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ABSTRACT

The formation of the follicular antrum and follicular fluid has
received scant attention from researchers, yet both are
important processes in follicular development. The central
hypothesis on follicular fluid formation suggests that production
by granulosa cells of hyaluronan and the chondroitin sulfate
proteoglycan versican generates an osmotic gradient. This
gradient draws in fluid derived from the thecal vasculature.
Inter-alpha-trypsin inhibitor is also present in follicular fluid at
least in species with large follicles, and inter-alpha-trypsin
inhibitor and versican could additionally bind or cross-link with
hyaluronan, resulting in the retention of these molecules within
the follicular antrum. Barriers to the movement of fluid across
the membrana granulosa are apparently minimal, as even
relatively large serum proteins are present in follicular fluid.
Despite the relative permeability of the follicular wall, aqua-
porins are present in granulosa cells and could be actively
involved in the transport of water into the follicle. The formation
of an antrum also requires movement of granulosa cells relative
to each other to allow the fluid to accumulate. This presumably
involves remodeling of cell-cell junctions and in species with
small follicles may involve death of centrally located granulosa
cells. Remodeling of the stroma and thecal layers also
accompanies growth and expansion of the antrum and presum-
ably involves similar processes that accompany growth of other
glands.

follicular antrum, follicular fluid, hyaluronan, inter-o-trypsin
inhibitor, proteoglycan, versican

INTRODUCTION

Growth of the follicle encompasses enlargement of the
oocyte, replication of follicular cells, and formation and
expansion of a central follicular antrum or cavity. Many in
vitro studies of follicular growth have focused on the
replication of granulosa cells, while in vivo studies using
ultrasonography have focused on the expansion of the follicular
antrum and its fluid. Replication of follicular cells and
expansion of the follicular antrum are both important, and
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both are probably stimulated by some of the same hormones
and growth factors. They are, however, very distinct processes.

The rate at which the follicular antrum expands and
follicular fluid accumulates differs between follicles, particu-
larly between dominant and subordinate follicles [1, 2]. The
proportion of a follicle that is follicular fluid at maximum size
also varies from species to species. Generally, larger species
such as ovine, equine, porcine, human, and bovine have larger
follicles, with the fluid comprising a substantial proportion of
the volume of the follicles at ovulation (estimated at >95% in
bovine [3]). Smaller species such as rats and mice have smaller
follicles with fractionally less follicular fluid.

With the advent of in vitro whole-follicle culture in hamsters
and mice [4-6], which has been improved upon [7] and
extended to other species, it is now potentially possible to study
some aspects of follicular fluid formation in vitro. Hence, it is
timely to review the state of our knowledge of follicular fluid
formation. First, we briefly discuss fluid movement in other
organs and tissues and then review our knowledge of the
physiological and cellular events important for formation of the
follicular antrum or cavity itself, as well as changes in the
ovary that accommodate its formation and expansion. Then, we
discuss the mechanism by which fluid could accumulate in the
follicular antrum and the molecules involved in this process.
Lastly, we address impediments and facilitators of fluid
movement, to better understand how these processes are
regulated.

HYDROSTATIC FORCES

Physical or hydrostatic pressures generated by contraction
of cilia on individual cells (or groups of cells organized into
contractile units such as in the heart or peristaltic organs like
the intestine) can move large amounts of fluids efficiently and
quickly. These organ systems usually move fluid within a
sealed or closed system that is lined by endothelia or epithelia.
Contraction of the heart generates hydrostatic pressure to move
blood through the vasculature of many organs and tissues. As
the heart pumps blood into arteries, the stretch and recoil of
elastic fibers in arterial walls reduce the maximum pressure
attained and raise the minimum pressure the blood falls to
during each cycle of contraction and relaxation of the cardiac
ventricles. Arteriolar smooth muscle tone can be regulated to
restrict flow into any particular organ, and increased tone leads
to reduced pressure within the capillaries and therefore reduced
flow. Some capillary beds are extremely leaky (e.g., the
fenestrated capillaries of the renal glomerulus). Other capillar-
ies form an effective barrier to net movement of fluids, with
both adherens and tight junctions between the endothelial cells
effectively sealing the capillary lumen [8]. In this case, larger
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proteins find it difficult to transudate, and their osmotic
pressure counterbalances the hydrostatic pressure. The osmotic
pressure generated by the plasma proteins is called oncotic
pressure and is not altered as a means of regulating capillary
exudates, but its importance can be seen in pathological
conditions or following severe hemorrhage. Capillary perme-
ability can be altered dynamically, as the components of
adherens and tight junctions are not static and can be altered to
change the level of permeability [8]. Many factors have been
shown to affect capillary permeability, including nitric oxide,
prostacyclin, endothelin, vascular endothelial growth factor,
insulin-like growth factor 1 (IGF1), substance P, and histamine.

Net fluid accumulated outside of the vasculature can be
returned to the circulation via the lymphatic system. Lymphatic
vessels are very permeable, allowing fluid and other molecules
to enter, while the pumping mechanism to move fluid is
achieved by movement of organs or limbs, effectively
squeezing the vessels within them. The unidirectionality of
lymphatic flow is achieved by way of valves in the larger
lymphatic vessels and contraction of these vessels by their own
smooth muscles. Evidence of the importance of lymphatics can
be observed by the edema that occurs if the lymphatics are
blocked by removal of the lymph nodes into which the
lymphatic vessels drain. The lymphatic vessels eventually drain
into the subclavian veins, thereby returning lymph to the
circulation.

FLUID MOVEMENT ACROSS EPITHELIA

Within the body, groups of cells are able to form tight or
adherens junctions between them, thus effectively creating a
semipermeable cellular layer by sealing off all the pericellular
spaces. This is common to both epithelia and endothelia. Thus,
solutes or water crossing an endothelium or epithelium
encounters either a cell membrane or the junctions between
cells, ensuring that uncontrolled movement does not occur. The
basal laminas that underlie endothelia and epithelia are also
barriers to the passage of molecules, especially larger
molecules, and potentially are also a barrier to growth factors
that bind to basal lamina components such as the heparan
sulfate proteoglycans.

Epithelia not only are barriers but also can be net absorptive
(intestine), secretory (glands), or neither (epidermis), with
absorption and secretion occurring to variable degrees in most
epithelia. Absorptive epithelia function very differently than
secretory epithelia as they work to move fluid against a
hydrostatic gradient. Most secretory epithelia use directional
secretion of solutes to achieve directional movement of fluid,
with the exception of the glomerulus, where the hydrostatic
pressure of blood in the adjacent capillaries is the driving force.
For this arrangement to function in the glomerulus, there is
lower pressure on the apical side, and the epithelium is
relatively permeable. Many glands that secrete into larger
cavities in the body or onto the external surfaces will have
lower pressure on the apical side.

Some epithelia, however, face into a sealed filled cavity
(choroid plexus, ovarian follicle, lens of the eye, or blocked
glandular ducts); therefore, no draining of the fluid occurs, and
net fluid accumulates as the cavity expands. With sealed
cavities, it is possible to produce elevated turgidity within the
cavity by increasing the levels of osmotic pressure of the fluid
within it. The ovarian follicle is such a ‘‘sealed”’ cavity, and
there are two important aspects to consider, namely, the
formation of the antrum or cavity itself and the mechanism by
which fluid moves into that cavity.

OSMOSIS AND DIRECTIONAL SECRETION

Osmosis depends upon a difference in solute concentrations
between two areas, causing water to flow to the high solute
concentration if the solute cannot move to the low concentra-
tion. The degree of inhibition of solute backflow depends upon
a barrier to the migration of the solutes. In many of the
equations for calculating osmotic pressure, a ‘‘semipermeable’’
membrane is invoked in which only water can flow and not the
solutes. Biologically, only certain molecules are used to
generate osmotic gradients, namely, those that can be direc-
tionally secreted or transported and those that can be prevented,
even partially, from backflow. Epithelia, by their structure, can
form barriers to movement of solutes across them; therefore,
osmotic gradients are readily created across epithelia.

Directional secretion can occur apically or basally across an
endothelium or epithelium because the cells are polarized.
Additionally, material can be transported transcellularly in a
basal to apical direction and vice versa by pinocytosis at one
surface and exocytosis at the other surface of the cell. This sort
of transcytosis does not generate osmotic gradients, as the
material has the same composition on both sides of the cell,
unless modification has taken place in transit. However, it is a
mechanism by which fluid and solutes can be moved into or
out of a lumen.

One of the best known osmotic gradients is that generated
by sodium transport by Na,K-ATPase out of the ascending
limb of the renal loop of Henle, creating a hyperosmotic
concentration. The high concentration of sodium is the osmotic
force for water to flow out of the collecting duct to concentrate
the urine. Proteoglycans and their glycosaminoglycan side
chains are also commonly used as osmotic solutes, resulting in
fluid accumulation [9-14]. Proteoglycans are usually synthe-
sized and directionally secreted rather than transported from
one side of a cell to another. In addition, the movement of
water can be either pericellularly or transcellularly facilitated
by aquaporins. Aquaporins can allow the movement of water
and other compounds such as glycerol [15], and if aquaporins
exist on both basal and apical surfaces, water can flow into and
out of a cell, thus allowing water to effectively transudate the
cell.

OVARIAN FOLLICULAR FLUID FORMATION

Follicular fluid is probably derived from blood flowing
through the thecal capillaries. Capillaries are rare in the region
of the ovarian cortex containing primordial follicles [16, 17],
and in most species they generally develop as a simple network
around follicles at the early antral stages [18]. In species with
small follicles, the thecal capillaries form a single-layered
network, but in larger species the network is multilayered,
especially as the follicle increases in size [18, 19]. Thecal
networks are not uniform around the follicles, with fewer
capillaries at the apex of the follicle compared with the lateral
or basal regions [18], leading to corresponding differences in
regional blood flow [20]. The capillary networks continue to
develop and expand as the follicle grows, and it is generally
accepted that blood vasculature or blood flow is usually not
limiting. However, these could vary between dominant and
subordinate follicles [21, 22], differ among follicles with
oocytes of different quality [23], or decline upon follicular
atresia [24, 25]. While the formation of follicular fluid
commences when the theca is vascularized, the rate of fluid
accumulation even during rapid growth is minor compared
with the amount of blood flowing into the thecal capillaries.
Hence, it is unlikely that the degree of thecal vascularization is
a rate-limiting step for formation of follicular fluid, but
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FIG. 1. Drawing illustrating the routes fluid can take from the thecal

capillary to the follicular fluid and the potential barriers of the
endothelium, subendothelial basal lamina, interstitium, follicular basal
lamina, and membrana granulosa. Routes 1 and 3 show movement of
fluid between the cells (solid arrows), and routes 2 and 4 show
transcellular routes (hatched arrows) that either involve aquaporins or
transcytosis.

alterations in thecal capillary blood pressure and flow could
alter formation of fluid at critical times such as at ovulation.

For fluid from the theca to be transported into the follicular
antrum, it obviously needs to cross the endothelium and
subendothelial basal lamina before traversing the thecal
interstitium, the follicular basal lamina, and the membrana
granulosa (Fig. 1). Changes in permeability of the thecal
capillaries will lead to edema of the thecal tissue, as observed
following the luteinizing hormone (LH) surge [26, 27], but
additional mechanisms are needed for fluid to accumulate in
the follicular antrum. In earlier literature, both a sodium pump
and cleavage of glycosaminoglycans to raise pressure in the
preovulatory follicle were considered as such mechanisms [28].
Even if the cells of the membrana granulosa constitute a
stratified epithelium and can directionally secrete osmotically
active molecules toward the center of the follicle, because these
cells lack a network of tight junctions, it would not be possible
to establish an osmotic gradient across the membrana granulosa
with small molecules like sodium. An early review found the
evidence for a role for sodium to be ‘““inconclusive’ [29]. In
fact, the composition of follicular fluid is similar to serum with
respect to low-molecular-weight components, with most
electrolytes being at the same concentrations in fluid and
serum [29, 30]. However, for increasing sizes above 100 kDa,
plasma proteins are found at progressively lower concentra-
tions than in plasma [31-35]. This suggests that there is a
nominal ‘‘blood-follicle barrier” at sizes above 100 kDa. This
barrier probably exists at the level of the follicular basal lamina
and additionally at the level of the thecal capillaries, especially
for the larger molecules [36]. However, such a barrier may also
exist in reverse in that large molecules produced by oocytes or
granulosa cells cannot cross the membrana granulosa or
follicular basal lamina, thereby establishing a potential osmotic
gradient. This osmotic gradient could then be responsible for
recruiting fluid to the center of the follicle.

In a previous study [37], we sought evidence for the
presence of large osmotically active molecules in ovarian
follicular fluid. To determine which molecules contribute to the
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osmotic potential, enzymes were used to degrade specific
classes of molecules, followed by dialysis at molecular-weight
cutoffs of 100 kDa and 300 kDa to remove digestion products.
Removal of the glycosaminoglycans, hyaluronan and chon-
droitin sulfate/dermatan sulfate, and DNA from follicular fluid
resulted in a reduction in osmotic pressure, suggesting that
these molecules could contribute to the osmotic potential of the
follicular fluid. Hyaluronan, chondriotin sulfate, and dermatan
sulfate are strongly hydrophilic and highly negatively charged
and exert strong osmotic activity. The hyaluronan in bovine
follicular fluid was found to be up to 2 X 10° in molecular
weight [37], too large to escape from the antral cavity.
Hyaluronan levels of human follicular fluid have been
measured at 50 ng/ml, and hyaluronan has been previously
localized adjacent to and between antral granulosa cells [38].
Granulosa cells in culture express hyaluronan synthase 2
(HAS2) and produce hyaluronan [39]. Therefore, hyaluronan
clearly meets the necessary criteria to contribute to the osmotic
potential of follicular fluid.

Chondroitin 4-sulfated proteoglycans were also identified as
significant contributors to the osmotic potential of follicular
fluid [37]. Earlier research in a number of species identified the
glycosaminoglycans dermatan sulfate and chondroitin sulfate
in follicular fluids, finding that glycosaminoglycans and
proteoglycans are synthesized by the granulosa cells in vitro
[40—43]. The chondroitin sulfate proteoglycans subsequently
identified in our bovine investigations were versican (V1 and
VO splice forms) and inter-a-trypsin inhibitor (bikunin and
heavy chains 1, 2, and 3), pre-o-trypsin inhibitor (bikunin with
heavy chain 3), and inter-o-like trypsin inhibitor (bikunin with
heavy chain 2) [37]. Versican is a chondriotin sulfate
proteoglycan hyalectan with a broad tissue expression profile
[44]. Tt has been shown to be present in extracts of bovine
follicles [45], in follicular fluid of nonovulating [37] and
ovulating follicles [46], and in the follicular membrana
granulosa [45, 47]. It is also expressed by granulosa cells
[48]. Many functional properties of versican are determined by
two glycosaminoglycan attachment domains that are modified
to allow for attachment of long chondroitin sulfate side chains.
These chains are responsible for versican’s large molecular size
and strong charge negativity. Versican may directly contribute
to the osmotic potential of follicular fluid by virtue of the high
sulfation status of chondroitin sulfate side chains attached to its
core protein. However, versican may also contribute by cross-
linking other components like hyaluronan [49, 50] to form
larger-molecular-weight components, ensuring that they re-
mained trapped in the follicular fluid.

Inter-o-trypsin inhibitor which consists of two heavy chains
linked by a chondroitin sulfate chain to bikunin, is produced by
the liver, and is found abundantly in serum. In mice, inter-o-
trypsin inhibitor appears to be sequestered from the blood-
stream, as it appears within the follicular fluid within minutes
of the LH surge [51]. On entering the fluid following the LH
surge, it associates with hyaluronan, being synthesized by the
cumulus cells, liberating free bikunin, and producing a covalent
bond between the heavy chains and hyaluronan [52]. However,
in other studies, inter-o-trypsin inhibitor has been detected in
mouse follicles before the LH surge by immunostaining with a
polyclonal antibody [36]. This suggests that differing method-
ology used in these studies [36, 51] have lead to various
conclusions as to when inter-o-trypsin inhibitor enters into
mouse follicles. In other species however, inter-o-trypsin
inhibitor, pre-o-trypsin inhibitor, and inter-o-like trypsin
inhibitor exist in follicular fluids well before the LH surge
and in follicle sizes smaller than preovulatory follicles (bovine

V202 T3 O} U0 1S310 14 Bl o5 | BB GG RRARRY Ca0] Pap B O UG =r1 WOl papeoiimoq




1024 RODGERS AND IRVING-RODGERS

FIG. 2. Sections of bovine (A-C) and
mouse (D) ovaries showing small preantral
(A and D), early antral (B and D), and antral
(C and D) follicles, with foci or pockets of
follicular fluid (arrows) accumulating be-
tween the granulosa cells or in the antrum
(asterisk). Tissues were fixed in Bouin
solution and embedded in paraffin; the
sections were stained with hematoxylin-
eosin. Bars = 25, 50, 100, and 50 pum in A,
B, C, and D, respectively.

[37], porcine [53]). While inter-o-trypsin inhibitor-related
molecules in follicular fluid are presumably not synthesized
by granulosa cells and are derived from plasma, they could still
contribute to osmotic potential of follicular fluid if their heavy
chains cross-link to hyaluronan and they were retained in the
follicular antrum. However, cross-linking of the heavy chains
of inter-o-trypsin inhibitor to hyaluronan is catalyzed by tumor
necrosis factor-stimulated gene 6 (TNFAIP6) [54], which is
only upregulated after the LH surge at ovulation in pigs [53]
and mice [55]. However, even a low level of expression of
TNFAIP6 in granulosa cells or transfer of heavy chains by
means independent of TNFAIP6 [54] could facilitate such
cross-linking. Hyaluronan may also interact with proteoglycan
link protein 1, which has been observed in follicular fluid of
some species [56, 57]. Regardless of whether cross-linking to
hyaluronan occurs, thus ensuring that hyaluronan remains
trapped in the follicular fluid, the sizes of hyaluronan observed
in bovine follicular fluid are far larger than the nominal blood-
follicle barrier and thus unlikely to escape the follicular antrum
anyway [37].

In our study [37] of osmotic potential in follicular fluids, we
also discovered that DNA could exert osmotic potential. The
DNA in follicular fluid is presumably derived from granulosa
cells lining the follicular antrum. These granulosa cells do not
appear to die by classic apoptotic mechanisms but rather by a
process more common to cornification, releasing DNA of
higher molecular weight than observed in apoptosis [58]. This
DNA may be associated with larger molecules such as
hyaluronan, as is suggested to occur in other tissues [59],
and this may increase the osmotic effect of the hyaluronan.
However, the DNA content in follicular fluid is probably not
regulated and could easily be degraded by the release of
cellular DNase. While contributing to the osmotic potential of
follicular fluid, DNA is thus probably of less importance.

If granulosa cell production of large osmotically active
molecules is the mechanism by which water is attracted into the
follicular antrum, the water still has to move there. Evidence
suggests that the granulosa cells can facilitate water transport

transcellularly via aquaporins. Aquaporins 7, 8, and/or 9 in rats
[60] and aquaporins 1, 5, and 9 in pigs [61] have been detected
in granulosa cells. By comparing the in vitro passive
equilibration of water with that of inulin (with and without
the addition of mercury chloride to block the aquaporins) in
dissected large antral follicles from the rat (not specifically
follicular fluid), it was demonstrated that 70% of the movement
of water was transcellular and 30% pericellular. Herein lies a
potential paradox. On the one hand, large plasma proteins up to
100 kDa in follicular fluid are in the same concentration as in
plasma. If they gain access via a pericellular route, why do
granulosa cells have or need aquaporins to facilitate transport
of water, a molecule of very small size (molecular weight 18)?
The aquaporins possibly have an additional role for transducing
fluid at ovulation. Imaging studies of ovulating follicles show
large volumes of fluid transudating the membrana granulosa
and effectively flushing the follicle cavity (M. Brannstrom,
personal communication). The aquaporins are perhaps present
to transport other small-molecular-weight molecules or have
other roles [15, 62]. Alternatively, the pericellular route for
plasma proteins might not be as efficient as we assume. It could
be that these proteins are transported by transcytosis involving
vesicular trafficking from the basal to apical surfaces of the
granulosa cells. Such a mechanism may not exclude large-
molecular-weight molecules effectively. However, these could
have already been proportionally excluded based on size by the
follicular basal lamina. Caveolins are involved in vesicular
trafficking and have been detected in bovine granulosa cells,
and while they appear to be upregulated after the LH surge
[63], transcytosis does not appear to be a major activity during
follicular growth. Thus, the paradox remains unresolved.

OVARIAN FOLLICULAR ANTRUM FORMATION

Formation of a cavity or antrum in a follicle is more
complex than for a simple epithelium. In a simple epithelium,
cell-cell junctions exist only between the single layer of cells
lining the basal lamina and not with cells on the opposite side
of the cavity; because of this, a potential cavity already exists
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between the two opposing layers of epithelial cells, even if not
expanded. The ovarian follicle is different. It has multiple
layers of cells before a cavity develops, and presumably cells
within these layers have junctions with all neighboring cells.
During growth of preantral follicles, multiple foci of fluid
accumulate first, and as these expand and coalesce, a larger
centrally located antrum develops (Fig. 2). These foci of fluid
presumably accumulate in areas where there are fewer cell-cell
contacts, or other specific events allow these foci to develop
and then coalesce. Cavities or lumens can be formed by cell
death, as occurs in blastocysts (where the inner ectodermal
cells undergo apoptosis to create a cavity) [64, 65] and during
in vitro “‘tube’” formation [66] or in vivo lumen formation by
endothelial cells [67]. It is possible that such events take place
in preantral follicles, as dead granulosa cells are occasionally
observed in apparently normal healthy follicles. If these cells
were to die, fluid could accumulate in the space left, with DNA
providing the osmotic force. While such a mechanism could be
involved in the initial formation of foci of follicular fluid, it is
unlikely that it would operate as the follicle enlarged to the
antral stage. This would be particularly true in species with
proportionally large follicular antral cavities, as substantially
more death would need to occur than has been observed.
However, such death may play a more substantive role in
species with proportionally smaller follicular antral cavities
such as mice or rats.

Whatever the mechanism by which small cavities develop
within a follicle, osmotically active molecules would addition-
ally need to be directionally secreted toward these foci in order
for them to fill with fluid. In three-dimensional culture of
bovine granulosa cells under anchorage-independent condi-
tions, we previously observed directional secretion of glycos-
aminoglycans into small cavities within the colonies (Fig. 3)
[68]. We noted that granulosa cells surrounding these small
cavities ‘‘had proteoglycan granules at their surfaces and in the
tight spaces between them, thus appearing to direct their
secretion of proteoglycans towards these areas’” [68]. Whether
or not this is similar to the foci of follicular fluid formation is
not known, but it does show that adjoining granulosa cells can
coordinately directionally secrete proteoglycans. Additional
evidence of directional secretion comes from the observation
that hyaluronan and proteoglycans are located on the apical
side of granulosa cells facing the follicular fluid [69; see Note
Added in Proof].

As the follicle grows, the expansion of the follicular antrum
clearly requires remodeling of the theca interna and externa,
stroma, tunica albuginea, and surface epithelium. This
remodeling presumably has much in common with growth of
other glands that can grow and penetrate and even branch
within stroma by replication of cells at their leading edges [70,
71]. Apart from the obvious need to remodel matrix and to
expand the theca and its vasculature, the follicle eventually
expands toward the surface of the ovary. An expansion would
normally be in the direction of the area with the least resistance,
but clearly the tunica is more collagenous than the stroma, so
presumably remodeling of matrix in the tunica albuginea
adjacent to the expanding follicle is an important process in
follicular development. This process could be rate limiting in
large antral stages; it may also be occurring to different degrees
in dominant and subordinate follicles.

During regression and involution of follicles, the follicular
fluid is resorbed. This could involve a number of mechanisms.
In the bovine, the follicular basal lamina is not degraded during
regression as it is at ovulation [72], so there cannot be a
dramatic loss of fluid. However, cells from the theca, including

FIG. 3. Electron micrographs of extracellular matrix produced by a
colony of granulosa cells cultured under anchorage-independent condi-
tions and stained with ruthenium red. Ruthenium red forms an electron-
dense granule by interacting with gycosaminoglycans, and each granule is
believed to represent a proteoglycan. Asterisk denotes a cavity bounded
by numerous granulosa cells. The large arrows denote ruthenium red
proteoglycan granules near the surface of adjoining cells facing the cavity
and not associated with fibers; small arrows denote fibers with associated
ruthenium red granules in the cavity. Bars=1 um (A), 200 nm (B), and 50
nm (C). (Reprinted from Rodgers et al. [68], with kind permission from
Springer Science+Business Media.)
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macrophages, endothelial cells, and fibroblasts, are able to
penetrate through the follicular basal lamina [72]. This occurs
when the basal lamina is no longer lined with granulosa cells
[72], and it is possible that some fluid escapes via gaps made
by traversing cells and is resorbed by lymphatic vessels. In
addition, the osmotically active molecules within follicular
fluid could be degraded by enzymes. We showed that removal
of the glycosaminoglycans, hyaluronan and chondroitin
sulfate/dermatan sulfate, and DNA from the follicular fluid of
healthy follicles resulted in a reduction in osmotic pressure, but
there was less effect following the removal of chondroitin
sulfate/dermatan sulfate from the follicular fluid of atretic
follicles, suggesting that these molecules may have already
been degraded [37]. Many enzymes involved in degradation of
glycosaminoglycans are located either on a cell surface or in
lysozymes [73]; hence, cells need to be active and present in
the follicular antrum to be able to degrade these molecules,
unless only the protein component of proteoglycans is
degraded, which could be accomplished by the release of
proteases. It has been observed that hyaluronidases 1, 2, and 3
are upregulated in granulosa cells in atretic mouse follicles
[74]. However, because in atresia the granulosa cells continue
to die, their role in the metabolism of osmotically active
molecules in later stages of regression and fluid resorption
would be limited. Furthermore, our own investigations have
demonstrated that, once follicular growth is arrested, granulosa
cells show evidence of cell death [72]. Thus, we conclude that,
while resorption of follicular fluid is important for the removal
of the follicle from the ovary, it is probably not an early or
initiating event in atresia.

REGULATION OF FOLLICULAR FLUID

In vivo, follicle-stimulating hormone (FSH) in particular
stimulates follicular growth. The FSH leads to more follicles
growing, while a reduction in FSH levels leads to fewer
follicles growing, but does it actually stimulate expansion of
the follicular antrum or is it merely stimulating overall follicle
development? In vitro using follicle culture, a number of
factors have now been shown to promote follicle growth,
including antrum formation; again, the same question can be
asked: are they stimulating follicular antrum expansion directly
or indirectly by stimulating follicle growth? Transgenic
knockout mice might be useful to identify regulatory molecules
involved in follicular fluid formation. Mice null for Gdf9 [75],
Fshb [76], FSH receptor (Fshr) [77], and Igf] [78] have defects
in follicular development at the preantral or early antral stages.
Without further examination, it is not possible to know if these
molecules are important for overall follicle development or are
specifically involved in antrum formation. Mice null for
estrogen receptor o (Esrl) [79] and aromatase (Cypl9AI)
[80] have large cystic hemorrhagic follicles, and this phenotype
may involve upregulation of molecules normally involved in
follicular fluid accumulation.

Studies on the regulation of the synthesis of osmotically
active molecules also shed light on the regulation of the
follicular fluid formation. Early investigations of proteoglycan
synthesis showed that in vitro rat granulosa cells synthesize a
proteoglycan containing glycosaminoglycans sensitive to
chondriotinase ABC [42]. An elution profile by gel filtration
enabled us to infer that this molecule is probably versican, the
synthesis of which was observed to be upregulated by
gonadotropins, prostaglandins E1 and E2, and testosterone
[42]. Later investigations of versican mRNA specifically found
that forskolin, phorbol ester phorbol-12-myristate-13-acetate,
and FSH plus testosterone could upregulate mRNA levels of

versican in rat granulosa cells [48]. HAS2 can also be induced
by gonadotropins in bovine granulosa cells [39]. Thus, it would
appear that synthesis of osmotically active molecules can be
regulated by endocrine and autocrine mechanisms, and this
might lead to regulation of formation of follicular fluid.

It was previously concluded that the rates of granulosa
proliferation and maturation are not tightly or coordinately
regulated with the timing or rate of antrum formation or
expansion [3]. This conclusion was based primarily upon the
variability of the numbers of layers of granulosa cells at
different follicle sizes [81], which would be constant for any
size of follicle if replication and antrum expansion were
coordinately regulated. These observations suggest a lack of
tight coordination between granulosa cell replication and
antrum expansion. Additional data support this concept. Late
in follicular development when the rate of fluid accumulation is
increasing, the mitotic index of granulosa cells is declining [82,
83]. While there is a linear increase in the cross-sectional area
of the membrana granulosa with increasing follicle diameter,
the follicular antrum increases exponentially such that cells
account for approximately 27% of a bovine follicle at 1 mm in
diameter but represent only 6% at 4 mm [84]. This growth is
accompanied by reduced thickness of the membrana granulosa
and decreased granulosa cell density [85]. This thinner
membrana granulosa results in the most apically situated
granulosa cells being closer to the thecal vasculature.

Bovine follicles with different phenotypes of shape of basal
granulosa cells and morphology of follicular basal lamina have
been postulated to have different rates of antrum expansion
[86] relative to granulosa cell replication, and these follicles
have oocytes of different qualities [87]. Could it be that lack of
oxygen or nutrients at the center of the follicle triggers centrally
located granulosa/cumulus cells to secrete osmotically active
molecules? Could the oocyte secrete factors to stimulate
production of osmotically active molecules by granulosa cells
and hence stimulate antrum formation? Such concepts are
attractive, as they may explain the lack of a tight coordination
between granulosa cell replication and antrum formation. The
former could also explain the multiple foci of fluid accumu-
lation that occur before a larger centrally located antrum begins
to develop.

Follicular fluid formation may also be regulated by changes
in the degree of functionality of impediments and facilitators of
fluid movement. Despite the paradox of aquaporin expression
in granulosa cells, as already discussed, if aquaporins are
important for transport of fluid into the follicle, then their
differential regulation could be a major determinant of the
transition from preantral to antral stages and of the rate of
follicular fluid accumulation thereafter. Additionally, the
degree of vascularization, particularly at the early antral stages,
could regulate follicular fluid accumulation. If caveolins are
involved in movement of fluid across the membrana granulosa
and if then the follicular basal lamina is the site of differential
filtration of molecules, as already discussed, both the structure
of the follicular basal lamina and level of caveolin activity
could be important regulators of follicular fluid accumulation.
It is relevant to note the follicular basal lamina changes in
composition at around the preantral and primary stages, when
collagens type IV a3, a4, o5, and a6 are reduced in bovine [88]
and murine [89, 90], while nidogen 1 [45], nidogen 2 [91], and
perlecan [45] are upregulated in bovine at the preantral stages.
These changes could alter the permeability of the follicular
basal lamina. With the advent of follicle culture, it may be
possible to identify the key regulated components involved in
follicular fluid formation.
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CUMULUS-OOCYTE COMPLEX MATRIX

From the forgoing, it can be seen that some of the
components of follicular fluid are those found in the matrix
of the cumulus-oocyte complex at the time of cumulus
expansion following the LH surge in vivo [92-96]. These
include hyaluronan, versican, and (in some species with large
follicles) inter-o. trypsin inhibitor [37, 45, 47, 53]. Yet,
follicular fluid in many species is not a gel like the matrix
associated with the cumulus cells. There are many differences
that presumably can account for this. These could include
differences in absolute concentrations of matrix molecules, and
it should be noted that there is very little information on the
concentrations of any of these molecules for a direct
comparison. Versican processing could be different in the
cumulus-oocyte complex compared with that in the membrana
granulosa of growing follicles, noting that ADAMTSI1 (a
disintegrin and metalloprotease with thrombospondin motifs-1)
processing of versican in the cumulus-ooctye complex is
induced during ovulation in mouse [97]. In the cumulus-oocyte
matrix, pentraxin-3 binds TNFAIP6 and may form multimeric
complexes with hyaluronan [98]. It is probably these
components that allow the matrix of the cumulus-oocyte
complex to form a gel. Expression of TNFAIP6 and pentraxin-
3 is comparatively low in mural granulosa cells before
stimulation with LH or at ovulation [99, 100]. Additionally,
the cumulus-oocyte complex at ovulation is in contact with the
larger-molecular-weight molecules from serum, which only
cross the membrana granulosa as the follicular basal lamina is
degraded.

CONCLUSIONS

The main hypothesis on follicular fluid formation suggests
that production by granulosa cells of hyaluronan and
additionally versican generates an osmotic gradient to recruit
fluid from the thecal vasculature. It is notable that these
molecules are associated with formation of the matrix of the
expanding cumulus-oocyte complex, which has additional
molecules capable of cross-linking or interacting with hyalur-
onan. Many questions still remain unanswered such as what
initiates or regulates formation of follicular fluid and what
changes in cell-cell junctions occur to accommodate its
formation. There is the paradox of aquaporins in granulosa
cells through which water apparently flows, while large serum
proteins easily gain access to the follicular antrum. With these
questions in mind, the advent of follicular culture provides
some unique opportunities to study and understand these
important processes.

NOTE ADDED IN PROOF

Additional information regarding the follicular localization
of hyaluronan can be found in an article by Rogers and Irving-
Rogers, 2005 [101].
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