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SUMMARY

Roy’s largest root is a common test statistic in multivariate analysis, statistical signal processing
and allied fields. Despite its ubiquity, provision of accurate and tractable approximations to its
distribution under the alternative has been a longstanding open problem. Assuming Gaussian
observations and a rank-one alternative, or concentrated noncentrality, we derive simple yet
accurate approximations for the most common low-dimensional settings. These include signal
detection in noise, multiple response regression, multivariate analysis of variance and canonical
correlation analysis. A small-noise perturbation approach, perhaps underused in statistics, leads
to simple combinations of standard univariate distributions, such as central and noncentral χ2 and
F . Our results allow approximate power and sample size calculations for Roy’s test for rank-one
effects, which is precisely where it is most powerful.

Some key words: Canonical correlation; Concentrated noncentrality; Greatest root statistic; Matrix perturbation;
Multivariate analysis of variance; Roy’s largest root test.

1. INTRODUCTION

Hypothesis testing plays an important role in the analysis of multivariate data. Classical exam-
ples include the multiple response linear model, principal component and canonical correlation
analysis, and other methods which together form the main focus of standard multivariate texts,
e.g., Anderson (2003), Mardia et al. (1979) and Muller & Stewart (2006). They find widespread
use in signal processing, social sciences and many other domains.

Under multivariate Gaussian assumptions, in all these cases the associated hypothesis tests
can be formulated in terms of either one or two independent Wishart matrices. These are con-
ventionally denoted by H , for hypothesis, and E, for error, depending on whether the covariance
matrix � is known or unknown; in the latter case E serves to estimate �.

James (1964) provided a remarkable five-way classification of the distribution theory asso-
ciated with these problems. Elements of the classification are indicated in Table 1, along with
some representative applications. Departure from the null hypothesis is captured by a matrix
�, so that the testing problem might be H0 : � = 0 versus H1 : � |= 0. Depending on the
particular application, the matrix � captures the difference in group means, or the number of
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182 I. M. JOHNSTONE AND B. NADLER

Table 1. Classification of multivariate problems (James, 1964)
Case Multivariate Distribution for Dimension Application

distribution dimension m = 1 m > 1

1 0F0 χ2 H ∼ Wm(nH , � + �) Signal detection in noise,
� known known covariance matrix

2 0F1 noncentral H ∼ Wm(nH , �, �) Equality of group means,
χ2 � known known covariance matrix

3 1F0 F H ∼ Wm(nH , � + �) Signal detection in noise,
E ∼ Wm(nE , �) estimated covariance matrix

4 1F1 noncentral H ∼ Wm(nH , �, �) Equality of group means,
F E ∼ Wm(nE , �) estimated covariance matrix

5 2F1 Correlation coeff. H ∼ Wp(q, �, �) Canonical correlation
r2/(1 − r2) E ∼ Wp(n − q, �) analysis between two

t-distribution � itself random groups of sizes p � q.

James’s classification of eigenvalue distributions was based on hypergeometric functions aFb of matrix argument;
their univariate analogues are shown in column 3. Column 4 details the corresponding Wishart assumptions for the
sum of squares and cross products matrices; the rightmost column gives a nonexhaustive list of sample applications.

signals or canonical correlations and their strengths. In the absence of detailed knowledge about
the structure of � under H1, group invariance arguments show that generic tests depend on the
eigenvalues of either �−1H or E−1H , e.g., Muirhead (1982, Ch. 6).

The most common tests fall into two categories. The first consists of linear statistics which
depend on all the eigenvalues and are expressible in the form

∑
i f (�i) for some univariate function

f . This class includes the three ubiquitous test statistics: Wilks’s U , the Bartlett–Nanda–Pillai V
and the Lawley–Hotelling W .

The second category involves functions of the extreme eigenvalues, the first few largest and
smallest eigenvalues. Here we focus on the largest root statistic, based on �1, which arises sys-
tematically in multivariate analysis as the union-intersection test (Roy, 1957). To summarize
extensive simulations by Schatzoff (1966) and Olson (1974), Roy’s test is most powerful among
the common tests when the alternative is of rank-one, i.e., concentrated noncentrality. For fixed
dimension, Kritchman & Nadler (2009) showed asymptotic, in sample size, optimality of Roy’s
test against rank-one alternatives.

We briefly contrast the state of knowledge regarding approximate distributions, both null and
alternative, for the two categories of test statistics. Tests based on linear statistics have long had
adequate approximations. In particular, for the two-matrix cases, approximations using an F
distribution are traditional and widely available in software: central F under the null (SAS, 1999)
and noncentral F under the alternative; see Muller & Peterson (1984), Muller et al. (1992) and
a 1999 unpublished manuscript by R. G. O’Brien and G. Shieh, discussed in the Supplementary
Material. Saddlepoint approximations (Butler & Wood, 2005; Butler & Paige, 2010) are also
available.

For Roy’s largest root test, the situation is less complete. Under the null hypothesis, evaluation
or approximation of the distribution is important, for example, to determine the critical values of
Roy’s test. Some options are listed in the Supplementary Material.

In contrast, under the alternative, derivation of a simple approximation to the distribution of �1
has remained a longstanding problem. In principle, the distribution of the largest eigenvalue has
an exact representation in terms of a hypergeometric function of matrix argument. Despite recent
advances in the numerical evaluation of these special functions (Koev & Edelman, 2006), unless
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Distribution of Roy’s test 183

Table 2. Power comparison (%) of Pillai’s and Roy’s tests from 106 simulations
with p = 6 and m = 6; here SE � 0·05

Power τ = 0·09 τ = 0·11 τ = 0·13

Pillai trace ρ = 0 25·1 46·7 70·3
Largest root ρ = 0 34·9 63·8 86·9
Approximation from Proposition 4 30·0 60·1 85·4
Pillai trace ρ = 0·3 43·8 71·9 91·2
Largest root ρ = 0·3 60·4 88·1 98·3
Approximation from Proposition 4 56·5 86·8 98·1

the dimension and sample size are less than 15, say, these formulae are challenging to evaluate
numerically. In addition, to date, for dimension m > 2, no acceptable method has been developed
for transforming Roy’s largest root test statistic to an F or a χ2 statistic, and no straightforward
method exists for computing powers for Roy’s statistic itself, as noted byAnderson (2003, p. 332),
Muller et al. (1992), and O’Brien & Shieh.

We develop simple and quite accurate approximations to the distribution of �1 for the classic
problems of multivariate analysis, under a rank-one alternative. Under this concentrated noncen-
trality alternative, the noncentrality matrix has the form � = ωwwT, ω > 0, where w ∈ R

m is
an arbitrary and unknown unit-norm vector. This setting, in which �1 is approximately the most
powerful test, may be viewed as a specific form of sparsity, indicating that the effect under study
can be described by relatively few parameters.

Our approach keeps (m, nH , nE) fixed. We study the limit of a large noncentrality parameter or,
equivalently, small noise. While small-noise perturbation is a classical method in applied math-
ematics and mathematical physics, it has apparently seen less use in statistics. Some exceptions,
mostly focused on other multivariate problems, include Kadane (1970, 1971), Anderson (1977),
Schott (1986), Nadler & Coifman (2005) and Nadler (2008).

Our small-noise analysis uses tools from matrix perturbation theory and yields an approx-
imate stochastic representation for �1. In concert with standard Wishart results, we deduce its
approximate distribution for the five cases of Table 1 in Propositions 1 through 5. The expressions
obtained can be readily evaluated numerically, typically via a single univariate integration. Code
for the resulting distributions and their power is provided in the Supplementary Material.

The results of this paper can aid power analyses and sample size design in exactly those settings
in which Roy’s test may be most appropriate, namely when the relevant alternatives are thought to
be predominantly of rank-one. Table 2 gives a small illustrative example for the classical problem
of comparison of group means, setting 4 in Table 1. Here, we observe 20 multivariate samples
from each of p = 6 different groups, and test a null hypothesis that their group means are all
equal. Under the alternative, the k = 1, . . . , p group means are assumed to vary as multiples
μk = kτμ0 of a fixed vector μ0 = (1, 1, 1, −1, −1, −1) ∈ R

6, with scale factor τ . The noise
covariance matrix is � = (1 − ρ)I + ρ11T. This setting leads to a rank-one noncentrality matrix
for which, assuming Gaussian observations, Proposition 4 of § 3 applies.

Table 2 compares the power of multivariate tests at three signal strengths and two correla-
tion models at level 1%. The Pillai trace V is chosen as representative of the three tests that
use all the roots. Especially in the larger two signal settings, Roy’s largest root test makes the
difference between a plausible experiment and an underpowered study. For a real multivariate
example in which Roy’s test is argued to be most appropriate, see Hand & Taylor (1987, Study
C). In other cases, past experience may suggest that an approximately rank-one alternative is
plausible.
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184 I. M. JOHNSTONE AND B. NADLER

Simulations like this can suggest the magnitude of improvement possible in selected cases, but
the essence of power and sample size analysis is the comparison of a range of scenarios thought
to encompass the likely experimental setting. For this, relatively simple approximate formulas
such as those derived in this paper are invaluable.

It is not the purpose of this paper to argue for a general and unexamined use of Roy’s test.
It is well-established that there is no uniformly best test, and in particular settings issues of
robustness with respect to nonnormality already studied by, for example, Olson (1974) may be
important. Instead, when there is interest in the performance of the largest root in the rank-
one Gaussian cases where it should shine, we provide approximations that have long been
lacking.

2. DEFINITIONS AND TWO APPLICATIONS

We present two applications, one from multivariate statistics and the other from signal pro-
cessing, that illustrate settings 1–4 of Table 1. Following Muirhead (1982, p. 441), we recall that
if zi∼Nm(μi, �) for i = 1, . . . , n are independent, ZT = (z1, . . . , zn) and M T = (μ1, . . . , μn),
then the m × m matrix A = ZTZ is said to have the noncentral Wishart distribution Wm(n, �, �)

with n degrees of freedom, covariance matrix � and noncentrality matrix � = �−1M TM . When
� = 0, the distribution is a central Wishart, Wm(n, �). We denote by χ2

n a random variate fol-
lowing the chi-squared distribution with n degrees of freedom, and by χ2

n (δ) a variate following
the noncentral chi-squared distribution with noncentrality parameter δ.

To introduce settings 1 and 3, signal detection in noise, consider a measurement system con-
sisting of m sensors, such as antennas or microphones. In the signal processing literature, for
example Kay (1998), a standard model for the observed samples in the presence of a single signal
is

x = ρ1/2
s uh + σξ (1)

where h is an unknown m-dimensional vector, assumed fixed during the measurement time
window, u is a random variable distributed as N (0, 1), ρs is the signal strength, σ is the
noise level and ξ is a random noise vector, independent of u, that is multivariate Gaussian
Nm(0, �).

In this paper, for the sake of simplicity, we assume real-valued signals and noise. The complex-
valued case can be handled in a similar manner; see P. Dharmawansa et al. (arXiv:1411.4226).
Thus, let xi ∈ R

m denote nH independent and identically distributed observations from (1), and
let n−1

H H denote their sample covariance matrix, with

H =
nH∑
i=1

xix
T
i ∼ Wm(nH , σ 2� + �),

where � = ρshhT has rank-one. A fundamental task in signal processing is to test H0 : ρs = 0,
no signal present, versus H1 : ρs > 0. If the covariance matrix � is known, setting 1 in Table 1,
the observed data can be whitened by the transformation �−1/2xi. Standard detection schemes
then depend on the eigenvalues of �−1H (Wax & Kailath, 1985; Kritchman & Nadler, 2009).

A second important case, setting 3, assumes that the noise covariance matrix � is arbitrary
and unknown but we have additional independent noise-only observations zj ∼ N (0, �) for
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Distribution of Roy’s test 185

j = 1, . . . , nE . It is then traditional to estimate the noise covariance by n−1
E E, where

E =
nE∑
i=1

ziz
T
i ∼ Wm(nE , �),

and devise detection schemes using the eigenvalues of E−1H . Some representative papers on
signal detection in this setting, and the more general scenario with several sources, include
Zhao et al. (1986), Zhu et al. (1991), Stoica & Cedervall (1997) and Nadakuditi & Silverstein
(2010).

To introduce settings 2 and 4 of Table 1, consider the common problem of comparison of
means from p groups, the one-way multivariate analysis of variance. Let Ik index observations
in the kth group and assume a model

yi = μk + ξi, i ∈ Ik (k = 1, . . . , p).

Here ξi∼Nm(0, �) are independent with the error covariance � assumed to be the same for all
groups, and the indices {1, . . . , n} = I1 ∪ · · · ∪ Ip, with nk = |Ik | and n = n1 + · · · + np. We test
the equality of group means, H0 : μ1 = · · · = μp, versus the alternative H1 that the μk are not
all equal. Known � leads to setting 2. When � is unknown we obtain setting 4.

The standard approach is then to form between-groups and within-groups covariance matrices,

H =
p∑

k=1

nk(ȳk − ȳ)(ȳk − ȳ)T, E =
∑

k

∑
i∈Ik

(yi − ȳk)(yi − ȳk)
T,

where ȳk and ȳ are the group and overall sample means respectively. The independent Wishart
distributions of H and E appear in rows 2 and 4 of Table 1. The degrees of freedom are then
nH = p − 1 and nE = n − p. The noncentrality matrix is � = �−1 ∑p

1 nk(μk − μ̄)(μk − μ̄)T,
where μ̄ = n−1 ∑

nk μ̄k is the overall population mean.
A rank-one noncentrality matrix is obtained if we assume that under the alternative, the means

of the different groups are all proportional to the same unknown vector μ0, with each multiplied
by a group-dependent strength parameter, that is, μk = skμ0. This yields a rank-one noncentrality
matrix � = ω�−1μ0μ

T
0, where s̄ = n−1 ∑

k nksk and ω = ∑p
k=1 nk(sk − s̄)2. As discussed in

the Supplementary Material, comparison of group means is but a particular example of the more
general and ubiquitous multiple linear regression setting, to which, under rank-one alternatives
and Gaussian observations, our results apply.

3. MAIN RESULTS FOR RANK-ONE ALTERNATIVES

3·1. Setting

Let �1 be the largest eigenvalue of either �−1H or E−1H , depending on the specific setting.
Roy’s test rejects the null if �1 > tα , where tα is the threshold corresponding to a false alarm or
Type I error rate α. The probability of detection, or the power of Roy’s test, is defined as

PD = PD,� = pr (�1 > tα ; H1). (2)

Under the null hypothesis in all four settings, � = 0 and thus H has a central Wm(nH , �)

distribution. Settings (1, 2) and (3, 4) differ by the presence or absence of E ∼ Wm(nE , �).
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186 I. M. JOHNSTONE AND B. NADLER

An exact or approximate threshold tα may be found by the methods referenced in the
Supplementary Material.

As previously discussed, the focus of this paper is on the power PD under rank-one alternatives.
To this end, we present, in five propositions, simple approximate expressions for the distribution
of Roy’s largest root statistic �1 for all five settings described in Table 1, under a rank-one
alternative. Detailed proofs appear in the Supplementary Material.

3·2. Single Wishart matrix

We begin with settings 1 and 2, where the matrix � is assumed to be known. Then, without
loss of generality we study the largest eigenvalue of �−1/2H�−1/2. In setting 1, this matrix is
distributed as Wm(nH , σ 2I + λH wwT), for some suitable vector w ∈ R

m.

PROPOSITION 1. Let H ∼ Wm(nH , σ 2I + λH wwT) with ‖w‖ = 1 and λH > 0 and let �1 be its
largest eigenvalue. Then, with (m, nH , λH ) fixed, as σ → 0,

�1 = (λH + σ 2)χ2
nH

+ χ2
m−1σ

2 + χ2
m−1χ

2
nH −1

(λH + σ 2)χ2
nH

σ 4 + op(σ
4), (3)

where χ2
nH

, χ2
m−1 and χ2

nH −1 are independent χ2 variates.

PROPOSITION 2. Let H ∼ Wm(nH , σ 2I , (ω/σ 2)wwT) with ‖w‖ = 1, ω > 0 and let �1 be its
largest eigenvalue. Then, with (m, nH , ω) fixed, as σ → 0

�1 = σ 2χ2
nH

(ω/σ 2) + χ2
m−1σ

2 + χ2
m−1χ

2
nH −1

σ 2χ2
nH

(ω/σ 2)
σ 4 + op(σ

4), (4)

where the three variates χ2
nH

(ω/σ 2), χ2
m−1 and χ2

nH −1 are independent.

Remark 1. If in the above propositions σ 2 is held fixed along with m and nH , and instead
we suppose that λH → ∞ or ω → ∞, then the same expansions hold, but now with error
terms op(1/λH ) or op(1/ω). Lest it be thought unrealistic to base approximations on large λH ,
small σ or, in setting 5, ρ near 1, in standard simulation situations they lead to levels of power
conventionally regarded as desirable, see § 4; indeed in these cases, weaker signals would not be
acceptably detectable.

Remark 2. Propositions 1 and 2 directly provide approximate power for Roy’s test, with the
following error bounds. Let �1 = �1(H ) be the exact largest eigenvalue, and � its stochastic
approximation (3) or (4). Then, uniformly for all x bounded away from zero, if nH � 3,

pr(�1 > x) = pr(� > x) + O(σ 5 log5 σ−1). (5)

Approximations to the moments of �1 follow directly. From (3), independence of the chi-
squared variates and standard moment formulas, we have that as σ → 0,

E(�1) = nH λH + (m − 1 + nH )σ 2 + (m − 1)(nH − 1)

(λH + σ 2)(nH − 2)
σ 4 + o(σ 4). (6)

In setting 2, we simply replace nH λH by ω in the first term, and the denominator of the third term
by ω + σ 2(nH − 2).
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Distribution of Roy’s test 187

To compare the variances var(�1) in settings 1 and 2, it is natural to set ω = λH nH , so that the
means match to the leading two orders. If σ = 1 and λH = ω/nH is large, then

var(�1) =
{

2nH λ2
H + 4nH λH + 2(m − 1 + nH ) + o(1), setting 1,

4nH λH + 2(m − 1 + nH ) + o(1), setting 2.
(7)

Thus, for λH � 1, the fluctuations of �1 in setting 2 are significantly smaller. While beyond the
scope of this paper, this result has implications for the detection power of Gaussian signals versus
those of constant modulus.

3·3. Two Wishart matrices

Next, we consider the two-matrix case, where � is estimated from data.

PROPOSITION 3. Let H ∼ Wm(nH , � + λH wwT) and E ∼ Wm(nE , �) be independent Wishart
matrices, with wT�−1w = 1. If m, nH and nE are fixed and λH → ∞, then

�1(E
−1H ) ≈ c1(λH + 1)Fa1,b1 + c2Fa2,b2 + c3, (8)

where the F-variates are independent, and with ν = nE − m > 1, the parameters ai, bi, ci are

a1 = nH , b1 = ν + 1, a2 = m − 1, b2 = ν + 2, (9)

c1 = a1/b1, c2 = a2/b2, c3 = a2/{ν(ν − 1)}. (10)

PROPOSITION 4. Let H ∼ Wm(nH , �, �) and E ∼ Wm(nE , �) be independentWishart matrices
with ν = nE − m > 1. Assume that the noncentrality matrix has rank-one, � = ωμμT, where
‖μ‖ = 1. If m, nH and nE remain fixed and ω → ∞, then

�1(E
−1H ) ≈ c1Fa1,b1(ω) + c2Fa2,b2 + c3, (11)

where the F-variates are independent and the parameters ai, bi, ci are given by (9) and (10).

In the nE → ∞ limit, the F-variates in (8) and (11) converge to χ2 variates and we recover
the first two terms in the approximations of Propositions 1 and 2, with σ 2 = 1 held fixed.

In (8) and (11), ≈ denotes a stochastic approximation whose nature we discuss briefly here.
When m = 1, we have c2 = c3 = 0 and the first term gives the exact distribution of H/E for both
Propositions 3 and 4. For m > 1, in setting 4, we note that to leading order �1 = Op{(ω+nH )/nE},
whereas the errors arise from ignoring terms Op(ω

−1/2) and higher in an eigenvalue expansion

and replacing stochastic terms of order Op{(ω + nH )1/2m1/2n−3/2
E } by their expectations. The

corresponding statements apply to setting 3 if we replace ω + nH by λH nH and ω−1/2 by λ
−1/2
H .

Detailed discussion appears in the Supplementary Material.
We now turn to expressions for E(�1) and var(�1) in settings 3 and 4, analogous to (6) and (7).
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188 I. M. JOHNSTONE AND B. NADLER

COROLLARY 1. Consider setting 4, with �1 = �1(E−1H ) and p3(ν) = ν2(ν − 2). Then

E(�1) = ω + nH

nE − m − 1
+ m − 1

nE − m
+ O(ω−1/2), (12)

var(�1) = 2{ω2 + νnH (nH + 2ω)}
p3(ν − 1)

+ 2(m − 1)(nE − 1)

p3(ν)
+ O(ω−1). (13)

In setting 3, ω is replaced by λH nH and in (13) the term nH + 2ω is increased to nH (λH + 1)2.

Let �̂ = n−1
E E be an unbiased estimator of �. Comparison with Propositions 1 and 2 shows that

in expectation �1(�̂
−1H ) exceeds �1(�

−1H ) by a multiplicative factor close to nE/(nE −m−1).
Hence, the largest eigenvalue of nEE−1H is typically larger than that of �−1H . Again, the
fluctuations of �1 in setting 4 are smaller than for signal detection, setting 3.

Nadakuditi & Silverstein (2010) studied the large-parameter limiting value, but not the distri-
bution, of �1(E−1H ) as m/nH → cE and as m/nH → cH , also in non-Gaussian cases. In this
limit, our formula (12) agrees, to leading order terms, with the large-λH limit of their expression
(equation (23)). Hence, our analysis shows that the limits for the mean of �1(E−1H ) are quite
accurate even at smallish values of m, nE and nH . This is also reflected in our simulations in the
Supplementary Material.

3·4. Canonical correlation analysis

Let {xi}n+1
i=1 denote n + 1 multivariate Gaussian observations on m = p + q variables with

unknown mean μ and covariance matrix �, and let S denote the mean-centred sample covariance.
Assume without loss of generality that p � q and decompose � and S as

� =
(

�11 �12
�21 �22

)
, S =

(
S11 S12
S21 S22

)
,

where �11 and �22 are square matrices of sizes p×p and q×q, respectively.We might alternatively
assume that μ = 0 is known and that we have n independent observations. In either case, the
parameter n denotes the degrees of freedom of the Wishart matrix nS.

The population and sample canonical correlation coefficients, denoted by ρ1, . . . , ρp and
r1, . . . , rp, are the positive square roots of the eigenvalues of �−1

11 �12�
−1
22 �21 and S−1

11 S12S−1
22 S21.

We study the distribution of the largest sample canonical correlation, in the presence of a single
large population correlation coefficient, ρ1 > 0 and ρ2 = · · · = ρp = 0.

To state our final proposition, we need a modification of the noncentral F distribution that is
related to the squared multiple correlation coefficient.

DEFINITION 1. A random variable U follows a χ2
n -weighted noncentral F distribution, with

parameters a, b, c and n, written as Fχ

a,b(c, n), if it has the form

U = χ2
a (Z)/a

χ2
b /b

,

where the noncentrality parameter Z ∼ cχ2
n is itself a random variable and all three chi-squared

variates are independent.
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Distribution of Roy’s test 189

If c = 0, the Fχ distribution of U reduces to a central F . For c > 0, the distribution is easily
evaluated numerically via either of the representations

pr(U � u) =
∫ ∞

0
pn(t)Fa,b;ct(u) dt =

∞∑
k=0

pK (k)Fa+2k ,b{au/(a + 2k)}.

In the first, Fa,b;ω is the noncentral F distribution with noncentrality parameter ω and pn is the
density of χ2

n : this is just the definition. In the second, pK is the discrete probability density
function of a negative binomial variate with parameters (n/2, c): this is an analogue of the more
familiar representation of noncentral Fa,b;ω as a mixture of Fa+2k ,b with Poisson weights with
parameter ω/2. The equality above may be verified directly or from Muirhead (1982, p. 175ff),
which also gives an expression for the Fχ distribution in terms of the Gauss hypergeometric
function 2F1.

PROPOSITION 5. Let �1 = r2
1/(1 − r2

1), where r1 is the largest sample canonical correlation
between two groups of sizes p � q computed from n + 1 independent multivariate Gaussian
observations, with ν = n − p − q > 1. Then in the presence of a single population correlation
coefficient ρ between the two groups, asymptotically as ρ → 1,

�1 ≈ c1Fχ
q,ν+1(c, n) + c2Fp−1,ν+2 + c3, (14)

with c = ρ2/(1 − ρ2) and

c1 = q

ν + 1
, c2 = p − 1

ν + 2
, c3 = p − 1

ν(ν − 1)
.

When p = 1, the quantity r2
1 reduces to the squared multiple correlation coefficient, or coef-

ficient of determination, between a single response variable and q predictor variables. Equation
(14) then reduces to a single term {q/(n − q)}Fχ

q,n−q(c, n), which is in fact the exact distribution
of r2

1 in this setting (Muirhead, 1982, p. 173).
By (14), the largest empirical canonical correlation coefficient is biased upwards,

E(�1) = n

n − p − q − 1

ρ2

1 − ρ2 + p + q − 1

n − p − q − 1
+ O{(1 − ρ2)1/2},

by both a multiplicative factor n/(n−p−q−1) and an additive factor. This bias may be significant
for small sample sizes.

4. SIMULATIONS

4·1. Empirical densities

We present a series of simulations that support our theoretical analysis and illustrate the
accuracy of our approximations. For different signal strengths we make 2 500 000 independent
random realizations of the two matrices E and H , and record the largest eigenvalue �1. We also
compute its approximate density and power of Roy’s test via our Propositions 1–5.

The top row of Fig. 1 compares the empirical density of {�1(H ) − E(�1)}/σ(�1) in the
signal detection and multivariate analysis of variance cases to the theoretical formulas, (3)
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Fig. 1. Density of largest eigenvalue �1(H ) (top row) and of �1(E−1H ) (bottom row). (a) Setting 1 (signal detection)
with m = 5, nH = 4, λH = 10, σ = 1. (b) Setting 2 (multivariate analysis of variance) with m = 5, p = 5 groups
and nk = 8 observations per group, and ω = 40. (c) Setting 3 with parameters as above and nE = 35. (d) Setting 4,
also with nE = 35. Comparison of empirical density (circles) to the theoretical approximations from Propositions 1–4,
equations (3), (4), (8) and (11), respectively (solid line). For reference, the dashed curve is the density of a standard

Gaussian.

and (4), respectively. In this simulation, where all parameter values are small, the theoretical
approximation is remarkably accurate, far more so than the classical asymptotic Gaussian
approximation. The latter would be valid in the large-parameter limit with m, nH → ∞ and
m/nH → c > 0, so long as λH > c1/2 (Baik et al., 2005; Paul, 2007).

Further figures showing the relative accuracy of these approximations appear in the Supple-
mentary Material. The relative error in the top panels of Fig. 1 is less than 0·02 except in the left
tail, which is excluded in approximations to power, G1(x) = pr(�1 > x). This is consistent with
the theoretical analysis in the proof of the power approximation (5) and with plots of the relative
error in the approximation to G1(x), both given in the Supplementary Material.

The bottom row of Fig. 1 corresponds to the two-matrix case and the approximate density of
�1(E−1H ), after normalization, in settings 3 and 4. As expected from the analysis, the density
is skewed. The approximated density matches quite closely the empirical one, and both are far
from the nominal limiting Gaussian density. The relative error in the bottom panels is less than
0·05 except in the left tail and, in Setting 4, also in the right tail; see the Supplementary Material.

4·2. Power calculations

We conclude this section with a comparison of the empirical detection probability (2) of Roy’s
test to the theoretical formulas. We first consider the multivariate analysis of variance setting.
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Table 3. Power (%) of Roy’s test for multivariate analysis of variance
Dim. Groups Samples per Noncentrality PD sim. PD PD sim. PD

m p group, nk ω α = 1% theory α = 5% theory

3 3 10 10 28·3 27·1 54·4 53·3
3 3 10 20 67·8 67·9 88·2 88·4
3 3 10 40 97·5 97·7 99·7 99·7
6 3 10 10 15·0 13·8 36·9 33·9
6 3 10 20 44·1 42·8 71·8 70·4
6 3 10 40 87·5 87·9 97·5 97·5
6 6 10 10 10·4 6·4 27·4 18·6
6 6 10 20 35·7 30·8 61·3 55·4
6 6 10 40 85·0 83·9 95·6 95·1
10 6 20 10 8·3 5·4 22·9 14·3
10 6 20 20 31·2 25·4 55·1 45·6
10 6 20 40 82·8 79·5 94·0 91·7

Table 4. Power (%) of Roy’s test for canonical correlation analysis
p q n ρ PD sim. PD PD sim. PD

α = 1% theory α = 5% theory

2 5 40 0·50 34·4 33·6 59·6 57·8
2 5 40 0·60 65·3 64·9 84·9 84·2
2 5 40 0·70 91·8 91·7 97·8 97·7
3 7 50 0·50 31·3 27·8 56·5 51·4
3 7 50 0·60 64·3 61·8 84·2 82·2
3 7 50 0·70 92·5 92·1 98·0 97·9
5 10 50 0·50 13·5 8·5 32·7 22·2
5 10 50 0·60 35·1 28·9 60·3 52·3
5 10 50 0·70 72·3 68·9 88·9 86·6

Table 3 compares the theoretical power, which follows from our Proposition 4, to the results of
simulations. Each entry in the table is the result of 2 000 000 independent random realizations
of matrices H and E, with � = I and different noncentrality values ω. The parameters in the
table are a subset of those studied by Olson (1974). Two features are apparent from the table:
first, our approximations are quite accurate for small sample size and dimension, and become
less accurate as the dimension increases. This is to be expected given that the leading error terms
in our expansion are of the form O(m1/2). Second, the approximation is relatively more accurate
at high powers, say larger than 80%, which fortunately are those most relevant to the design of
studies in practice. This too is expected, as our approximation is based on a high signal-to-noise
ratio, and is valid when no eigenvalue crossover has occurred, meaning that the largest eigenvalue
is not due to large fluctuations in the noise. At the other extreme, when the signal strength is weak,
our approximation of power is usually conservative since we do not model the case where the
largest eigenvalue may arise due to large deviations of the noise.

Finally, we consider setting 5 of canonical correlation analysis. The corresponding comparison
of simulations to theory is reported in Table 4, with similar behaviour to Table 3. For simulation
results for the case of detection of signals in noise, we refer to Nadler & Johnstone (2011).
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5. DISCUSSION

The typical approach in classical statistics studies the asymptotics of the random variable of
interest as the sample size nH → ∞. Propositions 1–5, in contrast, keep nH , nE , m fixed but let
λH → ∞, or equivalently σ → 0. If the signal strength is sufficiently large, by their construction
and as verified in the simulations, Propositions 1–5 are quite accurate for small dimension and
sample size values. However, the error in these approximations increases with the dimensionality
m, and so may not be suitable in high-dimensional small-sample settings.

Next, we mention some directions for future research. The study of the distribution of Roy’s
largest root test under higher-dimensional alternatives is a natural extension. However, depending
on the particular alternative, it may be less powerful than other common tests in that situation. It
should be possible to study the resulting distribution under, say, two strong signals, or perhaps one
strong signal and several weak ones. We briefly elaborate on this in the Supplementary Material.
Sensitivity of the distributions to departures from normality is important. Finally, our approach
can be applied to study other test statistics, such as the Hotelling–Lawley trace. In addition, the
approach can also provide information about eigenvector fluctuations, which are important in a
variety of applications.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes further discussion and exam-
ples, further simulation results, proofs of Propositions 1 to 5, supporting lemmas, discussion of
error terms, and the rank-r case. Matlab code for power calculations and scripts that reproduce
the figures and tables are also provided.
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