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THE aging lung is likely to have experienced frequent 
exposures to environmental toxins, particularly tobacco 

smoke and respiratory infections, as well as substantial 
reductions in physiological capacity, particularly respira-
tory mechanics (eg, increased stiffness of the chest wall and 
decreased elastic recoil of the lung; 1–3). Because of cu-
mulative effects, older persons are at an increased risk of 
developing respiratory impairment.

To maximize clinical applicability, respiratory impair-
ment is best defined as an age-adjusted reduction in pulmo-
nary function that is independently associated with adverse 
health outcomes. The rationale for this definition is twofold. 
First, to more accurately establish an underlying respiratory 
disease, the reduction in pulmonary function must be distin-

guished from the reduction that is due to normal aging (1,2). 
Second, to avoid inappropriate and potentially harmful 
pharmacotherapy, as well as delays in the consideration 
of other diagnoses, the threshold that establishes an age-
adjusted reduction in pulmonary function should be linked 
to adverse health outcomes (3–8). This approach is especially 
relevant in older populations given their high prevalence of 
multimorbidity and polypharmacy (9–12).

This article reviews the relevant risk factors and measures 
of pulmonary function that are most often considered when 
establishing respiratory impairment. Because the focus is 
on the aging lung, and given the above definition of respiratory 
impairment, we also review the reduction in physiological 
capacity that normally occurs across the adult life span 
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(“normal aging”). To enhance readability, common respiratory 
terminology is summarized in Table 1. Unless otherwise 
specified, older persons refer to those aged ≥65 years.

Risk Factors
The most frequent risk factors that can lead to respiratory 

impairment are environmental exposures, including tobacco 
smoke, respiratory infections, air pollution (indoor and out-
door), and occupational dusts (13–19). The respiratory system 
is particularly vulnerable because it has the largest interface 
with the environment—the alveolar surface area is 85 m2 
versus the skin at 1.8 m2 (20). In vulnerable individuals, these 
environmental exposures induce lung inflammation and, in 
turn, reductions in pulmonary function that may be subse-
quently associated with adverse outcomes (1,2,13–26).

Older persons have high rates of environmental expo-
sures (21–36). For example, the current generation of older 
Americans had a prior smoking rate of about 50% in the 
mid-1960s, which has subsequently decreased to 9% by 
2008 (27). On average, in recent cohorts of older persons, 
the prevalence of ever-smokers and never-smokers is 56% 
and 44%, respectively (24). A history of nonsmoking, how-
ever, does not exclude prior smoking exposure. In 2008, 
among nonsmoking, Americans who were ≥60 years, 32% 
had a documented exposure to secondhand smoke, also 
known as environmental tobacco smoke (28). Exposure to 
tobacco smoke, including environmental tobacco smoke, is 
a leading cause of chronic lung disease (eg, chronic obstruc-

tive pulmonary disease [COPD]) as well as cardiovascular 
disease and cancer (27,28).

Respiratory infections are also highly prevalent in older 
populations. In a large cohort of community-living older 
persons, 27% reported a history of pneumonia (26). From 
the period 1979 through 2001, persons aged ≥75 years had 
a 10-fold or greater increase in the rate of influenza-associated 
hospitalization relative to any other age-group (29). Outdoor 
air pollution is another common exposure, with a surrogate 
measure being urban residence (30–33). In 2009, 23% of 
older Americans reported as living in a major city (30). 
Additional exposures include a prior high-risk occupation 
(eg, freight, stock, and material handlers, or metal and wood 
workers) and the use of biomass fuel for indoor cooking or 
heating (17,33,34). For these exposures, prevalence rates in 
older persons are currently available for nonsmokers only, 
previously reported at 12% and 18%, respectively (33).

Normal Aging
Across the adult life span, there are reductions in physio-

logical capacity, including ventilatory control, respiratory 
muscle strength, respiratory mechanics, and gas exchange. 
These age-related changes have two important implications. 
First, from a clinical perspective, the age-related decline in 
physiological reserve may increase the vulnerability of de-
veloping a respiratory impairment, particularly in response 
to tobacco smoke or a respiratory infection (13–16,35,36). 
Second, from a diagnostic perspective, the age-related 

Table 1. Abbreviations and Explanations of Common Respiratory Terminology

COPD Chronic obstructive pulmonary disease
Spirometry
 FVC Forced vital capacity; the lung volume that is delivered during a forceful and complete exhalation, starting from maximal inspiration
 FEV1 Forced expiratory volume in 1 s; the lung volume that is delivered in the first second of an FVC maneuver
 FEV1/FVC The ratio of FEV1 to FVC
 Normal spirometry Defined by a normal FEV1/FVC and FVC
 Airflow limitation Defined by a reduced FEV1/FVC, with severity subsequently staged according to FEV1; includes diseases that lead to airways  

 obstruction, most commonly COPD, asthma, bronchiectasis, and cystic fibrosis
 Restrictive pattern Suggested by a normal FEV1/FVC but reduced FVC; includes diseases that adversely affect the chest wall (kyphosis, scoliosis, and  

 ankylosing spondylitis), respiratory muscles (sarcopenia, myasthenia gravis, and diaphragmatic paralysis), pleura (effusions and  
 fibrosis), and interstitium (edema and fibrosis)—among others

 PEF Peak expiratory flow; the maximal expiratory flow delivered with maximal force, starting from maximal inspiration (measured by a  
 peak flow meter). Reductions in PEF may indicate airways obstruction, respiratory muscle weakness, and disorders that limit the  
 expansion of the chest wall or poor effort

Body plethysmography*
 TLC Total lung capacity; the lung volume after a full inhalation. When reduced, it confirms restrictive lung disease; when increased, it  

 establishes hyperinflation (most often due to airflow limitation)
 FRC Functional residual capacity; the lung volume after a normal (passive) exhalation. When increased, it indicates hyperinflation (most  

 often due to airflow limitation)
 RV Residual volume; the lung volume after a full exhalation. When increased, it indicates air trapping (most often due to airflow  

 limitation)
 DLCO Diffusion capacity for carbon monoxide; evaluates the oxygen transfer capacity of the alveolar– capillary interface. This may be  

 reduced in interstitial lung disease, COPD, and pulmonary hypertension
 MIP Maximal inspiratory pressure; reductions indicate respiratory muscle (diaphragmatic) weakness
 GOLD Global initiative for obstructive lung disease†

 ATS/ERS American thoracic and European respiratory societies†

 LMS Lambda–mu–sigma method†

Notes: *An alternative is gas dilution, but this lacks diagnostic accuracy in chronic obstructive pulmonary disease.
† Provide criteria for defining normal spirometry, airflow limitation, and restrictive pattern.
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decline in physiological capacity must be considered before 
attributing a reduction in pulmonary function to a patho-
logical process (1,2).

Ventilatory Control
Several studies involving healthy older persons have evalu-

ated age-related changes in ventilatory control, as measured 
by the P100 and minute ventilation (VE) responses to hypox-
emia and hypercapnia. The P100 is the inspiratory pressure 
that is generated at the mouth 100 ms after airway occlusion 
and is a validated index of central respiratory drive (37). 
Based on the P100, prior work has shown that healthy 
persons aged 65–79 years had a ≥50% reduction in the re-
sponse to hypoxemia and hypercapnia relative to those aged 
22–29 years (38). Similarly, prior work based on VE has 
shown that healthy men aged 64–73 years had a ≥41% re-
duction in the response to hypoxemia and hypercapnia rela-
tive to those aged 22–30 years (39). In another study that 
included men and women, healthy persons aged 65–76 
years had a nearly one-third reduction in the VE response to 
hypercapnia relative to those aged 21–37 years (40). None-
theless, other studies have failed to confirm age-related 
differences in ventilatory control (41–43) or shown instead 
that the age-related reduction in ventilatory control is due 
to a decrease in peripheral CO2 sensitivity (44). These con-
flicting results likely reflect differences in the techniques 
used to evaluate ventilatory control (44–46) as well as small 
sample sizes. For example, in contrast to the rebreathing 
technique (38–42), only two studies used the dynamic end-
tidal forcing technique, which regulates more accurately the 
end-tidal PO2 and PCO2 and, in turn, evaluates more rigorously 
ventilatory control (43,44). The results of these two studies 
suggest an age-related reduction in peripheral CO2 sensitivity 
rather than a decrease in central respiratory drive (43,44). 
However, these same two studies only evaluated 5 and 11 older 
participants, respectively, with all but one being male (43,44).

Other investigators have posited that the increased preva-
lence of central sleep apnea among older persons suggests 
an age-related adverse-effect on ventilatory control specifi-
cally when asleep (47–50). Based on a frequency of ≥2.5 
central apneic events per hour of sleep, the prevalence of 
central sleep apnea is 12.1% for persons aged 65–100 years, 
but only 1.7% for those aged 45–64 years (47). The age-
related increase in central sleep apnea, including its poten-
tial role as a sleep-related cause of death, may be due to a 
reduction in the number of medullary ventral respiratory 
neurons (48–50). Preliminary work has shown that aging 
may be associated with a loss of gray matter volume in 
brain regions that are involved in breathing functions (48–50). 
Nonetheless, a more likely mechanism for the age-related 
increase in central sleep apnea is an exaggerated response to 
CO2 (ie, increased controller gain), including impaired 
cerebrovascular reactivity, as seen in left ventricular sys-
tolic dysfunction (51).

Finally, prior research comparing older persons aged 60–80 
years with those aged 20–46 years has shown an age-related 
reduction in the awareness of methacholine-provoked bron-
choconstriction characterized by older persons having less 
severe respiratory symptoms, despite having greater reductions 
in lung function (ie, forced expiratory volume in 1 s, FEV1; 
52,53). The mechanisms underlying the reduced awareness are 
unknown but could involve a diminished feedback from 
peripheral mechanoreceptors or chemoreceptors (44,52).

Respiratory muscles.—Several large studies have shown that 
advancing age is independently associated with a reduction in 
both the maximal inspiratory pressure, a measure of inspiratory 
muscle strength, and the maximal expiratory pressure, a mea-
sure of expiratory muscle strength (54–56). For example, 
for a man of average height and weight, maximal inspirato-
ry pressure values at age 50 and 80 years are 111 and 70 cm 
H2O, respectively (56). The age-related reductions in maximal 
inspiratory pressure and maximal expiratory pressure are likely 
a consequence of impaired respiratory mechanics (discussed 
later) and sarcopenia (1,57–59). Sarcopenia refers to the loss of 
muscle mass and function, potentially due to the reduced 
muscle protein synthesis, increased muscle proteolysis, motor 
neuron loss, and/or increased muscle fat content (58).

Respiratory Mechanics
Age-related reductions in physiological capacity are most 

pronounced in respiratory mechanics. Developmentally, 
over the course of the adult life span, there is a progressive 
increase in the rigidity of the chest wall and decrease in the 
elastic recoil of the lung (1,2,57,60). These age-related 
changes in respiratory mechanics lead to airflow limitation, 
defined by a decreased FEV1 and ratio of FEV1 to forced 
vital capacity (FVC), as well as to air trapping and hyperin-
flation, defined by an increase in residual volume and func-
tional residual capacity, respectively (1,2,57,60). In addition, 
because of a loss in supporting elastic tissue, there is an in-
crease in the “closing volume,” defined as the lung volume 
above which there is premature collapse of small airways—
most evident in the gravity-dependent regions of the lung 
(57,61). The more important effects of these age-related 
changes include a decline in FEV1 of up to 30 ml/year, 
an increase in residual volume of about 50% between ages 
20 and 70 years, and an increase in the closing volume, such 
that by age 65 years, it approaches the functional residual 
capacity (even during normal tidal breathing; 2,57,60,61).

These changes in FEV1, residual volume, and closing 
volume impose substantial limitations on the aging lung. As 
the FEV1 declines, the tidal breathing response during exer-
cise is reduced because of expiratory flow limitation and 
dynamic hyperinflation (57,62). As the residual volume in-
creases, the curvature of the diaphragm is reduced, shifting 
the length–tension relationship to a shorter length and, in 
turn, decreasing the force generating capacity of the muscle 
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(1,57,59). As the closing volume increases, the small air-
ways are more likely to collapse prematurely, leading to a 
reduced ratio of alveolar ventilation to lung perfusion 
(VA/Q) and, in turn, decreasing oxygenation (57,61,63,64).

Gas Exchange
Gas exchange is most often dependent on an appropriate 

matching of ventilation with lung perfusion (20). Using 
measures of ventilation and lung perfusion, prior work has 
demonstrated an age-related increase in ventilation-perfusion 
inequality, characterized by a heterogeneous distribution of 
lung units having high and low VA/Q ratios (65–69). The 
ventilation–perfusion inequality is associated with changes 
in the pulmonary circulation (70–72). In a study involving 
3,790 participants aged 1–89 years who had normal echocar-
diograms, the pulmonary arterial systolic pressure rose an 
average of about 1 mm Hg per decade of age, yielding an 
upper limit of 40 mm Hg in those older than 50 years (71). 
This rise in pulmonary arterial systolic pressure has been at-
tributed to an increase in pulmonary vascular resistance (71).

The age-related increase in ventilation–perfusion inequal-
ity may coexist with a decrease in the diffusion capacity of 
the lung for carbon monoxide (DLCO), a measure of the 
transfer capacity of oxygen across the alveolar–capillary 
interface (57,73). In a study involving 74 healthy older partic-
ipants aged 69–104 years and 55 healthy young participants 
aged 20–40 years, there was a 50% reduction in the DLCO 
for older persons relative to younger persons (73). The reduc-
tion in DLCO may be due to declines in the alveolar surface 
area and, possibly, in the density of lung capillaries (72,73).

Subtle but important changes in the arterial tension for 
carbon dioxide (PaCO2) occur across the adult life span 
(63,64). To maintain the PaCO2 in the normal range, total 
minute ventilation (VE) must increase with advancing age 
(62–72). PaCO2 is largely dependent on the VE, which is the 
sum of alveolar ventilation (VA) and dead space ventilation 
(VD; 20). In contrast to VD, VA participates in CO2 elimination 
because it includes areas of the lung that are both adequately 
ventilated and perfused. As a consequence of the age- 
related increase in ventilation–perfusion inequality, specifi-
cally in lung units having a high VA/Q ratio, normal aging is 
associated with an increase in VD (62–72). This phenome-
non is exacerbated during exercise by a concurrent age- 
related reduction in cardiac output (62). At peak exercise, for 
example, VD is 2.5 times higher in an older versus younger 
person—32 versus 14 L/min, respectively (62). In response 
to the increase in VD, VE must increase to maintain VA (20). 
Although a normal PaCO2 is maintained, this age-related 
increase in ventilatory requirement further reduces the ven-
tilatory reserve of the aging lung.

Subtle but important changes in the arterial tension for 
oxygen (PaO2) also occur across the adult life span (63,64). 
In the setting of the age-related increase in ventilation–
perfusion inequality, specifically in lung units having a low 

VA/Q ratio, the PaO2 declines from an average of 100 mm 
Hg in young adults (18–24 years) to 89 mm Hg in older 
adults (≥65 years; 61,64,67–69). Nonetheless, O2 saturation 
is relatively normal with advancing age because the PaO2 
levels remain on the flat portion of the O2 dissociation curve 
(20). Otherwise, the age-related decline in DLCO is likely 
to contribute minimally to a decrease in PaO2, except per-
haps when oxygen consumption is substantially elevated, as 
during maximal exercise (62,73).

Pulmonary Function
Because the environmental toxins and aging predominantly 

impair respiratory mechanics, including airflow limitation 
and restriction, respiratory impairment is most often evalu-
ated by spirometry and, in select cases, by peak expiratory 
flow. Moreover, because aging can also adversely affect 
ventilatory control, respiratory muscle strength, and gas 
exchange, additional tests of pulmonary function may be 
required in order to fully evaluate respiratory impairment.

Spirometry
Due to technological advances, spirometry may be con-

veniently performed using a portable handheld device. In 
spirometric testing, the individual is instructed to perform a 
series of forceful and complete exhalation maneuvers, starting 
from maximal inspiration (74,75). Based on performance 
guidelines published by the American Thoracic and Euro-
pean Respiratory Societies (ATS/ERS), these breathing 
maneuvers generate two specific lung volumes, namely the 
FVC (an untimed lung volume) and FEV1 (a timed lung 
volume), as defined in Table 1 (74,75).

Diseases that lead to a greater reduction in the timed lung 
volume than the untimed lung volume include COPD, 
asthma, bronchiectasis, and cystic fibrosis (76). In this 
setting, the FEV1/FVC is reduced and defines airflow limi-
tation that is due to airways obstruction (75). Diseases that 
lead to comparable reductions in the timed and untimed 
lung volumes include those which affect the chest wall 
(kyphosis, scoliosis, or ankylosing spondylitis), respira-
tory muscles (sarcopenia, myasthenia gravis, or diaphrag-
matic paralysis), pleura (effusions or fibrosis), interstitium 
(edema, inflammation, or fibrosis) and circulation (pul-
monary hypertension)—among others (76). In this setting, 
the FEV1/FVC is normal but FVC is reduced, suggesting a 
restrictive pattern (75). Otherwise, normal spirometry is 
defined by both a normal FEV1/FVC and FVC (75).

Contemporary practice.—The current standard for estab-
lishing spirometric respiratory impairment is based on crite-
ria published by the Global Initiative for Obstructive Lung 
Disease (GOLD) and a combined task force from the ATS/
ERS (13,75). As shown in Table 2, GOLD establishes respi-
ratory impairment based on an FEV1/FVC threshold of 
0.70 and an FVC threshold of 80 percent predicted (%Pred), 
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with airflow limitation further staged according to FEV1 
thresholds of 80, 50, and 30%Pred (13). Alternatively, the 
ATS/ERS establishes respiratory impairment based on a 
threshold for both FEV1/FVC and FVC set at the lower 
limit of normal (LLN), with airflow limitation further staged 
according to FEV1 thresholds of 70, 60, 50, and 35%Pred 
(75). The LLN is calculated by the ATS/ERS as the 5th per-
centile distribution of reference values (75,77). The %Pred 
is calculated by both GOLD and the ATS/ERS as follows 
(13,75): ([measured/predicted] × 100).

The GOLD and ATS/ERS thresholds for establishing 
spirometric respiratory impairment may not be age appro-
priate, however, for at least three reasons (2,8,23–26,78,79). 
First, because normal aging impairs respiratory mechanics, 
the FEV1/FVC is frequently less than 0.70 in otherwise 
healthy never-smokers who are ≥65 years (1,2,33,80). 
Second, because normal aging is associated with greater 
variability in spirometric performance, there is increasing 
disparity between the 80%Pred cut point for FVC and the 
LLN (2,78,79). In addition, the %Pred staging of FEV1 
incorrectly assumes that a given cut point is equivalent for all 
persons, regardless of age, height, sex, and ethnicity (2,78,79). 
To illustrate the effect of age, at the LLN as calculated by the 
European Coal and Steel Community prediction equations, a 
white male of average height has a value for FEV1 of 74%Pred 
at age 30 years but only 63%Pred at age 70 years (78). Third, 
the calculation of the LLN, as currently recommended by the 
ATS/ERS (75,77), is based on multiple regression equations 
that incorrectly assume a linear relationship between predictor 
variables (age and height) and spirometric measures as well as 
incorrectly assuming that reference values are distributed 
normally and have constant variability across the life span 
(2). In older populations, for example, multiple regression 
equations for FEV1/FVC have limited explanatory ability, 
with R2 values ranging from only 0.01 to 0.15 (81–83).

Alternative approach.—To address these limitations of 
contemporary practice, investigators have suggested that 
spirometric thresholds should be expressed as a Z-score, 
which converts a raw measurement on a test to a standard-
ized score in units of standard deviations (78,79). More 
recently (2), a novel method for calculating spirometric 
Z-scores has been proposed, termed lambda–mu–sigma 
(LMS). This strategy uses all three elements of the distribution, 
including the median (mu)—representing how spirometric 
measures change based on predictor variables (age and 
height) and the coefficient-of-variation (sigma)—represent-
ing the spread of reference values and adjusting for non-
uniform dispersion, and skewness (lambda)—representing 
the departure from normality (2). The LMS-derived Z-
score is then calculated as follows (2): [(measured/predicted 
median)lambda − 1]/(lambda × sigma). The predicted values 
for median, lambda, and skewness are calculated from 
LMS equations that are based on four pooled reference 
samples, with ages ranging from 4 to 80 years (2). Clinically, 
Z-scores are routinely used to diagnose osteopenia and osteo-
porosis based on bone mineral density testing, and the LMS 
method is already widely applied to growth charts (2,84).

Based on LMS-derived Z-scores, we have proposed that 
respiratory impairment, including airflow limitation and 
restrictive pattern, should be defined as shown in Table 2. To 
assess the clinical validity of this approach, we have evalu-
ated the associations between LMS-defined respiratory im-
pairment and adverse health outcomes, using data from the 
Cardiovascular Health Study, a longitudinal cohort of com-
munity-living older persons that included the age group of 
65–80 years (24–26). As shown in Figure 1, the presence 
and severity of LMS-defined airflow limitation and the pres-
ence of LMS-defined restrictive pattern were significantly 
associated with respiratory symptoms and all-cause mortal-
ity, respectively (24,25). Similar associations have since 

Table 2. Criteria for Establishing Normal Spirometry and Respiratory Impairment (airflow limitation and restrictive pattern)

Method

Spirometric Criteria

Normal

Airflow Limitation

Restrictive PatternMild Moderate Severe

GOLD
 FEV1/FVC ≥0.70 <0.70 ≥0.70
 FEV1 NA ≥80%Pred 50–79%Pred <50%Pred NA
 FVC ≥80 %Pred NA <80%Pred
ATS/ERS
 FEV1/FVC ≥ATS/ERS-LLN <ATS/ERS-LLN ≥ATS/ERS-LLN
 FEV1 NA ≥70%Pred 50–69%Pred <50%Pred NA
 FVC ≥ATS/ERS-LLN NA <ATS/ERS-LLN
LMS
 FEV1/FVC ≥5 LMS tile <5 LMS tile ≥5 LMS tile
 FEV1 NA ≥5 LMS tile 0.5–4.9 LMS tile <0.5 LMS tile NA
 FVC ≥5 LMS tile NA <5 LMS tile

Notes: ATS/ERS = American thoracic and European respiratory societies; ATS/ERS-LLN = lower limit of normal as calculated by the ATS/ERS (ie, 5th percentile 
distribution of reference values); FEV1/FVC = ratio of forced expiratory volume in 1 s (FEV1) to forced vital capacity (FVC); GOLD = global initiative for obstructive 
lung disease; LMS = lambda–Mu–Sigma; LMS tile = percentile distribution of Z-scores (eg, the five LMS tile is the 5th percentile distribution of Z-scores correspond-
ing to the lower limit of normal); %Pred = percent predicted (calculated as [measured/predicted] × 100); NA = not applicable.
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been found for frailty status (Fried phenotype) as well as in 
middle-aged persons (26,85). Because participants in our 
analytical samples had high smoking rates and no prior 
history of asthma, airflow limitation was likely due to 
COPD. The cause of restrictive pattern could not be as-
certained, however, as the requisite diagnostic tests were 
unavailable (as discussed later under Diagnostic confirma-
tion section).

Among older persons, when the LMS approach is consid-
ered the reference standard, both airflow limitation and 
restrictive pattern are commonly misclassified by current 
spirometric approaches (24). As shown in Figure 2, false-
positive and false-negative designations occur frequently in 

GOLD, with more modest misclassifications seen in the 
ATS/ERS approach. Both GOLD and the ATS/ERS also 
misclassify the severity of airflow limitation as shown in 
Table 3 (25). For example, among the 576 persons classified 
as having moderate airflow limitation by GOLD, 43 (7.5%) 
and 71 (12.3%) had mild and severe airflow limitation, 
respectively, by LMS, while an additional 330 (57.3%) had 
normal spirometry by LMS.

Because of the potential for misidentifying normal  
spirometry, it is difficult to directly compare the predictive 
accuracy of the current and alternative spirometric approaches. 
Meaning, risk estimates for adverse outcomes may be mis-
leading, if the basis for the direct comparisons is a reference 

Figure 1. Adjusted odds ratios (95% confidence intervals) for respiratory symptoms and adjusted hazard ratios (95% confidence intervals) for death according to 
LMS (lambda-mu-sigma) criteria—among community-living persons aged 65–80 years. Based on data from the Cardiovascular Health Study extracted from Refer-
ence 24 (panel A) and Reference 25 (panel B). (A) LMS-defined airflow limitation and restrictive pattern relative to normal spirometry. (B) LMS-defined mild, 
moderate, and severe airflow limitation relative to normal spirometry.
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Figure 2. Prevalence of false-positive and false-negative designations of global initiative for obstructive lung disease (GOLD)– and American thoracic society/
European respiratory society (ATS/ERS)–defined airflow limitation and restrictive pattern, respectively, relative to LMS criteria—among community-living persons 
aged 65–80 years. A false-positive designation was defined as having a respiratory impairment by GOLD or the ATS/ERS (denominator) but not by lambda-mu-sigma 
(LMS; numerator), while a false-negative designation was defined as having a respiratory impairment by LMS (denominator) but not by GOLD or ATS/ERS  
(numerator). There was no false-negative designation for airflow limitation because all participants who had airflow limitation by LMS also had airflow limitation by 
GOLD and ATS/ERS, respectively. Based on data from the Cardiovascular Health Study extracted from Reference 24.

Table 3. Cross-Tabulation of Frequency Distributions of Normal Spirometry and Airflow Limitation According to GOLD and the ATS/ERS 
Criteria within Strata of the LMS Staging System—Among Community-Living Persons Aged 65–80 Years. Based on Data from the Cardiovascular 

Health Study, Extracted from Reference 25

(A) GOLD versus LMS*
 LMS spirometric category‡ GOLD spirometric category†

Normal, N = 1,792 Airflow limitation: FEV1 %Pred
Mild: ≥80, N = 680 Moderate: 50–79, N = 576 Severe: <50, N = 182

N (%)§

 Normal 1,792 (100) 616 (90.6) 330 (57.3) 0
 Airflow limitation: FEV1 LMS tile
  Mild: ≥5 0 64 (9.4) 43 (7.5) 0
  Moderate: 0.5–4.9 0 0 132 (22.9) 0
  Severe: <0.5 0 0 71 (12.3) 182 (100)
(B) ATS/ERS versus LMS*
 LMS spirometric category‡ ATS/ERS spirometric category¶

Normal, N = 2,482 Airflow limitation: FEV1 %Pred
Mild: ≥70, N = 359 Moderate: 50–69, N = 207 Severe: <50, N = 182

N (%)§

 Normal 2,482 (100) 214 (59.6) 42 (20.3) 0
 Airflow limitation: FEV1 LMS tile
  Mild: ≥5 0 107 (29.8) 0 0
  Moderate: 0.5–4.9 0 38 (10.6) 94 (45.4) 0
  Severe: <0.5 0 0 71 (34.3) 182 (100)

Notes: ATS/ERS = American thoracic society/European respiratory society; ATS/ERS-LLN = lower limit of normal; FEV1 = forced expiratory volume in 1 s; 
%Pred = percent predicted; FVC = forced vital capacity; GOLD = global initiative for obstructive lung disease; LMS = lambda-mu-sigma method; LMS tile = 
percentile distribution of LMS derived Z-scores.

* Concordant spirometric designations are shown by cells with bold values.
† Normal spirometry was defined by FEV1/FVC ≥0.70 and FVC ≥80% Pred; airflow limitation by an FEV1/FVC <0.70.
‡ Normal spirometry was defined by FEV1/FVC and FVC, both ≥5 LMS tile; airflow limitation by FEV1/FVC <5 LMS tile.
§ Column percent.
¶ Normal spirometry was defined by FEV1/FVC and FVC, both ≥ATS/ERS-LLN; airflow limitation by FEV1/FVC < ATS/ERS-LLN.

group of misidentified normal spirometry (86,87). We are 
therefore concerned regarding an often cited report (86) 
that posits the superior predictive accuracy of the GOLD 

approach in older persons relative to the ATS/ERS approach 
(the LMS method had not yet been published). In this report 
(86), using data from the Cardiovascular Health Study, the 
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GOLD approach identified only 26% of participants as be-
ing in the normal spirometry reference group. This arguably 
represented a “super normal” group that, in turn, likely led 
to spurious risk estimates when the predictive accuracy of 
the GOLD approach was compared with that of the ATS/
ERS approach. Moreover, in the same report (86), the 
GOLD approach established an implausibly high rate of 
respiratory impairment (74%) which, if broadly applied to 
clinical practice, could result in inappropriate and poten-
tially harmful pharmacotherapy as well as to delays in the 
consideration of other diagnoses (3–8,80).

Despite the lack of a direct comparison, the evidence sup-
porting the LMS approach as a basis for defining respiratory 
impairment in aging populations is strong (2,23–26,85). 
Although currently limited to whites and to persons aged 
≤80 years, plans are underway to soon publish LMS equa-
tions that will provide Z-scores for other racial and ethnic 
groups as well as older-aged persons (2,88). Once these 
additional equations are available, LMS-derived Z-scores 

will offer the most valid method for establishing respiratory 
impairment across the life span.

Peak expiratory flow.—Because valid spirometric mea-
surements cannot be obtained in many older persons, espe-
cially those who are physically frail or cognitively impaired, 
alternative strategies for establishing respiratory impair-
ment are needed (89). One possible strategy is PEF, defined 
as the maximum flow achieved during expiration delivered 
with maximal force, starting from maximal inspiration, as 
assessed by a peak flow meter (90).

PEF is a simple, inexpensive, and readily available 
measure of pulmonary function. In prior work involving 754 
community-living older persons aged ≥70 years, we found 
that 99.5% completed three PEF readings (21,22). The PEF 
test was largely performed with good-to-excellent under-
standing (93%), and the variability in effort was minimal, as 
evidenced by an intraclass correlation coefficient of 0.92 for 
the three PEF readings (22).
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Figure 3. Kaplan–Meier curves stratified according to peak expiratory flow (PEF) stages, expressed as standardized residual percentiles (SR tiles)—among 
community-living persons aged ≥70 years. PEF stages 1 (highest PEF values) through 5 (lowest PEF values) were established at an SR tile of 80–100, 50–79, 30–49, 
10–29, and <10, respectively. Outcomes were ascertained over the course of 5 years and included persistent disability in one or more of four key activities of daily 
living (activities of daily lining)—bathing, walking, dressing, or transferring, present for at least two consecutive months; continuous mobility disability—the need 
for personal assistance or being unable to walk one-fourth of a mile or climb a flight of stairs, present for at least six consecutive months; and death. Reproduced from 
Reference 22.
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PEF is most commonly reduced in the setting of airflow 
limitation, in particular, asthma and COPD (90). Other less 
common causes of reduced PEF include extrathoracic air-
way obstruction, respiratory muscle weakness, and disor-
ders that limit the expansion of the chest wall (90). Although 
PEF is an attractive alternative to spirometry, two limitations 
warrant comment. First, when establishing respiratory im-
pairment, PEF is less sensitive than spirometry and cannot 
specifically distinguish airflow limitation from restrictive 
pattern (90,91). Second, because it requires an initial 
explosive effort, PEF is much more effort dependent than  
spirometric measures such as the FEV1 (90,91). Thus, PEF 
may be reduced simply because of poor effort.

Despite these limitations, when spirometry is not readily 
available (eg, primary care setting) or when an older person 
cannot adequately perform spirometry, PEF may be a viable 
alternative for establishing respiratory impairment. Prior 
work has shown, for example, that PEF is cross-sectionally 
associated with health status and physical and cognitive func-
tion and is longitudinally associated with cognitive decline, 
institutionalization, and death (92–98). Until recently, how-
ever, diagnostic thresholds for PEF could not be established 
because suitable reference values did not exist. To establish 
diagnostic thresholds, we have proposed that PEF should be 
expressed as a Z-score similar to that described for spirome-
try (21). However, because LMS equations are not available 
for PEF, we have instead used Z-scores calculated as a stan-
dardized residual (SR; 78,79): [(measured − predicted 

mean)/(standard deviation of the residuals)]. In this equation, 
the numerator is the “residual,” whereas the denominator 
quantifies the spread of the reference data (accounting for 
variability in age, sex, height, and ethnicity). Hence, an SR-
derived Z-score also converts a raw measurement on a test to 
a standardized score in units of standard deviations (78,79).

Using data from a large cohort of predominantly white com-
munity-living persons aged ≥70 years, we have evaluated the 
longitudinal association of PEF, expressed as an SR tile, with 
disability in activities of daily lining, mobility disability, and 
death (22). Our results showed that the highest cut point for 
PEF that conferred an increased risk of adverse outcomes 
occurred at the 10th SR tile. Specifically, at a PEF less than10th 
SR tile, identifying nearly a quarter of the cohort, hazard ratios 
adjusted for multiple confounders demonstrated an increased 
risk of activities of daily lining disability (hazard ratios [95% 
confidence interval]: 1.8 [1.2–2.6]), mobility disability (1.9 
[1.2–3.1]), and death (2.3 [1.3–4.1]). Figure 3 shows the unad-
justed Kaplan–Meier curves with PEF staged at five SR tile 
levels. These results support the use of PEF as a measure of 
pulmonary function in community-living older persons.

To further advance the use of PEF as a tool for evaluating 
respiratory impairment in older persons, additional work is 
needed to establish reference equations that are based on 
more diverse populations in terms of race and ethnicity. 
In addition, the advantage of calculating Z-scores for PEF 
based on LMS versus SR should be determined. Last, the 
use of PEF as a tool for identifying respiratory impairment 

  
  

  

  

Figure 4. Evaluation of respiratory impairment based on lambda-mu-sigma (LMS)-defined spirometry among persons who have respiratory symptoms. All forms 
of restrictive pattern require body plethysmography or gas dilution to confirm restrictive lung disease.
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