometric units were determined for
band intensities from immunoblots, and these values plotted for each
isoform as the mean 6 SEM. A 130-kDa isoform (B, n ¼ 4) increased in
abundance between days 60 and 160 of gestation (inset: representative
immunoblot with conditions optimized for imaging the isoform at early
and midgestation). Levels of a 150-kDa isoform (C, n ¼ 4) increased
between days 60 and 100 of gestation. Different lowercase letters indicate
significant differences between means (ab, P , 0.04 and P , 0.02 for B
and C, respectively). Originally published in Edwards et al. [48].

LEPTIN IN PREGNANCY 223

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/article/74/2/218/2666763 by guest on 10 April 2024



Cord leptin levels in diabetic pregnancies were strongly
correlated with both conceptus growth and the degree of
glycemic control [181, 182], and among the offspring of
gestational diabetics, serum leptin levels were enhanced over
population norms until at least 9 yr of age [183]. Yuen et al.
[184] reported that leptin administered in ovine pregnancy
regulated fetal fat storage, leptin synthesis, and thermogenesis,
suggesting a lipostatic function in utero. This role may be
important when the fetus is exposed to an increased trans-
placental energy supply, as in pregnancies complicated by
maternal glucose intolerance and fetal hyperglycemia. Al-
though there is no evidence of leptin production in the ovine
placenta [185], the potential of the placenta to contribute to the
maternal leptin pool exists in primates as an enhanced
hyperleptinemia in early pregnancy that is predictive of
gestational diabetes is independent of maternal adiposity
[186]. Interestingly, a recent report contends that leptin release
from placental explants was less for tissues derived from
women with gestational diabetes than for tissue derived from
women with normal pregnancies [187]. Maternal adipose and
skeletal muscle tissues from gestational diabetics, however,
released significantly more leptin than did the same tissues
from unaffected women.

Both preeclampsia [188] and pregnancy-associated diabetes
[189] are associated with fetal hypoxia. To this end, Grosfeld et
al. [190, 191] investigated the potential for decreased oxygen
tension to upregulate leptin gene expression in human
trophoblast-derived BeWo choriocarcinoma cells. The LEP
gene was upregulated in this cell line by hypoxia, as previously
demonstrated in preadipocytes [192], an effect mediated
through activation of distinct cis-acting sequences of the leptin
promoter [193]. This result may confirm the specificity of the
placental gene promoter, although the effects of hypoxia have
yet to be studied in normal trophoblast cells.

Leptin and the Fetal Origins of Adult Health and Disease

Since Barker et al. [194, 195] originally postulated the
relationship between low birthweight and the later manifesta-
tion of diseases, such as diabetes mellitus, hypertension, and
coronary heart disease in adulthood, much interest has been
generated in the fetal-programming paradigm. Into this arena,
leptin has emerged as an important player, with Bouret and
colleagues [196, 197] suggesting that alterations in leptin levels
in utero prompt substantive hypothalamic changes in fetuses
that eventually result in altered nutritional intake, energy
metabolism, and adiposity in children and adults. In the rat,
dexamethasone-induced IUGR, which culminates in high rates
of adverse outcomes in adult offspring, is now known to
directly result in a decline in fetal leptin concentrations due to
a reduction in the transplacental passage of the polypeptide
[77]. Intriguingly, the likely effects of reduced fetal leptin in
IUGR-induced fetal programming (obesity, hyperinsulinemia,
hyperphagia, reduced locomotor activity, etc.) may be
effectively counteracted by neonatal leptin treatment [198]. In
addition to studies in rodents, observations in sheep mimic
those in women subjected to famine, which suggest that
cardiovascular physiology and phenotypic predisposition to
obesity are programmed as a natural component of fetal
development [199]. With respect to fetal undernutrition,
neonatal mice subjected to poor nutrition in utero responded
to a high-fat diet with a premature onset of the leptin surge
typical of young mice subjected to normal nutrition in utero
[200]. This earlier-than-expected advent of the routine neonatal
leptin surge strongly suggests that alterations to the fetal
hypothalamic circuitry can be responsible for alterations in

adiposity and energy homeostasis in later life. Recently, this
interaction of leptin with mechanisms potentially responsible
for a fetal origin for many adult diseases was addressed quite
clearly by Lecklin and colleagues [201]. Female rats that were
injected with a recombinant adeno-associated virus vector that
encoded the leptin gene, evidenced decreased food intake and
commensurate loss of body weight, traits that were maintained
throughout their subsequent breeding, pregnancies, and de-
liveries. Although these primary results served to illustrate the
investigators’ main goal of demonstrating the long-term
efficacy of LEP gene therapy to elicit weight loss, further
observations confirmed that the first generation offspring of
leptin-transgene-expressing females also weighed significantly
less than peer controls and maintained this difference into
adulthood. While elucidation of the mechanisms by which
leptin-induced reductions in maternal weight elicited weight
losses in offspring must await further investigation, results of
this and prior studies further confirm leptin’s role in
potentiating normal conceptus development and programming
metabolic processes important to adult health.

SUMMARY

In only a little more than a decade since leptin’s discovery
and its initial association with satiety and energy balance, it is
now evident that the ‘‘fat hormone’’ also plays important roles
in reproductive biology. Thus, a thorough review of this field is
no longer complete without its inclusion. With this in mind, we
have summarized those findings relating leptin and the
physiology of pregnancy reported since our last review [9]
and observed that leptin is now known to play a wide range of
important roles, which extend from maternal physiology to
implantation and from paracrine effects in the placenta to
regulation of conceptus development and fetal growth.
Perinatologists and neonatologists are faced with much fertile
ground for the planning of future leptin-centered investigations.
However, with respect to both the current knowledge in the
field and the principal concerns of the medical community, we
propose that they might be well advised to focus first on better
understanding 1) the tissue-specific roles and mechanisms
regulating leptin in individual components of the primate
maternal-fetoplacental unit, 2) the interaction(s) of the poly-
peptide with common pathologies, such as IUGR, preeclamp-
sia, and pregnancy-associated diabetes, and 3) the role played
by leptin in utero with respect to those metabolic anomalies
associated with childhood and adult obesity and the de-
velopmental origins of adult health and diseases.
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