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Biological age (BA) is useful for examining differences in aging rates. Nevertheless, little consensus exists regarding 
optimal methods for calculating BA. The aim of this study is to compare the predictive ability of five BA algorithms. The 
sample included 9,389 persons, aged 30–75 years, from National Health and Nutrition Examination Survey III. During 
the 18-year follow-up, 1,843 deaths were counted. Each BA algorithm was compared with chronological age on the basis 
of predictive sensitivity and strength of association with mortality. Results found that the Klemera and Doubal method 
was the most reliable predictor of mortality and performed significantly better than chronological age. Furthermore, 
when included with chronological age in a model, Klemera and Doubal method had more robust predictive ability and 
caused chronological age to no longer be significantly associated with mortality. Given the potential of BA to highlight 
heterogeneity, the Klemera and Doubal method algorithm may be useful for studying a number of questions regarding 
the biology of aging.
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AGING is often defined as the gradual functional and 
structural decline of an organism, resulting in an 

increasing risk of disease, impairment, and mortality over 
the life span (1). Although aging can be seen in nearly all 
species, the rate of age-related decline is not universal (2). 
Aging is thought to be reliant upon a balance between expo-
sure and resiliency (3), and as a result, heterogeneity arises 
within and between species due to variations in exposure 
to damaging properties—diverse environments—as well as 
the bodies’ innate ability to cope. Consequently, age, when 
measured chronologically, may not be a reliable indicator 
of the body’s rate of decline or physiological breakdown, 
but rather, serves only as a proxy for the rate of aging. 
Nevertheless, in order to better assess an individual’s degree 
of aging, and thus residual life span or susceptibility to dis-
ease, new approaches need to be developed that provide 
predictive power beyond what is gained from measuring 
chronological age (CA) alone.

The idea that age-related biological changes could be 
measured was first proposed by Alex Comfort in 1969 
(4). Given the number of cellular and systemic changes 
that accompany the aging process, it is believed that such 
changes could be quantified through the identification and 
measurement of biomarkers of aging (5). Over the years, 
significant work has gone into trying to indentify biomark-
ers of aging that can be used to study senescence in humans 
or animal models (6); however, there has been little success 

thus far. It has been suggested that, due to the complexity of 
the aging process—particularly in humans—no single bio-
marker is likely to be identified that accurately measures the 
rate of biological aging (7). On the other hand, unlike indi-
vidual biomarkers of aging, biological age (BA) estimates 
facilitate the merging of multiple biomarkers into a single 
latent variable, which may better account for the complex-
ity of the aging process. The coalescing of various measures 
into a single multifaceted biomarker may prove useful in 
both biological research—to study how genes, evolution, 
and environment impact the rate of aging—as well as in 
public health research or clinical practice—to identify indi-
viduals at increased risk of disability and disease.

Although several articles have been published on the 
measurement of BA, there is little consensus regarding the 
method in which BA should be calculated or the validity of 
such measures. Over the years, a number of varying math-
ematical algorithms have been suggested, such as multiple 
linear regression (MLR; [8–11]), principal component anal-
ysis (PCA; [12–15]), and more recently, a method proposed 
by Klemera and Doubal (16). However, the validation and 
comparison of such estimates has been limited (17), particu-
larly when it comes to utilizing BA for predicting mortality.

Given that the intrinsic value of BA is impossible to 
measure, the validation of calculated estimates proves 
difficult. Nevertheless, the reliability and validity of BA 
measurements should be evaluated using common criteria. 
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For example, BA calculations should produce realistic 
measurements, within the limits of recorded life span. 
BA estimations should also be able to identify at-risk 
individuals prior to them entering a disease state. Many of 
the methods currently used in identifying at-risk individuals 
rely upon indexes of disease, frailty, or cumulative deficits 
of biomarkers reaching a predetermined cutoff (18–20). 
However, these estimates may not be useful in examining 
young- or middle-aged adults and therefore, may not be 
ideal for use in prevention. Finally, BA should satisfy the 
criteria set forth for biomarkers of aging, which states that 
(a) A biomarker needs to be a better predictor of multiple 
age-associated biological and functional outcomes than is 
chronological age; (b) Biomarkers should be able to predict 
both remaining longevity and disease-specific mortality in 
a population of which 90% of the individuals are still alive; 
and (c) The method of measurement should not affect life 
expectancy or any future age-related measurements (21).

Using these criteria, the focus of this study is to compare 
BA measures, estimated using various methods that have 
been proposed in the literature, with the goal of determin-
ing their validity and usefulness in predicting mortality 
outcomes, within a large nationally representative human 
sample.

Methods

Study Population
The study population included participants from the 

third National Health and Nutrition Examination Survey 
(NHANES III), a nationally representative, cross-sectional 
study conducted by the National Center for Health Statistics 
between 1988 and 1994. Data for NHANES III were col-
lected from at-home interviews and examinations taking 
place at a Mobile Examination Center. Further details of 
recruitment, procedures, population characteristics, and 
study design are available through the Centers for Disease 
Control and Prevention (22). This study was limited to 
adults aged 30–75 years, in order to ensure that participants 
were old enough to be experiencing detectable age-related 
changes in biomarkers, yet not too old as to represent a 
select group with above-average health and longevity. Of 
the 12,517 NHANES subjects, aged 30–75 years, our final 
analytic sample included 9,389 participants. Excluded par-
ticipants consisted of those with missing data on one or 
more of the biomarker measures.

Selection of Biomarkers
Biomarkers were selected based upon knowledge 

regarding their role or dependency on the aging process, 
independence, use in previous BA or biomarkers of aging 
studies (14,23), their availability in the NHANES data 
set, and the statistical significance and strength of their 
relationship with CA. The 21 biomarkers considered in our 
analysis can be classified into seven domains: (1) Metabolic 

Function—glycated hemoglobin, total cholesterol, and 
high-density lipoprotein; (2) Cardiac Function—systolic 
blood pressure, diastolic blood pressure, and pulse; (3) 
Lung Function—forced expiratory volume; (4) Kidney 
Function—serum creatinine and serum urea nitrogen; (5) 
Liver Function—serum alkaline phosphatase and serum 
albumin; (6) Immune Function and Inflammation: C-reactive 
protein, cytomegalovirus optical density, lymphocyte 
percent, mononuclear percent, and granulocyte percent; and 
(7) Cell Blood Count—white blood cell count, red blood cell 
count, platelet count, hemoglobin, and hematocrit. Pearson 
correlations were then used to assess the relationships of the 
21 potential biomarkers with age (Table 1). Ten biomarkers 
that significantly correlated with CA at r > .10 were selected 
for inclusion into the BA estimates. These biomarkers 
included C-reactive protein, serum creatinine, glycated 
hemoglobin, systolic blood pressure, serum albumin, total 
cholesterol, cytomegalovirus optical density, serum alkaline 
phosphatase, forced expiratory volume, and serum urea 
nitrogen.

Ba estimates
Principal component analysis.—PCA is a method used to 

reduce a set of variables to a small number of factors, called 
principal components, while optimizing the amount of 
variance explained. BA was calculated in accordance with 
the method proposed by Nakamura and colleagues (13). 
The first principal component score was used to signify a 
BA score (BAS). Given that BAS is not in units of years, 
scores were transformed to allow for comparisons with 
CA. Finally, BA models were further adjusted by adding a 

Table 1. Pearson Correlation Coefficients Between Chronological 
Age (CA) and Biomarkers*

Pearson Correlation With CA

C-reactive protein (mg/dL) 0.122***
Serum creatinine (mg/dL) 0.148***
Glycated hemoglobin (%) 0.261***
Serum albumin (g/dL) −0.220***
Serum total cholesterol (mg/dL) 0.288***
Cytomegalovirus optical density 0.261***
Serum urea nitrogen (mg/dL) 0.296***
Serum alkaline phosphatase SI (U/L) 0.218***
Forced expiratory volume (mL) −0.535***
Systolic blood pressure 0.501***
Serum high-density lipoproteins (mg/dL) 0.026**
Hemoglobin (g/dL) −0.052***
Lymphocyte percent −0.033**
White blood cell count −0.020*
Hematocrit (%) −0.036**
Red blood cell count −0.096***
Mononuclear percent 0.074***
Granulocyte percent 0.010
Platelet count −0.046***
Pulse (beats/min) 0.054***
Diastolic blood pressure 0.047***

note: ***p < .0001. **p < .01. *p < .05.
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z-score to the BA estimates, as suggested by Nakamura and 
colleagues (13), in order to account for systematic errors 
that may cause over or under estimations of BA.

Multiple linear regression.—Although MLR remains 
one of the most commonly used methods for the calcula-
tion of BA, it has encountered criticism given the risk of 
multicollinearity in the models, as well as the potential for 
estimates to regress toward the mean (17). Using MLR, BA 
is assumed to be equal to the predicted CA of an individ-
ual, equation (1), and is based upon the relationship of true 
(measured) CA and several biomarkers (m):

 BA PredictedCAi i

j

m

j jia b x= = + .0

1=
∑  (1)

Two BA scores were calculated using sex-stratified MLR. 
The first incorporated all 10 biomarkers, and the second 
used only those selected by the PCA method. The results 
from the equations were then standardized so that the mean 
BA of participants of a given age was equal to CA.

Klemera and Doubal’s method.—In their article, “A new 
approach to the concept and computation of biological age,” 
Klemera and Doubal present a new mathematical algorithm, 
claiming that it is the optimum method for the calculation 
of BA (16). The BA estimates are based upon minimizing 
the distance between m regression lines and m biomarker 
points, within an m dimensional space of all biomarkers. In 
their article, the authors used computer-generated simula-
tions to validate the method they propose. They defined BA 
as equal to CA, plus some random variable, RBA,  with a 
mean of zero and a variance sBA

2 ,  (2). Klemera and Doubal 
presented two alternative methods for calculating the opti-
mum estimates of BA, equations (2) and (3), in which the 
later method utilizes CA in the final equation—and using 
simulations, was shown to be superior:
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In order to produce an estimate for BA, using equation 
(3), s j

2  and sBA
2  have to be calculated. The value, s j , repre-

sents the root mean squared error of a biomarker regressed 
on BA. However, given that BA is not measurable, root 
mean squared errors from the regressions between each bio-
marker and CA, rather than BA, were used, as suggested by 
Cho and colleagues (17). Finally, in order to calculate sBA

2 ,  

equation (2), as well as the following two equations were 
used sequentially:
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The value rj
2 ,  used to calculate the characteristic cor-

relation coefficient from equation (4), refers to the vari-
ance explained by regression CA on m biomarkers. Finally, 
in accordance with the assumption made by Klemera and 
Doubal, sBA

2  was transformed so that sBA  maintained the 
same mean but was now linearly increasing with age, with 
a difference of five between subjects at CAmin  and CAmax . 
As with the MLR approach, two BA scores were calcu-
lated—one based on all 10 biomarkers and one based on 
the biomarkers selected by PCA. For further details of the 
methods and equations refer to the article by Klemera and 
Doubal (16).

Mortality.—Mortality follow-up was based on linked 
data from records taken from the National Death Index 
through 2006, provided through NHANES III (22). Data 
on mortality status was available for all participants. 
During analysis, deaths due to HIV, violence, or acci-
dents, were censored given that mortality is being used to 
validate measures of aging, and thus variables should be 
evaluated on their ability to predict age-related, rather than 
stochastic deaths. Finally, given that participants took part 
in NHANES III at different points in time between 1988 
and 1994, potential mortality follow-up time ranged from 
12–18 years, causing some participants who were alive in 
2006, to be censored at less than 18 years. Nevertheless, 
time of enrollment in NHANES III was random and should 
therefore not confound results.

Statistical analysis for validation and comparisons of 
Ba algorithms.—Receiver operating characteristics curves 
were used to determine the sensitivity of CA and the five 
BA estimates in predicting mortality up to 18 years after 
follow-up. To test the sensitivity of the variables for dif-
ferent age cohorts, CA and BA estimates were first com-
pared using the entire age sample and then rerun using two 
age-stratified groups—those 30–59 years old and those 
60–75 years old. Next, five cox proportional hazard models, 
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containing both CA and one of the BA estimates, were used 
to investigate which one had more predictive power when 
included in the same model. Given that BA estimates were 
calculated separately for men and women, all analysis were 
run controlling for sex.

Results
Sample characteristics, are shown in Table 2. Approxi-

mately half (51.83%) of the participants were women, and 
ranged in age from 30 to 75 years, with a mean of 47.46 years. 
Additionally, 78.5% of participants were aged 30–59 years, 
whereas 21.5% were aged 60–75  years. Overall, 1,843 
participants died between baseline and follow-up. Due to 
NHANES procedures, participants who were presumed 
alive did not have equivalent follow-up times and were 
therefore considered censored during analysis. In addition 
to those assumed alive, 88 participants were censored due 
to deaths from HIV, violence, or accidents. For living par-
ticipants, total person-years was 112,734.08 years, whereas 
for those who were assumed deceased, total person-years 
was 16,642.75 years.

algorithm Results
Principal component analysis.—The 10 biomarkers 

selected from the Pearson correlation were included in the 
PCA and run separately for men and women. Of the bio-
markers included, seven significantly loaded on the first 
principal component, for both men and women. The bio-
markers that reached significance for men were C-reactive 
protein, glycated hemoglobin, serum albumin, cytomegalo-
virus optical density, serum alkaline phosphatase, forced 
expiratory volume, and systolic blood pressure. For women, 
the biomarkers that reached significance were C-reactive 
protein, glycated hemoglobin, total cholesterol, serum 
alkaline phosphatase, forced expiratory volume, serum 
urea nitrogen, and systolic blood pressure. CA was then 
loaded and unloaded to test the stability of the candidate 

biomarkers and the relationship between age and the first 
principal component. Using the variable set consisting of 
the nine biomarkers and CA, the first principal component 
had an eigenvalue of 2.61 for men and 3.23 for women. 
Furthermore, CA had PCA loadings of 0.694 and 0.740 for 
men and women, respectively. In the final PCA, with the 
nine biomarkers, excluding CA, the first principal compo-
nent for men had an eigenvalue of 2.08, whereas for women, 
the first principal component had an eigenvalue of 2.67. 
The nine variables produced BAS equation (6) for men and 
equation (7) for women:
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Albumin CMV

= + ( ) + ( )
− +

0 382 0 451 0 230 1

0 746 0 175

. . .

. ( ) . ( ))

.

. ( ) . ( )

+ ( )
− +

0 008

0 0004 0 014

Alkaline phosphate

FEV SBP  (6)

 

BAS CRP Hba1c

Cholesterol

= − + ( ) + ( )
+ ( )
+

4 10 0 229 0 220

0 005

0 008

. . .

.

. AAlkaline phosphate

FEV Urea nitrogen

( )
− ( ) +

+

0 0004 0 034

0 015

. . ( )

. (( ).SBP  (7)

BAS estimates were then transformed to years by multi-
plying them by the standard deviation of CA and summing 
with mean CA, as shown in equation (8), for men, and equa-
tion (9) for women:

 BA BAS= +( . ) .×14 18 47 15  (8)

 BA BAS= +( . ) . .×13 92 47 75  (9)

Finally, true BA (TBA) was calculated by adding z scores, 
calculated as z y y bi= − × −( ) ( ) 1 , to BA values, where yi  is 
the individual’s CA for the group, ŷ  is mean CA and b is the 
coefficient of BA regressed on CA.

Table 2. Characteristics for the Full Sample and by Age Group

Full Sample (n = 9,389) Aged 30–59 years (n = 6,603) Aged 60–75 years (n = 2,786)

Age (y), M 47.46 (14.05) 42.14 (9.65) 66.86 (4.21)
Female (%) 51.83 51.23 54.01
Died, (n) 1,843 566 1,277
Censored, (n) 7,546 6,037 1,509
Person-years (M) 14.17 (3.35) 14.65 (2.83) 12.43 (3.92)
C-reactive protein (mg/dL), M 0.42 (0.67) 0.39 (0.60) 0.53 (0.79)
Creatinine (mg/dL), M 1.07 (0.29) 1.05 (0.29) 1.14 (0.27)
Glycated hemoglobin (%), M 5.42 (1.08) 5.33 (1.08) 5.76 (1.02)
Albumin (g/dL), M 4.16 (0.38) 4.19 (0.40) 4.06 (0.30)
Total cholesterol (mg/dL), M 209.36 (46.20) 204.99 (47.14) 225.29 (40.46)
Cytomegalovirus optical density, M 1.78 (1.29) 1.66 (1.38) 2.25 (0.93)
Alkaline phosphatase (U/L), M 81.66 (32.59) 79.24 (31.90) 90.50 (32.84)
Forced expiratory volume (mL), M 3102.16 (1002.91) 3304.69 (979.62) 2363.82 (705.09)
Urea nitrogen (mg/dL), M 14.38 (5.28) 13.71 (4.97) 16.82 (5.34)
Systolic blood pressure, M 123.13 (18.77) 119.47 (17.18) 136.49 (16.90)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/article/68/6/667/873700 by guest on 10 April 2024



 MoDelinG the Rate of SeneScence 671

Multiple linear regression.—Sex-stratified MLR was per-
formed utilizing the 10 biomarker variables as predictors of 
CA. Correlation between biomarkers were run to examine 
multicollinearity, which is a common concern of the MLR 
method. Among the 10 biomarkers, all correlation coeffi-
cients were found to be within acceptable levels (<r = .40). 
The biomarkers in the MLR models accounted for 50.9% and 
58.8% of the variance in CA for men and women, respec-
tively (r2

men
 = .509; r2

women
 = .588). As noted by Ingram (24), 

unexplained variance is necessary to capture the differences 
in BA among individuals of a given CA. From the regression 
models, the following equations were used to generate BA 
estimates for men, equation (10), and women, equation (11):
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The results from the equations were then standardized so 
that the mean BA for participants of a given age was equal 
to CA. Finally, the MLR method was run again, using only 
those variables selected from the PCA, thus, producing a new 
equation for men, equation (12), and women, equation (13):
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Like the results from the first regression equations, results 
were then standardized to assure that the mean BA of par-
ticipants of a given age was equal to CA. We will refer to 
the results from the MLR method using the 10 biomarkers 
and 7 biomarkers as MLR1 and MLR2, respectively.

Klemera and Doubal method.—The rchar  calculated 
using equation (4) for KDM1 (10 biomarkers) was .360 and 
.432 for men and women, respectively, whereas the rchar  
for KDM2 (7 biomarkers) was .399 and .474 for men and 
women, respectively. For KDM1, sBA

2 , which was used 
to calculate BAEC  in equation (3), ranged from 57.66 to 
158.58 with a mean of 99.12 for men and ranged from 
43.13 to 133.79 with a mean of 77.67 for women, whereas 
for KDM2, sBA

2  ranged from 72.45 to 182.55 with a mean 
of 118.03 for men and ranged from 36.23 to 121.40 with a 
mean of 68.44 for women.

Ba estimates and mortality.—Means, standard devia-
tions, and ranges for CA and the five BA estimates are 
listed in Table 3. Although the three algorithms had very 
similar means for BA, the ranges of these estimates var-
ied significantly. When calculated using PCA, BA ranged 
from approximately 19 to 185 years, whereas the two BA 
estimates calculated by MLR ranged from about 15 to 
110  years when all 10 biomarkers were used in the esti-
mates, and from 17 to 106 years when only the 7 biomark-
ers selected by PCA were used. The estimates for KDM1 
ranged from approximately 24 to 110  years, whereas the 
estimate for KDM2 ranged from 22 to 101 years when cal-
culated using 7 biomarkers.

Results from the receiver operating characteristics 
curve comparisons for the whole sample and for the age-
stratified subsamples are listed in Table 4. For the model 
containing all participants (aged 30–75 years), each of the 
five BA estimates produced significantly (p < .05) better 
mortality predictions than CA. Similar results were found 
when comparing BA estimates to CA within young and old 
age groups. Overall, using receiver operating characteris-
tics curves, the best performing BA estimates were those 
employing the KDM algorithm. For the whole sample 
and the young group, KDM2 had the highest sensitivity. 
(AUC

aged 30–75
 = 0.851 and AUC

aged 30–59
 = 0.779), compared 

Table 3. Mean Age Estimates for Chronological Age (CA) and 
Biological Age (BA)

Mean (SD) Minimum Maximum

CA 47.46 (14.05) 30.00  75.00
BA from PCA (7 biomarkers) 47.93 (14.08) 19.07 185.18
BA from MLR1 (10 biomarkers) 47.46 (15.63) 15.12 110.29
BA from MLR2 (7 biomarkers) 47.46 (15.63) 15.50 106.33
BA from KDM1 (10 biomarkers) 47.47 (15.07) 23.80 110.28
BA from KDM2 (7 biomarkers) 47.46 (15.08) 20.98 100.64

note: PCA = principal component analysis; MLR1 = multiple linear regres-
sion with 10 variables; MLR2  =  multiple linear regression with 7 variables; 
KDM1 = Klemera and Doubal method with 10 variables; and KDM2 = Klemera 
and Doubal method with 7 variables.
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with CA (AUC
aged 30–75

 = 0.827 and AUC
aged 30–59

 = 0.731), 
whereas for the older group, KDM1 had the highest sen-
sitivity (AUC

aged 60–75
 = 0.735) compared with CA (AUC

aged 

60–75
 = 0.670).

Results for individual cox proportional hazard models 
are listed in Table  5. Overall, BA estimated by KDM2 
produced the most robust results, When BA and CA were 
both included in the same model, the hazard ratio (HR) for 
the BA estimate, calculated using KDM2, was statistically 
significant and found to be higher than the HR for CA 
(HR

BA_KDM2
: 1.09, 95% CI: 1.08–1.09; HR

CA
: 1.01, 95% 

CI: 0.99–1.02). Moreover, KDM2 had the most robust 
predictive power of any of the BA estimates and was the 
only one that produced a null association between CA 
and mortality. Although the results weren’t as robust, CA 
was also found to have less predictive power than KDM1 
(HR

BA_KDM1
: 1.08, 95% CI: 1.07–1.09; HR

CA
: 1.01, 95% CI: 

1.01–1.02), MLR1 (HR
BA_MLR1

: 1.07, 95% CI: 1.06–1.07; 
HR

CA
: 1.03, 95% CI: 1.02–1.04), and MLR2 (HR

BA_MLR2
: 

1.08, 95% CI: 1.07–1.08; HR
CA

: 1.02, 95% CI: 1.01–1.03), 
however, in all three models, CA remained statistically 
significant. Finally, in the model that included CA and 
PCA, both were statistically significant, however, CA was 
found to be more robust (HR

BA_PCA
: 1.03, 95% CI: 1.03–

1.04; HR
CA

: 1.06, 95% CI: 1.06–1.07).

Discussion
The KDM algorithm, particularly when variables are 

chosen by PCA performed the best overall. KDM2 pro-
duced plausible estimates of BA and was a more reliable 
predictor of mortality than CA or any of the other BA algo-
rithms in multiple age cohorts. Furthermore, KDM2 outper-
formed CA when included in the same model—accounting 
for the entire association between CA and mortality. The 
method of selecting variables through PCA to include in the 
KDM2 estimate is in accordance with the model’s assump-
tions. Klemera and Doubal suggest that all the biomarkers 

Table 5. Individual Cox Proportional Hazard Models Containing Chronological Age (CA) and One of Five Biological Age (BA) Estimates

CA BA

HR (95% ci) Se HR (95% ci) Se

Model 1 (BA = PCA)
 Log likelihood = −15,025.53 1.06 (1.06–1.07)*** 0.003 1.03 (1.03–1.04)*** 0.001
 Nagelkerke R2 = 0.258
Model 2 (BA = MLR1)
 Log likelihood = −15,038.34 1.03 (1.02–1.04)*** 0.004 1.07 (1.06–1.07)*** 0.003
 Nagelkerke R2 = 0.256
Model 3 (BA = MLR2)
 Log likelihood = −15,014.63 1.02 (1.01–1.03)*** 0.004 1.08 (1.07–1.08)*** 0.003
 Nagelkerke R2= 0.260
Model 4 (BA = KDM1)
 Log likelihood = −14,974.76 1.01 (1.01–1.02)*** 0.004 1.08 (1.07–1.09)*** 0.003
 Nagelkerke R2 = 0.267
Model 5 (BA = KDM2)
 Log likelihood = −14,975.42 1.01 (0.99–1.02) 0.004 1.09 (1.08–1.09)*** 0.004
 Nagelkerke R2 = 0.267
n = 9,439 and Number of events = 1,843

notes: PCA= principal component analysis; MLR1  =  multiple linear regression with 10 variables; MLR2  =  multiple linear regression with 7 variables; 
KDM1 = Klemera and Doubal method with 10 variables; and KDM2 = Klemera and Doubal method with 7 variables.

In each model, BA is calculated by either PCA, MLR1 with 10 variables, MLR2 with 7 variables, KDM1 with 10 variables, or KDM2 with 7 variables.
All models are controlled for sex.
***p < .0001. **p < .01. *p < .05.

Table 4. ROC Curve Comparisons Between Chronological Age (CA) and Estimates of Biological Age (BA)  
for the Full Sample and by Age Group

Full Sample Aged 30–59 years Aged 60–75 years

AUC (Se) p Value AUC (Se) p Value AUC (Se) p Value

CA 0.827 (0.0052) Reference 0.731 (0.0108) Reference 0.670 (0.0067) Reference
PCA 0.840 (0.0050) <.0001 0.773 (0.0105) <.0001 0.712 (0.0062) <.0001
MLR1 0.847 (0.0050) <.0001 0.762 (0.0106) <.0001 0.727 (0.0061) <.0001
MLR2 0.849 (0.0049) <.0001 0.772 (0.0105) <.0001 0.727 (0.0077) <.0001
KDM1 0.853 (0.0049) <.0001 0.774 (0.0104) <.0001 0.743 (0.0059) <.0001
KDM2 0.854 (0.0049) <.0001 0.779 (0.0103) <.0001 0.737 (0.0077) <.0001

note: AUC = area under the ROC curve; PCA = principal component analysis; MLR1 = multiple linear regression with 10 variables; MLR2 = multiple linear 
regression with 7 variables; KDM1 = Klemera and Doubal method with 10 variables; and KDM2 = Klemera and Doubal method with 7 variables.
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included in the algorithm be functionally uncorrelated and 
that factor analysis or PCA be used to reach this goal (16).

Although this study provides evidence for the usefulness 
of the KDM algorithm for estimating BA, there is potential 
for improvement. Advancements in technology and increas-
ing knowledge regarding the aging process have facilitated 
the identification and measurement of more sophisticated 
and theoretically conceptual age-associated biomark-
ers, such as telomere length, measures of oxidative dam-
age, mitochondrial oxygen consumption, neuroendocrine 
secretion levels, and cyclin-dependent kinase inhibitor 2A 
(p16Ink4a) expression (6,25–27). Furthermore, among the 
oldest–old, a number of physical performance and blood 
cell count measures have been shown to be useful biomark-
ers of aging (28). The equation proposed by Klemera and 
Doubal provides researchers with the potential to combine 
many of these distinct biomarkers into a single measure, 
better capturing the complexity of the aging process.

The risks for a range of chronic conditions increase sig-
nificantly over the life span, given the diversity of structures 
and systems in which age-related degradation operates on 
(1). According to evolutionary theories of aging, particu-
larly Kirkwood’s Disposable Soma theory (29), living is 
accompanied by exposure to damaging properties, which 
innate protective and repair mechanisms are set-up to guard 
against. However, the degree of protection is optimized 
to increase evolutionary fitness and investment that sur-
passes reproductive needs is thus avoided. As a result, some 
degree of damage is accumulated at varying structural and 
functional levels over the lifetime, increasing as fecundity 
declines.

BA estimates are meant to measure an individual’s level 
of damage accumulation and when measured longitudinally, 
can be used to track the trajectory of damage for a period of 
time. Consequently, reliable BA estimates may facilitate the 
investigation of a number of questions related to the biology 
of aging. For instance, changes in BA should mirror changes 
in the rate of aging as a result of genes or environmental 
conditions—such as caloric restriction, crowding, heat 
shock, psychological stress, or exposure to reactive oxygen 
species—which alter energy allocation for maintenance 
and repair, or the degree of damaging properties (30–34). 
Finally, although most experiments have relied on average 
or maximum life span to serve as a measure for studying 
how various factors affect the rate of aging, BA allows for 
the investigation of alterations in the rate of aging at points 
other than the end of life and may facilitate the identification 
of robust versus frail individuals prior to death (35).

Although BA estimated by KDM2 was found to be a 
highly sensitive and specific predictor of mortality, there are 
limitations within this study that should be discussed. First, 
the use of cross-sectional data means that mortality selection 
has changed the sample and this may confound the results. 
However, to mitigate the potential bias, the sample was lim-
ited to those aged 75 and younger. Second, although other 

useful physiological measures exist, biomarkers used in BA 
calculations were limited to those available in NHANES 
III. Third, biomarker data was available for 75% of the 
NHANES sample aged 30–75 years, potentially resulting in 
a selection bias. Given that participants may not be missing 
at random, additional analyses were run to check for dif-
ferences between included and excluded participants. When 
compared with the analytic sample, excluded individuals had 
a similar sex distribution but were found to be an average of 
3 years older and were more likely to die between baseline 
and follow-up. Finally, although we used a large nationally 
representative sample to generate the equation for BA, it 
may not be appropriate when examining other populations 
with dissimilar environmental or genetic characteristics. For 
this reason, more work is needed to identify a population 
that would be the most appropriate from which to generate 
an equation for BA that represents human aging in general.

In a large representative sample, the algorithm proposed 
by Klemera and Doubal was able to predict mortality bet-
ter than more commonly used methods, such as PCA and 
MLR. Furthermore, the estimates using KDM2 produced 
significantly more information regarding the risk of mor-
tality, than is generated by CA alone. Given its ability to 
use a single measure to combine a number of varying bio-
markers, KDM accounts for the complexity of aging in its 
measurement. In moving forward, BA estimates, similar to 
the one proposed by Klemera and Doubal, may be useful 
phenotypic traits for examining behavioral, environmental, 
or heritable factors that affect the heterogeneity of aging 
and life span. Finally, the development and validation of a 
BA construct is valuable given its impact on our theoretical 
understanding of the aging process and may facilitate future 
development of preventative interventions with implica-
tions for health and longevity.
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