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SUMMARY

Compositional data are ubiquitous in many scientific endeavours. Motivated by microbiome
and metagenomic research, we consider a two-sample testing problem for high-dimensional com-
positional data and formulate a testable hypothesis of compositional equivalence for the means
of two latent log basis vectors. We propose a test through the centred log-ratio transformation of
the compositions. The asymptotic null distribution of the test statistic is derived and its power
against sparse alternatives is investigated. A modified test for paired samples is also considered.
Simulations show that the proposed tests can be significantly more powerful than tests that are
applied to the raw and log-transformed compositions. The usefulness of our tests is illustrated by
applications to gut microbiome composition in obesity and Crohn’s disease.

Some key words: Basis; Centred log-ratio transformation; Compositional equivalence; Extreme value distribution;
Microbiome; Sparse alternative.

1. INTRODUCTION

Compositional data, which belong to a simplex, are ubiquitous in scientific disciplines such
as geology, economics and genomics. This paper is motivated by microbiome and metagenomic
research, where relative abundances of hundreds to thousands of bacterial taxa on a few tens
or hundreds of individuals are available for analysis (The Human Microbiome Project Con-
sortium, 2012). Due to varying amounts of DNA-generating material across different samples,
sequencing read counts are often normalized to relative abundances; the resulting data are there-
fore compositional (Li, 2015). One fundamental problem in microbiome data analysis is to test
whether two populations have the same microbiome composition, which can be viewed as a
two-sample testing problem for high-dimensional compositional data. Since the components of
a composition must sum to unity, directly applying standard multivariate statistical methods
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116 Y. CAO, W. LIN AND H. LI

intended for unconstrained data to compositional data may result in inappropriate or misleading
inferences (Aitchison, 2003).

Various methods for compositional data analysis have been developed since the seminal work
of Aitchison (1982). Most existing methods for two-sample testing, however, deal only with
the low-dimensional setting where the dimensionality is smaller than the sample size; see, for
example, the generalized likelihood ratio tests discussed in Aitchison (2003, § 7·5). In this paper,
we consider the two-sample testing problem for high-dimensional compositional data, where
compositions in the (p−1)-dimensional simplex Sp−1 are thought of as arising from latent basis
vectors in the p-dimensional positive orthant R

p
+. In microbiome studies, the basis components

may represent the true abundances of bacterial taxa in a microbial community such as the gut
of a healthy individual (Li, 2015). To circumvent the nonidentifiability issue associated with the
basis vectors, we formulate a testable hypothesis of compositional equivalence for the means of
two log basis vectors. We then propose a test through the centred log-ratio transformation of the
compositions. The proposed test is therefore scale-invariant, which is crucial for compositional
data analysis.

We emphasize here the extrinsic analysis point of view in compositional data analysis (Aitchi-
son, 1982), which leads to biologically meaningful interpretations, in contrast to intrinsic analysis,
where interest lies solely in the composition. Classical extrinsic analysis however, primarily con-
cerns problems where the bases are observed, and thus differs radically from the focus of this
paper.

The development of tests for the equality of two high-dimensional means has received much
attention; see, for instance, Bai & Saranadasa (1996), Srivastava & Du (2008), Srivastava (2009),
Chen & Qin (2010) and Cai et al. (2014). Such tests, however, are not directly applicable to
high-dimensional compositional data because the required regularity conditions are generally
not met. For example, the covariance matrix of compositional data is singular, thereby violating
the usual assumptions on the eigenvalues of the covariance matrix, such as those in Cai et al.
(2014). Our assumptions are imposed on the latent log basis vectors, which are free of the simplex
constraint. We show that, under mild conditions, the centred log-ratio variables satisfy certain
desired properties, which guarantee the validity of the proposed test. Then the asymptotic null
distribution of the test statistic is derived and the power of the test against sparse alternatives is
investigated. The proposed two-sample test is further modified to accommodate paired samples.
All proofs are deferred to the Appendix.

2. A TESTABLE HYPOTHESIS OF COMPOSITIONAL EQUIVALENCE

Denote by X (k) = (X (k)
1 , . . . , X (k)

nk )T the observed nk × p data matrices for group k (k = 1, 2),

where the X (k)
i represent compositions that lie in the (p − 1)-dimensional simplex Sp−1 =

{(x1, . . . , xp) : xj > 0 ( j = 1, . . . , p),
∑p

j=1 xj = 1}. We assume that the compositional variables
arise from a vector of latent variables, which we call the basis. For microbiome data, the basis
components may refer to the true abundances of bacterial taxa in a microbial community. Let
W (k) = (W (k)

1 , . . . , W (k)
nk )T denote the nk × p matrices of unobserved bases, which generate the

observed compositional data via the normalization

X (k)
ij = W (k)

ij

/ p∑
�=1

W (k)
i� (i = 1, . . . , nk ; j = 1, . . . , p; k = 1, 2), (1)

where X (k)
ij and W (k)

ij > 0 are the jth components of X (k)
i and W (k)

i , respectively.
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Two-sample tests for compositional data 117

Denote by Z (k)
i = (Z (k)

i1 , . . . , Z (k)
ip )T the log basis vectors, where Z (k)

ij = log W (k)
ij . Suppose

that Z (k)
1 , . . . , Z (k)

nk (k = 1, 2) are two independent samples, each from a distribution with mean
μk = (μk1, . . . , μkp)

T and having common covariance matrix � = (ωij). One might attempt to
test the hypotheses

H0 : μ1 = μ2 versus H1 : μ1 |= μ2. (2)

These hypotheses, however, are not testable through the observed compositional data X (k)

(k = 1, 2). Clearly, a basis is determined by its composition only up to a multiplicative fac-
tor, and the set of bases giving rise to a composition x ∈ Sp−1 forms the equivalence class
W(x) = {(tx1, . . . , txp) : t > 0} (Aitchison, 2003, p. 32). As an immediate consequence,
a log basis vector is determined by the resulting composition only up to an additive con-
stant, and the set of log basis vectors corresponding to x constitutes the equivalence class
Z(x) = {(log x1 + c, . . . , log xp + c) : c ∈ R}. We therefore introduce the following definition.

DEFINITION 1. Two log basis vectors z1 and z2 are said to be compositionally equivalent if their
components differ by a constant c ∈ R, i.e., z1 = z2 + c1p, where 1p is the p-vector of ones.

Now, instead of testing the hypotheses in (2), we propose to test

H0 : μ1 = μ2 + c1p for some c ∈ R versus H1 : μ1 |= μ2 + c1p for any c ∈ R, (3)

which are testable using only the observed compositional data. Clearly, H0 in (2) implies H0
in (3), so that rejecting the latter would lead to rejection of the former. Note, however, that H0

in (3) neither implies nor is implied by E(X (1)
1 ) = E(X (2)

1 ) or E(log X (1)
1 ) = E(log X (2)

1 ). We
do not consider the latter two hypotheses because they are not scale-invariant, whereas we will
derive in § 3·1 an equivalent form of H0 in (3) from which its scale-invariance will be obvious.
Moreover, these two hypotheses do not allow us to obtain biological interpretations in terms of
the true underlying abundances.

3. TESTS FOR COMPOSITIONAL EQUIVALENCE

3·1. The centred log-ratio transformation and an equivalent hypothesis

The unit-sum constraint entails that compositional variables must not vary independently,
making many covariance-based multivariate analysis methods inapplicable. Aitchison (1982)
proposed to relax the constraint by performing statistical analysis through log ratios. Among
various forms of log-ratio transformations, the centred log-ratio transformation has attractive
features and has been widely used. For the observed compositional data X (k) (k = 1, 2), the
centred log-ratio matrices Y (k) = (Y (k)

1 , . . . , Y (k)
nk )T are defined by

Y (k)
ij = log

{
X (k)

ij /g(X (k)
i )

}
(i = 1, . . . , nk ; j = 1, . . . , p; k = 1, 2), (4)

where g(x) = (∏p
i=1 xi

)1/p denotes the geometric mean of a vector x = (x1, . . . , xp)
T. The

relationship (4) can be expressed in the matrix form

Y (k)
i = G log X (k)

i , (5)

where G = Ip − p−11p1T
p.
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Let νk = E(Y (k)
1 ) (k = 1, 2). In view of the scale-invariance of the centred log ratios, we can

replace X (k)
i by W (k)

i in (5) and obtain

Y (k)
i = GZ (k)

i (6)

and hence

νk = Gμk . (7)

The matrix G has rank p − 1 and hence has a null space of dimension 1, i.e., N (G) ≡ {x ∈ R
p :

Gx = 0} = {c1p : c ∈ R}. As a result, ν1 = ν2 if and only if μ1 = μ2 + c1p for some c ∈ R.
Therefore, testing the hypotheses in (3) is equivalent to testing

H0 : ν1 = ν2 versus H1 : ν1 |= ν2. (8)

Despite this equivalence, the hypotheses in (3) are meaningful only when the bases exist, which
is the case in microbiome studies. On the other hand, the hypotheses in (8) concern only the
compositions through the centred log ratios, from which their scale-invariance and testability
using the observed compositional data are evident.

3·2. A two-sample test for compositional equivalence

A natural test statistic for testing H0 in (8), and hence H0 in (3), would be based on the
differences Ȳ (1)

j − Ȳ (2)
j , where Ȳ (k)

j = n−1
k

∑nk
i=1 Y (k)

ij are the sample means of the centred log
ratios. Moreover, it is well known that tests against sparse alternatives based on maximum-type
statistics are generally more powerful than those based on sum-of-squares-type statistics (Cai
et al., 2014). Since in microbiome studies we are mainly interested in the sparse setting where
only a small number of taxa may have different mean abundances, we consider the test statistic

Mn = n1n2

n1 + n2
max

1�j�p

(Ȳ (1)
j − Ȳ (2)

j )2

γ̂jj
, (9)

where γ̂jj = (n1 + n2)
−1∑2

k=1
∑nk

i=1

(
Y (k)

ij − Ȳ (k)
j

)2 are the pooled-sample centred log-ratio
variances.

The asymptotic properties of Mn will be investigated in detail in § 4. Under suitable conditions
on the log basis variables Z (k)

1j , we will show that the centred log-ratio variables Y (k)
1j are only

weakly dependent and satisfy certain desired properties. As a result, Mn − 2 log p + log log p
converges in distribution to a Type I extreme value or Gumbel variable; see Theorem 1. We can
then define the asymptotic α-level test

�α = I (Mn � qα + 2 log p − log log p), (10)

where qα = − log π −2 log log(1−α)−1 is the (1−α)-quantile of the Gumbel distribution. The
null hypothesis H0 in (3), or equivalently (8), is rejected whenever �α = 1.

Although Mn is similar to the test statistic MI defined in Cai et al. (2014), the theoretical
analysis is radically different, in that our assumptions are not imposed on the observed vari-
ables. Besides, the test statistic based on a linear transformation by the precision matrix that
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Two-sample tests for compositional data 119

Cai et al. (2014) proposed is not considered here, because the covariance matrix of Y (k)
1 is

singular and so its precision matrix is not well defined.

3·3. A paired test for compositional equivalence

So far we have been concerned with two independent samples. In practice, however, one may
be interested in comparing compositions on the same sample before and after treatment. For such
paired samples, the proposed test requires only slight modifications. Now we observe a paired
sample (X (1)

ij , X (2)
ij ) (i = 1, . . . , n; j = 1, . . . , p), which is generated by the basis (W (1)

ij , W (2)
ij );

the log basis (Z (1)
ij , Z (2)

ij ) and the centred log ratios (Y (1)
ij , Y (2)

ij ) are the same as defined previously.

Write Dij = Y (1)
ij −Y (2)

ij and D̄j = n−1∑n
i=1 Dij. To test H0 in (3) or equivalently (8), we propose

the test statistic

M̃n = n max
1�j�p

D̄2
j /γ̃jj,

where γ̃jj = n−1∑n
i=1(Dij − D̄j)

2 are the sample variances of Dij. Note that M̃n is different
from Mn defined in (9) only in the variance estimates. Under appropriate assumptions on the
log basis differences 
j = Z (1)

1j − Z (2)
1j , similar to Conditions 1–5 below, we can show that

M̃n − 2 log p + log log p converges in distribution to the same Gumbel variable as in Theorem 1.
Hence the test �α defined in (10) is still valid with Mn replaced by M̃n.

4. THEORETICAL RESULTS

4·1. Assumptions and implications

As we are interested in testing the latent basis structures, we will impose conditions directly
on the log basis variables. Under the assumption of a common basis covariance matrix, the two
populations have a common centred log-ratio covariance matrix � = cov(Y (k)

1 ) (k = 1, 2), which,
in light of (6), is given by

� = G�GT.

Denote the correlation matrices of Z (k)
1 and Y (k)

1 by R = (ρij) and T = (τij), respectively.
We first impose the following conditions on the covariance structures of the log basis variables:

Condition 1. 1/κ1 � ωjj � κ1 for j = 1, . . . , p and some constant κ1 > 0;

Condition 2. max1�i<j�p |ρij| � r1 for some constant 0 < r1 < 1;

Condition 3. max1�j�p
∑p

i=1 ρ2
ij � r2 for some constant r2 > 0.

Conditions 1–3 are mild and standard in the high-dimensional testing literature. Condition 1
requires that the variances be bounded away from zero and infinity. Condition 2 is mild since
max1�i<j�p |ρij| = 1 would imply that � is singular. Condition 3 is weaker than the usual
assumption that the maximum eigenvalue of R is bounded.

Under Conditions 1–3, the following proposition shows that similar properties are satisfied by
the centred log-ratio covariance matrix � and correlation matrix T .
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120 Y. CAO, W. LIN AND H. LI

PROPOSITION 1. Assume that Conditions 1–3 hold. Then, for sufficiently large p, the centred
log-ratio covariance matrix � and correlation matrix T satisfy the following properties:

(i) 1/κ2 � γjj � κ2 for j = 1, . . . , p and some constant κ2 > 0;
(ii) max1�i<j�p |τij| � r3 for some constant 0 < r3 < 1; and

(iii) max1�j�p
∑p

i=1 τ 2
ij � r4 for some constant r4 > 0.

We also need a moment condition on the log basis variables and a restriction on the
dimensionality.

Condition 4. There exist constants η, K > 0 such that

E
[
exp

{
η(Z (k)

1j − μkj)
2/ωjj

}]
� K ( j = 1, . . . , p; k = 1, 2).

Condition 5. We have n1 � n2 � n and log p = o(n1/3), where n = n1n2/(n1 + n2).

Condition 4 is a popular sub-Gaussian tail assumption that can easily be relaxed to the case of
polynomial tails. It allows us to establish the following concentration properties for the centred
log-ratio variables and the pooled-sample variances.

PROPOSITION 2. Under Conditions 1 and 3–5, the centred log-ratio variables satisfy

max
i,j,k

∣∣Y (k)
ij − νkj

∣∣/γ 1/2
jj = op(n

1/2/ log p), (11)

and the pooled-sample centred log-ratio variances γ̂jj satisfy

max
j

|γ̂jj − γjj|/γjj = Op{(log p/n)1/2}. (12)

4·2. Asymptotic properties of the two-sample test

We are now in a position to state our main results concerning the asymptotic properties of the
proposed two-sample test. The validity of the test relies on the fact that certain desired properties
of the centred log-ratio variables can be related to those of the log basis variables, which have
been established in Propositions 1 and 2. The following theorem derives the asymptotic null
distribution of Mn defined in (9).

THEOREM 1. Under Conditions 1–5 we have, under H0 in (3) or equivalently (8),

pr(Mn − 2 log p + log log p � t) → exp{−π−1/2 exp(−t/2)}, t ∈ R,

as n, p → ∞.

Theorem 1 shows that the test �α defined in (10) is indeed asymptotically of level α. To study
the asymptotic power of the test, we consider the alternative

H1 : μ1j |= μ2j + c, j ∈ S; μ1j = μ2j + c, j ∈ Sc (13)

for some c ∈ R and S ⊂ {1, . . . , p} with cardinality s, where Sc denotes the complement of S.
This alternative, however, is difficult to analyse since c is unknown.
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Two-sample tests for compositional data 121

We now eliminate the constant c and connect H1 in (13) to a more convenient form in terms
of ν1 and ν2. Without loss of generality, define the signal vector δ = (δ1, . . . , δp)

T by

μ1j − μ2j − c = δjω
1/2
jj

(
log p

n

)1/2

( j = 1, . . . , p), (14)

where the scaling factor ω
1/2
jj (log p/n)1/2 is introduced for technical reasons which will become

clear in the proof of Theorem 2. Under H1 in (13), we have δj |= 0 if and only if j ∈ S. Summing
the equations in (14) and rearranging, we obtain

c = μ̄1 − μ̄2 − 1

p

p∑
j=1

δjω
1/2
jj

(
log p

n

)1/2

= μ̄1 − μ̄2 − O

{
‖δ‖1

p

(
log p

n

)1/2
}

,

where μ̄k = p−1∑p
j=1 μkj (k = 1, 2), ‖δ‖1 = ∑p

j=1 |δj|, and we have used the fact that
maxj ωjj = O(1) by Condition 1. Since νkj = μkj − μ̄k (k = 1, 2) by (7), we see that H1
in (13) implies

ν1j − ν2j =
{
δjω

1/2
jj + O

(‖δ‖1

p

)}(
log p

n

)1/2

, j ∈ S,

ν1j − ν2j = O

{
‖δ‖1

p

(
log p

n

)1/2
}

, j ∈ Sc.

(15)

Compared with the usual sparse alternatives in the literature, such as in Cai et al. (2014), all
components in the alternative (15) are shifted by a term of order O{‖δ‖1p−1(log p/n)1/2}. To
prevent this term from interfering with signals of order at least O{(log p/n)1/2}, it suffices to
assume that ‖δ‖1 = o(p). This key observation leads to the following theorem concerning the
asymptotic power of �α defined in (10).

THEOREM 2. Assume that Conditions 1 and 3–5 hold. Under H1 in (13), if ‖δ‖1 = o(p) and
maxj∈S |δj| � √

2 + ε for some constant ε > 0, then pr(�α = 1) → 1 as n, p → ∞.

Two remarks on Theorem 2 are in order. First, if the signals δi are bounded, then the condition
‖δ‖1 = o(p) holds provided the alternative (13) is sparse in the sense that s = o(p). Second, by
Theorem 3 of Cai et al. (2014), the condition maxj∈S |δj| � √

2 + ε is minimax rate-optimal for
testing sparse alternatives in the classical two-sample testing problem. Thus, the proposed test
achieves the best possible rate even though the bases are not observed.

5. SIMULATION STUDIES

We conducted simulation studies to evaluate the numerical performance of the proposed two-
sample and paired tests. For comparison, we consider counterparts applied to the raw and log-
transformed compositions, which are obtained by replacing Y (k) in the proposed tests with X (k)

and log X (k), respectively. The oracle tests based on the unobserved W (k), though impracticable,
serve as the benchmarks for comparison.
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122 Y. CAO, W. LIN AND H. LI

We first examine the case of two independent samples. The simulated data were generated as
follows. We first generated Z (k) from the following distributions:

(i) multivariate normal distribution, Z (k)
i ∼ Np(μ̃k , �);

(ii) multivariate gamma distribution, Z (k)
i = μ̃k + FU (k)

i /
√

10, where F is a p × p matrix
F = QS1/2 with Q and S obtained from the singular value decomposition � = QSQT, and
the components of Uk were generated independently from the standard gamma distribution
with shape parameter 10.

Then W (k) and X (k) were generated through the transformation W (k)
ij = exp(Z (k)

ij ) and (1). Note
that μk = μ̃k in case (i) and μk = μ̃k + √

10 F1p in case (ii). The location parameters μ̃k were
set as follows. The components of μ̃1 were drawn from a uniform distribution Un(0, 10). Under
H0, we took μ̃2 = μ̃1; under H1, we took

μ̃2j = μ̃1j − δjω
1/2
jj

(
log p

n

)1/2

,

where the signal vector δ has support of size s = �0·05p�, �0·1p� or �0·5p�, with the indices
chosen uniformly from {1, . . . , p} and the nonzero δj drawn from Un[−2

√
2, 2

√
2]. We considered

the following covariance structures:

(i) banded covariance, � = D1/2AD1/2, where A has nonzero entries ajj = 1 and aj−1,j =
aj,j+1 = −0·5, and D is a diagonal matrix with entries drawn from Un(1, 3);

(ii) sparse covariance, � = diag(A1, A2) with A1 = B + εIq and A2 = Ip−q, where q =
�3p1/2�, B is a symmetric matrix with lower-triangular entries drawn from the uniform
distribution on [−1, −0·5] ∪ [0·5, 1] with probability 0·5 and set to 0 with probability 0·5,
and ε = max{−λmin(B), 0} + 0·05 with λmin(·) denoting the smallest eigenvalue of a
matrix.

The simulation settings for the case of paired samples are similar, except that Z (1)
i and Z (2)

i
are correlated and must be generated from a 2p-dimensional joint distribution. The parameters
(μ̃∗, �∗) of the joint distribution were specified by μ̃∗ = (μ̃T

1, μ̃T
2)

T and

�∗ =
(

1 0·3
0·3 1

)
⊗ �.

We took the sample sizes to be n1 = n2 = 100 for two independent samples and n = 100 for
paired samples, with varying dimensions p = 50, 100 and 200. We repeated the simulation 1000
times for each setting and calculated the empirical sizes and powers of four tests with significance
level α = 0·05. The results for two independent samples and paired samples are summarized
in Tables 1 and 2. The proposed test has higher power than the tests applied to the raw and
log-transformed compositions, and it controls the size reasonably well around the nominal level
0·05 and closely mimics the performance of the oracle test. Its power gains over the tests based
on log-transformed and raw compositions tend to be more pronounced in the more challenging
scenarios with moderate dimensions and sparse signals. Its superiority does not seem to depend
on the distributions or covariance structures.

To further examine the performance of the proposed test in very high-dimensional settings,
we carried out simulations for two independent samples with dimension p = 2000 and sample
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Two-sample tests for compositional data 123

Table 1. Empirical sizes and powers (%) of two-sample tests with α = 0·05 and n1 = n2 = 100
based on 1000 replications

Banded covariance Sparse covariance
Method p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

Normal, H0 Oracle 4·7 5·3 4·8 4·0 4·8 5·2
Proposed 4·6 4·9 5·1 3·7 4·5 5·3
Log 3·9 5·1 5·3 3·5 3·3 5·2
Raw 0·9 1·0 0·3 1·5 1·0 1·3

Normal, H1 Oracle 38·2 70·7 92·5 40·1 70·7 91·8
s = �0·05p� Proposed 36·5 70·5 92·2 38·0 70·2 91·0

Log 26·1 60·8 84·7 25·5 51·4 70·7
Raw 4·0 5·5 8·2 7·0 16·8 23·7

Normal, H1 Oracle 68·7 90·6 99·1 69·4 91·0 99·5
s = �0·1p� Proposed 66·9 89·9 98·9 67·6 91·0 99·5

Log 53·7 79·7 97·3 50·0 77·1 91·7
Raw 9·1 10·1 14·1 16·6 31·7 49·2

Normal Oracle 99·3 100·0 100·0 99·4 100·0 100·0
s = �0·5p� Proposed 99·2 100·0 100·0 99·7 100·0 100·0

Log 96·5 99·9 100·0 96·6 99·9 100·0
Raw 39·2 37·1 61·5 55·0 84·0 96·0

Gamma, H0 Oracle 5·6 4·4 4·7 5·9 4·8 4·8
Proposed 5·3 4·9 4·8 5·0 4·9 5·1
Log 4·7 3·6 3·7 5·0 4·7 4·5
Raw 1·6 0·8 0·2 1·6 0·6 1·1

Gamma, H1 Oracle 35·7 70·0 91·3 36·7 70·5 92·3
s = �0·05p� Proposed 36·7 71·5 91·9 36·3 68·0 92·0

Log 27·0 52·6 82·8 23·6 49·9 66·0
Raw 5·1 4·4 10·2 4·2 6·0 9·4

Gamma, H1 Oracle 68·5 91·8 99·6 69·0 91·7 99·5
s = �0·1p� Proposed 66·8 91·5 99·5 66·9 90·8 99·7

Log 52·4 78·4 96·2 50·9 75·6 90·7
Raw 11·6 9·8 17·3 10·3 13·2 17·4

Gamma Oracle 99·9 100·0 100·0 100·0 100·0 100·0
s = �0·5p� Proposed 99·9 100·0 100·0 99·5 100·0 100·0

Log 96·5 99·7 100·0 96·9 99·9 100·0
Raw 42·7 53·1 61·9 40·4 50·7 62·9

sizes n1 = n2 = 100, 200. The results are summarized in Table 3 and indicate that the proposed
test still has approximately correct size and improved power over the two competing tests.

6. APPLICATIONS TO MICROBIOME DATA

6·1. Analysis of obesity microbiome data

We illustrate the application of the proposed tests by analysing two microbiome datasets.
The first is a dataset from Wu et al. (2011) collected in a cross-sectional study of 98 subjects to
investigate the effects of habitual diet on the human gut microbiome. The dataset was analysed by
regression in Lin et al. (2014), where it was found to suggest an association between obesity and
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Table 2. Empirical sizes and powers (%) of paired tests with α = 0·05 and n = 100 based on
1000 replications

Banded covariance Sparse covariance
Method p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

Normal, H0 Oracle 4·8 5·6 6·3 5·9 6·6 6·0
Proposed 4·9 5·5 6·8 5·9 6·1 6·5
Log 5·4 4·4 7·1 5·2 3·7 4·1
Raw 1·1 0·4 0·2 1·5 1·1 1·2

Normal, H1 Oracle 55·3 86·8 98·3 54·4 85·8 99·0
s = �0·05p� Proposed 52·9 86·5 98·4 54·0 84·8 98·9

Log 39·6 75·0 95·6 35·7 68·7 87·3
Raw 5·2 7·3 13·7 9·2 21·6 34·3

Normal, H1 Oracle 85·1 98·6 99·9 83·9 98·6 99·9
s = �0·1p� Proposed 82·8 98·4 99·9 82·8 98·3 99·9

Log 71·2 94·5 99·6 65·4 90·0 98·3
Raw 13·8 14·9 22·1 22·7 43·7 64·5

Normal Oracle 100·0 100·0 100·0 100·0 100·0 100·0
s = �0·5p� Proposed 100·0 100·0 100·0 100·0 100·0 100·0

Log 99·5 100·0 100·0 99·7 100·0 100·0
Raw 50·0 50·0 74·0 77·9 94·4 99·3

Gamma, H0 Oracle 4·2 6·1 7·2 5·1 6·3 7·3
Proposed 4·3 6·2 7·2 5·8 6·1 7·1
Log 4·7 4·7 5·6 5·2 4·5 5·5
Raw 1·2 0·5 0·4 1·4 1·7 2·0

Gamma, H1 Oracle 55·5 86·1 98·4 51·3 84·2 98·3
s = �0·05p� Proposed 53·9 86·2 98·4 50·1 84·0 98·0

Log 42·4 77·3 94·8 35·9 67·2 88·1
Raw 6·1 8·4 11·1 9·6 22·6 39·4

Gamma, H1 Oracle 83·8 97·7 100·0 87·9 98·2 100·0
s = �0·1p� Proposed 82·6 97·1 100·0 86·5 98·3 99·9

Log 70·8 93·0 99·8 67·8 90·8 98·4
Raw 12·0 13·2 20·7 24·0 44·0 61·5

Gamma Oracle 100·0 100·0 100·0 100·0 100·0 100·0
s = �0·5p� Proposed 100·0 100·0 100·0 100·0 100·0 100·0

Log 99·4 100·0 100·0 99·8 100·0 100·0
Raw 51·5 52·7 75·0 80·3 94·5 99·0

changes in gut microbiome composition. For each subject, DNA collected from stool samples was
analysed by 454/Roche pyrosequencing of 16S rRNA gene segments from the V1–V2 region. An
average of 9265 reads per sample were obtained, with a standard deviation of 3864, by denoising
the pyrosequences prior to taxonomic assignment. The resulting 3068 operational taxonomic
units were further merged into 87 genera that were observed in at least one sample. As suggested
by Aitchison (2003) and Lin et al. (2014), zero counts were replaced by 0·5 before the count data
were converted into compositional data by normalization. Demographic information, including
body mass index, BMI, was recorded on the subjects.

We are interested in testing whether lean and obese individuals have the same gut microbiome
composition. To this end, we divided the subjects into a lean group, BMI < 25, n1 = 63,
and an obese group, BMI � 25, n2 = 35, on which we performed various two-sample tests.
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Table 3. Empirical sizes and powers (%) of two-sample tests with α = 0·05 and p = 2000
based on 1000 replications

Banded covariance Sparse covariance
Method n1 = n2 = 100 n1 = n2 = 200 n1 = n2 = 100 n1 = n2 = 200

Normal, H0 Oracle 6·5 3·7 7·6 4·1
Proposed 6·4 3·7 7·5 4·1
Log 5·0 4·7 2·4 1·8
Raw 0·2 0·1 0·5 0·9

Normal, H1 Oracle 100·0 100·0 100·0 100·0
s = �0·05p� Proposed 100·0 100·0 100·0 100·0

Log 100·0 100·0 98·7 98·0
Raw 48·4 55·0 60·7 68·6

Gamma, H0 Oracle 7·0 6·1 6·4 6·7
Proposed 6·9 6·1 6·6 7·1
Log 4·9 4·5 2·7 2·2
Raw 0·2 0·2 0·4 0·1

Gamma, H1 Oracle 100·0 100·0 100·0 100·0
s = �0·05p� Proposed 100·0 100·0 100·0 100·0

Log 100·0 100·0 98·5 98·9
Raw 36·1 45·3 22·1 22·0

The proposed test yielded a p-value of 0·001, indicating a marked difference between the two
groups. In contrast, the tests based on the log-transformed and raw compositions gave p-values
of 0·129 and 0·261, and hence failed to detect the difference at the 0·05 level. To assess the
stability of our proposed test and to perform power comparisons, we generated 5000 bootstrap
subsamples within each group, with the subsampling proportion varying from 0·2 to 1. For each
subsampling proportion, we obtained the empirical power as the proportion of subsamples for
which the null hypothesis was rejected at the 0·05 level. The empirical power curves based on
the bootstrap subsamples, presented in Fig. 1(a), show that the proposed test greatly outperforms
the competitors. We further conducted back-testing to check whether the signal disappears upon
breaking the association. We generated 1000 bootstrap samples from the pooled data and then
randomly divided each sample into two groups with the same sizes as before. The histogram of
p-values from our test based on the bootstrap samples is displayed in Fig. 1(b). The p-values are
distributed quite evenly, indicating good accuracy of the asymptotics. Overall, our results confirm
previous findings that the microbiomes of lean and obese individuals differ at the taxonomic and
functional levels (Turnbaugh et al., 2009).

To further assess the sensitivity of the results to zero replacements, we repeated the analysis
with the zero counts replaced by 0·1 before normalization. The proposed test resulted in a p-value
of 0·0001, while the tests based on the log-transformed and raw compositions gave p-values of
0·015 and 0·080, respectively. In this case only the proposed test rejects the null hypothesis at
the 0·01 level, and the inference does not seem sensitive to the zero-replacement values.

6·2. Analysis of Crohn’s disease microbiome data

Crohn’s disease is a type of inflammatory bowel disease characterized by altered gut bac-
terial composition, whose etiology appears multifactorial and remains poorly understood. We
analyse a dataset from a longitudinal study of 90 pediatric Crohn’s disease patients reported by
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Fig. 1. Analysis of two microbiome datasets: empirical power curves of the proposed test (triangles) and the tests
based on log-transformed (circles) and raw (squares) compositions with α = 0·05 are shown in (a) for the obesity data
and (c) for the Crohn’s disease data; histograms of p-values from the proposed test in the back-testing are shown in

(b) for the obesity data and (d) for the Crohn’s disease data, for 1000 replicates.

Lewis et al. (2015). Among these patients, 26 were classified as responders to anti-tumour necro-
sis factor therapy, where response to therapy was defined as a reduction in faecal calprotectin,
FCP, concentration to 250 μg/g or below among those with baseline FCP greater than 250 μg/g.
Twenty-four of the responders had stool samples collected at four time-points: baseline, and
then 1 week, 4 weeks and 8 weeks into therapy. The bacterial composition was quantified using
shotgun metagenomic sequencing and the MetaPhlAn package (Segata et al., 2012), yielding 43
genera that appeared in at least three samples across all time-points. As the read counts were not
available, zero proportions were replaced by half or 10% of the minimum nonzero proportions
in the dataset.

To determine the effect of the therapy among responders, we applied various paired tests to
test for changes in gut microbiome composition between baseline and the three later time-points.
As shown in Table 4, the p-values for the comparison between baseline and week 8 from all tests
were significant or close to significant, with the strongest evidence provided by the proposed
test. The comparisons at the two earlier time-points did not yield decisive conclusions. These
inferences do not seem sensitive to the zero-replacement strategies. The empirical power curves
based on bootstrap subsamples in Fig. 1(c) exhibit more substantial power gains of the proposed
test over the competitors with smaller sample sizes. Moreover, the histogram of p-values in
Fig. 1(d) indicates that the proposed test survives the back-testing, where the observations at
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Table 4. The p-values of paired tests applied to the Crohn’s disease microbiome data with zeros
replaced by half or 10% of the minimum nonzero proportions in the dataset

Zero replacement by half Zero replacement by 10%
Proposed Log Raw Proposed Log Raw

Baseline versus week 1 0·119 0·605 0·757 0·141 0·611 0·757
Baseline versus week 4 0·460 0·553 0·468 0·373 0·684 0·468
Baseline versus week 8 0·014 0·033 0·082 0·018 0·058 0·082

two time-points were randomly interchanged for each subject in the bootstrap samples. Our
results provide further support for the effect of the therapy on gut microbiome composition
through reduced inflammation and suggest that it may take longer for the intestinal dysbiosis to be
resolved.

7. DISCUSSION

We have shown that it is possible to develop tests for high-dimensional parameters of the
log basis variables from which compositional data are derived, even though the bases are not
observed. In this regard, our method extends the scope of the log-ratio transformation method-
ology due to Aitchison (1982). The mild assumption that ‖δ‖1 = o(p) for the proposed test to
achieve the minimax optimal rate is due to the use of centred log-ratio variables as a proxy for
the latent log basis variables, and bears a resemblance to an approximate identifiability condition
for large covariance estimation from compositional data considered in Cao et al. (2016).

Our testing framework may be extended in at least two directions. First, it would be worth-
while to exploit the covariance structure of compositional data for power enhancement, by
borrowing ideas of Cai et al. (2014). Such an extension, however, seems nontrivial owing to
the singularity of the centred log-ratio covariance matrix. Second, in addition to the global test
developed in this paper, a multiple testing procedure with accurate error control would be helpful
for identifying specific taxa that differ significantly between groups and contribute to the outcome
of interest.
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APPENDIX

Proofs of the theoretical results

We first introduce some notation. For a matrix A = (aij)p×p, denote by ‖A‖1 and ‖A‖max the matrix 1-norm
and entrywise �∞-norm, respectively, i.e., ‖A‖1 = max1�j�p

∑p
i=1 |aij| and ‖A‖max = max1�i,j�p |aij|. Write

ai· = p−1
∑p

j=1 aij and a·· = p−2
∑p

i=1

∑p
j=1 aij. We will use C1, C2, . . . > 0 to denote generic constants,

whose values may vary from line to line.
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Proof of Proposition 1

By Condition 3, we have

‖R‖1 � p1/2 max
1�j�p

(
p∑

i=1

ρ2
ij

)1/2

� p1/2r1/2
2 = O(p1/2). (A1)

We write γij = ωij − ωi· − ωj· + ω··. It follows from Condition 1 and (A1) that

|ωi·| � 1

p

p∑
j=1

|ωij| � 1

p
max
1�j�p

|ωjj|
p∑

j=1

|ρij| � 1

p
κ1‖R‖1 = O(p−1/2) (A2)

and, similarly,

|ωj·| = O(p−1/2), |ω··| = O(p−1/2). (A3)

Hence

‖� − �‖max � max
1�i,j�p

(|ωi·| + |ωj·| + |ω··|
) = O(p−1/2). (A4)

This and Condition 1 imply (i).
To show (ii), we write

τij = γij

(γiiγjj)1/2
= ωij + ε1

{(ωii + ε2)(ωjj + ε3)}1/2
,

where ε1 = −ωi· − ωj· + ω··, ε2 = −2ωi· + ω·· and ε3 = −2ωj· + ω··. By (A2) and (A3), we have
εi = O(p−1/2) (i = 1, 2, 3). Therefore, by Condition 1,

τij = ωij + ε1

(ωiiωjj)1/2

{
(ωii + ε2)(ωjj + ε3)

ωiiωjj

}−1/2

= ρij + O(p−1/2)

[{1 + O(p−1/2)}{1 + O(p−1/2)}]1/2

= ρij + O(p−1/2), (A5)

which, together with Condition 2, implies (ii).
To show (iii), noting that τ 2

ij − ρ2
ij = (τij − ρij)

2 + 2ρij(τij − ρij) and using (A1) and (A5), we have

p∑
i=1

(τ 2
ij − ρ2

ij) =
p∑

i=1

(τij − ρij)
2 + 2

p∑
i=1

ρij(τij − ρij) = O(1) + 2‖R‖1O(p−1/2) = O(1).

This and Condition 3 imply (iii) and thus complete the proof.

Proof of Proposition 2

We first write

Y (k)
ij − νkj = Z (k)

ij − μkj + 1

p

p∑
j=1

(Z (k)
ij − μkj).

It follows from Condition 1 and Proposition 1 that

|Y (k)
ij − νkj|
γ

1/2
jj

�
ω

1/2
jj

γ
1/2
jj

( |Z (k)
ij − μkj|
ω

1/2
jj

+ 1

p

p∑
j=1

|Z (k)
ij − μkj|
ω

1/2
jj

)
� 2(κ1κ2)

1/2 max
i,j,k

|Z (k)
ij − μkj|
ω

1/2
jj

. (A6)
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Using Condition 4 and applying Markov’s inequality and the union bound, we obtain

pr
(

max
i,j,k

|Z (k)
ij − μkj|/ω1/2

jj � t

)
� (n1 + n2)pK exp(−ηt2)

for all t > 0. Hence, by Condition 5,

max
i,j,k

∣∣Z (k)
ij − μkj

∣∣/ω1/2
jj = Op

{
(log n + log p)1/2

} = op(n
1/2/ log p). (A7)

Combining (A6) with (A7), we arrive at (11).
To prove (12), without loss of generality we assume μ1 = μ2 = 0. Let γ̂

(k)
jj denote the sample centred

log-ratio variances for population k (k = 1, 2). Observe that

∣∣γ̂ (k)
jj − γjj

∣∣ = ∣∣ω̂(k)
jj − 2ω̂

(k)
j· + ω̂(k)

·· − (ωjj − 2ωj· + ω··)
∣∣ � 4 max

i,j

∣∣ω̂(k)
ij − ωij

∣∣.
It follows from Condition 1 and Proposition 1 that

|γ̂ (k)
jj − γjj|

γjj
� 4

γjj
max

i,j

|ω̂(k)
ij − ωij|

(ωiiωjj)1/2
(ωiiωjj)

1/2 � 4κ1κ2 max
i,j

|ω̂(k)
ij − ωij|

(ωiiωjj)1/2
.

The proof is completed by invoking the following lemma, which recaps a concentration result in Bickel &
Levina (2008), and using the fact that γ̂jj = n1γ̂

(1)
jj /(n1 + n2) + n2γ̂

(2)
jj /(n1 + n2).

LEMMA A1. Under Condition 4, there exist constants C1, C2, C3, C4 > 0 such that

pr

{
max

i,j

|ω̂(k)
ij − ωij|

(ωiiωjj)1/2
� t

}
� C1p exp(−C2nk t/2) + C3p2 exp(−C4nk t2/4) (t > 0; k = 1, 2).

Proof of Theorem 1

Let tp = t + 2 log p − log log p and

M ∗
n = n max

1�j�p

(Ȳ (1)
j − Ȳ (2)

j )2

γjj
. (A8)

We first show that under H0 in (3), or equivalently (8), for any fixed t ∈ R we have

pr(M ∗
n � tp) → exp{−π−1/2 exp(−t/2)} (A9)

as n, p → ∞. By the Bonferroni inequality, for any fixed integer m with 1 � m � p/2,

2m∑
d=1

(−1)d−1
∑

1�j1<···<jd �p

pr

(
d⋂

k=1

Ejk

)
� pr(M ∗

n � tp) �
2m−1∑
d=1

(−1)d−1
∑

1�j1<···<jd �p

pr

(
d⋂

k=1

Ejk

)
,

where

Ej =
{

n
(Ȳ (1)

j − Ȳ (2)
j )2

γjj
� tp

}
.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/105/1/115/4591648 by guest on 10 April 2024



130 Y. CAO, W. LIN AND H. LI

Under H0, we write

n1/2
Ȳ (1)

j − Ȳ (2)
j

γ
1/2
jj

= n1/2

n1

n1∑
i=1

Y (1)
ij − ν1j

γ
1/2
jj

− n1/2

n2

n2∑
i=1

Y (2)
ij − ν2j

γ
1/2
jj

≡
n1+n2∑

i=1

ξij.

By Proposition 2, it suffices to consider the event {maxi,j |ξij| � C1(log p)−1} for some constant C1 > 0,
which occurs with probability tending to 1. Let N = (N1, . . . , Np)

T be multivariate normal with mean zero
and covariance matrix nR/n1 + nR/n2 = R. Applying Theorem 1.1 of Zaı̆tsev (1987), for any sequence
εn = o(1) we have

pr

(
d⋂

k=1

Ejk

)
= pr

(
min

1�k�d

∣∣∣∣∣
n1+n2∑

i=1

ξijk

∣∣∣∣∣ � t1/2
p

)

� pr
(

min
1�k�d

|Njk | � t1/2
p − εn

)
+ O

{
d5/2 exp

(
−C2

log p

d3

)}

� pr
(

min
1�k�d

|Njk | � t1/2
p − εn

)
+ O(p−C3)

and, similarly,

pr

(
d⋂

k=1

Ejk

)
� pr

(
min

1�k�d
|Njk | � t1/2

p + εn

)
+ O(p−C3).

Hence

2m∑
d=1

(−1)d−1
∑

1�j1<···<jd �p

pr
{

min
1�k�d

|Njk | � t1/2
p + (−1)d−1εn

}
+ o(1)

� pr(M ∗
n � tp)

�
2m−1∑
d=1

(−1)d−1
∑

1�j1<···<jd �p

pr
{

min
1�k�d

|Njk | � t1/2
p + (−1)dεn

}
+ o(1).

Then (A9) is proved by applying the following lemma, which follows from the same arguments as those
for Lemma 6 of Cai et al. (2014), and letting m → ∞.

LEMMA A2. Under Conditions 2 and 3, we have

∑
1�j1<···<jd �p

pr
(

min
1�k�d

|Njk | � t1/2
p ± εn

)
= 1

d! π−d/2 exp
(

−dt

2

)
{1 + o(1)}.

Finally, consider the event {maxj |γ̂jj − γjj|/γjj � C4(log p/n)1/2} for some constant C4 > 0, which
occurs with probability tending to 1 by Proposition 2. Then

|Mn − M ∗
n | � n max

1�j�p

(Ȳ (1)
j − Ȳ (2)

j )2

γ̂jj
max
1�j�p

|γ̂jj − γjj|
γjj

� C4Mn

(
log p

n

)1/2

= Mno

(
1

log p

)
(A10)

by Condition 5. This, together with (A9), completes the proof.
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Proof of Theorem 2

In view of (A10) with M ∗
n defined in (A8), it suffices to prove that under H1 in (13),

pr(M ∗
n � qα + 2 log p − log log p) → 1. (A11)

By assumption, there exists some j0 ∈ S such that |δj0 | � √
2 + ε. We write

n1/2
Ȳ (1)

j0
− Ȳ (2)

j0

γ
1/2
j0j0

= n1/2
Ȳ (1)

j0
− ν1j0

γ
1/2
j0j0

− n1/2
Ȳ (2)

j0
− ν2j0

γ
1/2
j0j0

+ n1/2 ν1j0 − ν2j0

γ
1/2
j0j0

≡ T1 + T2 + T3.

Note that T1 = Op(1) and T2 = Op(1) by the central limit theorem. Define

T4 = n1/2 ν1j0 − ν2j0

ω
1/2
j0j0

.

It follows from (A4) and Condition 1 that

|T3 − T4| = n1/2 |ν1j0 − ν2j0 |
γ

1/2
j0j0

|γ 1/2
j0j0

− ω
1/2
j0j0

|
ω

1/2
j0j0

= |T3|O(p−1/2).

Then, using (15) and the assumption ‖δ‖1 = o(p), we have

T3 = T4{1 + O(p−1/2)} = n1/2
δj0ω

1/2
j0j0

+ o(1)

ω
1/2
j0j0

(
log p

n

)1/2

{1 + O(p−1/2)}

= {δj0 + o(1)}(log p)1/2 �
(√

2 + ε

2

)
(log p)1/2

for sufficiently large p. Combining these bounds, we conclude that, with probability tending to 1,

n1/2
|Ȳ (1)

j0
− Ȳ (2)

j0
|

γ
1/2
j0j0

� (qα + 2 log p − log log p)1/2.

This implies (A11) and completes the proof.

REFERENCES

AITCHISON, J. (1982). The statistical analysis of compositional data (with Discussion). J. R. Statist. Soc. B 44, 139–77.
AITCHISON, J. (2003). The Statistical Analysis of Compositional Data. Caldwell: Blackburn Press.
BAI, Z. & SARANADASA, H. (1996). Effect of high dimension: By an example of a two sample problem. Statist. Sinica

6, 311–29.
BICKEL, P. J. & LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36, 2577–604.
CAI, T. T., LIU, W. & XIA, Y. (2014). Two-sample test of high dimensional means under dependence. J. R. Statist. Soc.

B 76, 349–72.
CAO, Y., LIN, W. & LI, H. (2016). Large covariance estimation for compositional data via composition-adjusted

thresholding. arXiv: 1601.04397.
CHEN, S. X. & QIN, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing.

Ann. Statist. 38, 808–35.
LEWIS, J. D., CHEN, E. Z., BALDASSANO, R. N., OTLEY, A. R., GRIFFITHS, A. M., LEE, D., BITTINGER, K., BAILEY, A.,

FRIEDMAN, E. S., HOFFMANN, C. et al. (2015). Inflammation, antibiotics, and diet as environmental stressors of the
gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489–500.

LI, H. (2015). Microbiome, metagenomics, and high-dimensional compositional data analysis. Ann. Rev. Statist. Appl.
2, 73–94.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/105/1/115/4591648 by guest on 10 April 2024



132 Y. CAO, W. LIN AND H. LI

LIN, W., SHI, P., FENG, R. & LI, H. (2014). Variable selection in regression with compositional covariates. Biometrika
101, 785–97.

SEGATA, N., WALDRON, L., BALLARINI, A., NARASIMHAN, V., JOUSSON, O. & HUTTENHOWER, C. (2012). Metagenomic
microbial community profiling using unique clade-specific marker genes. Nature Meth. 9, 811–4.

SRIVASTAVA, M. S. (2009). A test for the mean vector with fewer observations than the dimension under non-normality.
J. Mult. Anal. 100, 518–32.

SRIVASTAVA, M. S. & DU, M. (2008). A test for the mean vector with fewer observations than the dimension. J. Mult.
Anal. 99, 386–402.

THE HUMAN MICROBIOME PROJECT CONSORTIUM (2012). Structure, function and diversity of the healthy human
microbiome. Nature 486, 207–14.

TURNBAUGH, P. J., HAMADY, M., YATSUNENKO, T., CANTAREL, B. L., DUNCAN, A., LEY, R. E., SOGIN, M. L., JONES, W. J.,
ROE, B. A., AFFOURTIT, J. P. et al. (2009). A core gut microbiome in obese and lean twins. Nature 457, 480–4.

WU, G. D., CHEN, J., HOFFMANN, C., BITTINGER, K., CHEN,Y.-Y., KEILBAUGH, S. A., BEWTRA, M., KNIGHTS, D., WALTERS,
W. A., KNIGHT, R. et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334,
105–8.
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