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Summary

Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown
to produce finite-valued maximum penalized likelihood estimates in a broad class of binomial gen-
eralized linear models. The class of models includes logistic regression, where the Jeffreys-prior
penalty is known additionally to reduce the asymptotic bias of the maximum likelihood estima-
tor, and models with other commonly used link functions, such as probit and log-log. Shrinkage
towards equiprobability across observations, relative to the maximum likelihood estimator, is
established theoretically and studied through illustrative examples. Some implications of finite-
ness and shrinkage for inference are discussed, particularly when inference is based on Wald-type
procedures. A widely applicable procedure is developed for computation of maximum penalized
likelihood estimates, by using repeated maximum likelihood fits with iteratively adjusted binomial
responses and totals. These theoretical results and methods underpin the increasingly widespread
use of reduced-bias and similarly penalized binomial regression models in many applied fields.

Some key words: Bias reduction; Bradley–Terry model; Data separation; Infinite estimate; Logit link; Penalized
likelihood; Probit link; Working weight.

1. Introduction

Logistic regression is one of the most frequently applied generalized linear models in sta-
tistical practice, both for inference about covariate effects on binomial probabilities and for
prediction. Consider realizations y1, . . . , yn of independent binomial random variables Y1, . . . , Yn
with success probabilities π1, . . . , πn and totals m1, . . . , mn, respectively. Suppose that each yi
is accompanied by a p-dimensional covariate vector xi and that the model matrix X with rows
x1, . . . , xn is of full rank. A logistic regression model has

πi = (G ◦ ηi)(β), G(η) = exp(η)

1 + exp(η)
, ηi(β) =

p∑
t=1

βtxit (i = 1, . . . , n), (1)

where β = (β1, . . . , βp)
T is the p-dimensional parameter vector and xit is the tth element of xi

(i = 1, . . . , n); if an intercept parameter is present in the model, then the first column of X is a
vector of ones. The maximum likelihood estimator β̂ of β in (1) maximizes the loglikelihood

l(β) =
n∑

i=1

yiηi(β) −
n∑

i=1

mi log
[
1 + exp{ηi(β)}]. (2)
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72 I. Kosmidis and D. Firth

Albert & Anderson (1984) categorized the possible settings for the sample points (y1, xT
1)

T,
. . . , (yn, xT

n)
T into complete separation, quasi-complete separation and overlap. Specifically, if

there exists a vector γ ∈ R
p such that γ Txi > 0 for all i with yi > 0 and γ Txi < 0 for all i with

yi = 0, then there is complete separation in the sample points; if there exists a vector γ ∈ R
p such

that γ Txi � 0 for all i with yi > 0 and γ Txi � 0 for all i with yi = 0, then there is quasi-complete
separation in the sample points; and if the sample points exhibit neither complete separation nor
quasi-complete separation, then they are said to overlap. Albert & Anderson (1984) showed that
separation is necessary and sufficient for the maximum likelihood estimate to have at least one
infinite-valued component. A parallel result appears in Silvapulle (1981), where it is shown that if
G(η) in (1) is any strictly increasing distribution function such that −log G(η) and log{1−G(η)}
are convex and if xi1 = 1 for all i ∈ {1, . . . , n}, then the maximum likelihood estimate has all
components finite if and only if there is overlap.

When data separation occurs, standard maximum likelihood estimation procedures, such as
iteratively reweighted least squares (Green, 1984), can be numerically unstable due to the occur-
rence of large parameter values as the procedures attempt to maximize (2). In addition, inferential
procedures that directly depend on the estimates and the estimated standard errors, such as Wald
tests, can give misleading results. For a recent review of such problems and some solutions, see
Mansournia et al. (2018).

Firth (1993) showed that if the logistic regression likelihood is penalized by Jeffreys’ invariant
prior, then the resulting maximum penalized likelihood estimator has bias of smaller asymp-
totic order than that of the maximum likelihood estimator in general. Specifically, for logistic
regressions the reduced-bias estimator β̃ results from maximization of

l̃(β) = l(β) + 1

2
log

∣∣X TW (β)X
∣∣ (3)

with W (β) = diag{w1(β), . . . , wn(β)}, where wi(β) = mi(ω ◦ ηi)(β) (i = 1, . . . , n) is the
working weight for the ith observation with ω(η) = exp(η)/{1 + exp(η)}2. Heinze & Schemper
(2002), in extensive numerical studies, observed that the reduced-bias estimates have finite values
even when data separation occurs. Based on an argument about parameter-dependent adjustments
to y1, . . . , yn and m1, . . . , mn stemming from the form of the gradient of (3), Heinze & Schemper
(2002) conjectured that finiteness of the reduced-bias estimates holds for every combination of
data and logistic regression model. Heinze & Schemper (2002) also observed that the reduced-
bias estimates are typically smaller in absolute value than the corresponding maximum likelihood
estimates when the latter are finite. These observations are in agreement with the asymptotic bias
of the maximum likelihood estimator in logistic regressions being approximately collinear with
the parameter vector (see, e.g., Cordeiro & McCullagh, 1991).

Example 1 illustrates the finiteness and shrinkage properties of the maximum penalized like-
lihood estimator in the context of estimating the strengths of NBA basketball teams using a
Bradley–Terry model (Bradley & Terry, 1952).

Example 1. Suppose that yij = 1 when team i beats team j and yij = 0 otherwise. The Bradley–
Terry model assumes that the contest outcome yij is the realization of a Bernoulli random variable
with probability πij = exp(βi − βj)/{1 + exp(βi − βj)} and that the outcomes of the available
contests are independent. The Bradley–Terry model is a logistic regression with probabilities
as in (1), for the particular X matrix whose rows are indexed by contest identifiers (i, j) and
whose general element is xij,t = δit − δjt (t = 1, . . . , p). Here, δit is the Kronecker delta, taking
value 1 when t = i and value 0 otherwise. The parameter βt can be thought of as measuring
the ability or strength of team t (t = 1, . . . , p). Only contrasts are estimable, and an identifiable
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Fig. 1. (a) Estimated contrasts in ability of NBA teams with the San Antonio Spurs. The abilities are estimated using
a Bradley–Terry model on the outcomes of the 262 games before 3 December 2014 in the regular season of the
2014–2015 NBA conference, using the maximum likelihood (ML, top) and reduced-bias (RB, bottom) estimators; the
vertical line segments represent nominally 95% Wald-type confidence intervals. (b) Reduced-bias estimates of ability
contrasts plotted against maximum likelihood estimates of ability contrasts; the maximum likelihood estimate for the

Philadelphia 76ers is not plotted, and the 45◦ line is displayed for reference.

parameterization can be achieved by setting one of the abilities to zero. See, for example, Agresti
(2013, § 11.6) for a general discussion of the model.

We use the Bradley–Terry model to estimate the abilities of basketball teams from game
outcomes in the regular season of the 2014–2015 NBA conference. For illustrative purposes,
we use only the 262 games that took place before 3 December 2014, up to which date the
Philadelphia 76ers had recorded 17 straight losses and no win. The dataset was obtained from
www.basketball-reference.com and is provided in the Supplementary Material. The
ability of the San Antonio Spurs, the champion team of the 2013–2014 conference, is set to
zero, so that each βi represents the contrast of the ability of team i with that of the San Antonio
Spurs. The model is estimated via iteratively reweighted least squares, as implemented in the
glm function of R (R Development Core Team, 2021) with default settings for the optimization.
No warnings or errors were returned during the fitting process.

The top part of Fig. 1(a) shows the reported maximum likelihood estimates of the contrasts,
along with their corresponding nominally 95% individual Wald-type confidence intervals. The
contrast for the Philadelphia 76ers stands out in the output from glm, with a value of −19.24
and a corresponding estimated standard error of 844.97. These values are in fact representations
of −∞ and ∞, respectively, as confirmed by the detect_separation method of the R
package brglm2 (Kosmidis, 2020), which implements separation-detection algorithms from
a 2007 University of Oxford Department of Statistics PhD thesis by K. Konis. The data are
separated, with the maximum likelihood estimates for all teams being finite except that for the
Philadelphia 76ers, which is −∞. A particularly worrying side-effect of data separation here
is that if the computer output is used naively, a Wald test for difference in ability between the
Philadelphia 76ers and the San Antonio Spurs results in no apparent evidence of a difference,
which is counterintuitive given that the former had no wins in 17 games and the latter had 13
wins in 17 games. In contrast, the reduced-bias estimates in the bottom part of Fig 1(a) all have
finite values and finite standard errors. Figure 1(b) illustrates the shrinkage of the reduced-bias
estimates towards zero, which has also been discussed in a range of different settings, such as in
Heinze & Schemper (2002) and Zorn (2005).
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74 I. Kosmidis and D. Firth

The apparent finiteness and shrinkage properties of the reduced-bias estimator, together with
the fact that the estimator has the same first-order asymptotic distribution as the maximum like-
lihood estimator, are key reasons for the increasingly widespread use of Jeffreys-prior penalized
logistic regression in applied work. At the time of writing, Google Scholar recorded approxi-
mately 2700 citations of Firth (1993), more than half of which were from 2015 or later. The
list of application areas is diverse, including agriculture and fisheries research, animal and plant
ecology, criminology, commerce, economics, psychology, health and medical sciences, politics,
and many more. The particularly strong uptake of the method in health and medical sciences
and in politics stems largely from the works of Heinze & Schemper (2002) and Zorn (2005),
respectively. The reduced-bias estimator is also implemented in dedicated open-source software,
such as the brglm2 (Kosmidis, 2020) and logistf (Heinze & Ploner, 2018) R packages, and
it has now become part of textbook treatments of logistic regression; see, for example, Agresti
(2013, § 7.4) or Hosmer et al. (2013, § 10.3).

However, a definitive theoretical account of the empirically evident finiteness and shrinkage
properties has yet to appear in the literature. Such a formal account is much needed, particu-
larly in light of recent advances that demonstrate benefits of the reduced-bias estimator in wider
contexts than the ones for which it was originally developed. An example of such an advance
is the work of Lunardon (2018), which explores the performance of bias reduction in stratified
settings and shows that it is particularly effective for inference about a low-dimensional param-
eter of interest in the presence of high-dimensional nuisance parameters. For the estimation of
high-dimensional logistic regression models with p/n → κ ∈ (0, 1), experiments reported in
the supplementary information of Sur & Candès (2019), see also the Supplementary Material for
the present article, show that bias reduction performs similarly to their newly proposed method
and markedly better than maximum likelihood. These new theoretical and empirical results jus-
tify and motivate the use of the reduced-bias estimator in even more complex applied settings
than that covered by the framework of Firth (1993); in such settings, more involved methods
such as modified profile likelihoods (see, e.g., Sartori, 2003) and approximate message-passing
algorithms (see, e.g., Sur & Candès, 2019) have also been proposed for recovering inferential
accuracy.

In this article we formally derive the finiteness and shrinkage properties of reduced-bias esti-
mators for logistic regressions under only the condition that the model matrix X has full rank.
We also provide geometric insights into how penalized likelihood estimators shrink towards zero
and discuss the implications of finiteness and shrinkage for inference, especially with regard to
hypothesis tests and confidence regions using Wald-type procedures.

We show how the results can be extended in a direct way to other commonly used link functions,
such as the probit, log-log, complementary log-log and cauchit links, whenever the Jeffreys prior
is used as a likelihood penalty. The work presented here thus complements earlier work of
Ibrahim & Laud (1991) and especially Chen et al. (2008), which considers the same models from
a Bayesian perspective. Here we study the behaviour of the posterior mode and thereby derive
results that add to those earlier findings, whose focus was instead on important Bayesian aspects
such as propriety and moments of the posterior distribution.

The results in this paper also extend readily to situations where penalized loglikelihoods of
the form

l†(β; a) = l(β) + a log
∣∣X TW (β)X

∣∣ (a > 0) (4)

are used, with a allowed to take values other than 1/2. Such penalized loglikelihoods have proven
useful in prediction contexts, where the value of a can be tuned to deliver better estimates of the
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Jeffreys-prior penalty 75

binomial probabilities, and they are the subject of ongoing research (see, e.g., Elgmati et al., 2015;
Puhr et al., 2017). The procedure of repeated maximum likelihood fits with iteratively adjusted
binomial responses and totals, derived in § 4, maximizes l†(β; a) for general binomial-response
generalized linear models and any a > 0.

2. Logistic regression

2.1. Finiteness

We first derive results on finiteness and shrinkage of the maximum penalized likelihood esti-
mator for logistic regression, which is the most common case in applications and also the case for
which maximum penalized likelihood, with the Jeffreys-prior penalty, coincides with asymptotic
bias reduction. These results provide a platform for the generalization to link functions other than
logit in § 3.

Let W ∗(r) be W (β) at β = β(r), for r ∈ R, where β(r) is a path in R
p such that β(r) → β0 as

r → ∞, with β0 having at least one infinite component. Theorem 1 below describes the limiting
behaviour of the determinant of the expected information matrix X TW ∗(r)X as r diverges to
infinity, under only the assumption that X has full rank. An important implication of Theorem 1
is Corollary 1, which says that the reduced-bias estimators for logistic regressions are always
finite. These new results formalize a sketch argument made in Firth (1993, § 3.3).

Theorem 1. Suppose that X is of full rank. Then limr→∞ |X TW ∗(r)X | = 0.

Corollary 1. Suppose that X is of full rank. The vector β̃ that maximizes l̃(β) has all of its
components finite.

The proofs of Theorem 1 and Corollary 1 are given in the Supplementary Material.
Corollary 1 also holds for any fixed a > 0 in (4).As a result, the maximum penalized likelihood

estimators from the maximization of l†(β; a) in (4) have finite components for any a > 0.
Despite its practical utility, the finiteness of the reduced-bias estimator results in some notable,

and perhaps undesirable, side-effects for Wald-type inferences based on the reduced-bias esti-
mator that have been largely overlooked in the literature. The finiteness of β̃ implies that the
estimated standard errors st(β̃) (t = 1, . . . , p), calculated as the square roots of the diagonal
elements of the inverse of X TW (β̃)X , are also always finite. Since y1, . . . , yn are realizations of
binomial random variables, there is only a finite number of values that the estimator β̃ can take
for any given x1, . . . , xn. Hence, there will always be a parameter vector with large enough com-
ponents that the usual Wald-type confidence intervals β̃t ± z1−α/2st(β̃), or confidence regions in
general, will fail to cover regardless of the nominal level α that is used. This phenomenon has also
been observed in the complete enumerations of Kosmidis (2014) for proportional odds models
which are extensions of logistic regression to ordinal responses; and it is also the case when
the penalized likelihood is profiled for the construction of confidence intervals, as proposed, for
example, in Heinze & Schemper (2002), and in Bull et al. (2007) for multinomial regression
models.

2.2. Shrinkage

The following theorem is key when exploring the shrinkage properties of the reduced-bias
estimator that have been illustrated in Example 1.
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76 I. Kosmidis and D. Firth

Theorem 2. Suppose that X is of full rank. Then the following hold.

(i) The function |X TW (β)X | is globally maximized at β = 0.
(ii) If W̄ (π) = diag{m1π1(1−π1), . . . , mnπn(1−πn)}, then |X TW̄ (π)X | is log-concave on π .

A complete proof of Theorem 2 is given in the Supplementary Material. Part (i) also follows
directly from Theorem 1 in Chen et al. (2008).

Consider estimation by maximization of the penalized loglikelihood l†(β; a) in (4) for a = a1
and a = a2 with a1 > a2 � 0. Let β(a1) and β(a2) be the maximizers of l†(β; a1) and l†(β; a2),
respectively, and π(a1) and π(a2) the corresponding estimated n-vectors of probabilities. Then,
by the concavity of log |X TW̄ (π)X |, the vector π(a1) is closer to (1/2, . . . , 1/2)T than is π(a2),
in the sense that π(a1) lies within the hull of that convex contour of log |X TW̄ (π)X | containing
π(a2). With the specific values a1 = 1/2 and a2 = 0, the last result refers to maximization of the
likelihood penalized by Jeffreys’prior and to maximization of the unpenalized likelihood, respec-
tively. Hence, using reduced-bias estimators for logistic regressions has the effect of shrinking
towards the model that implies equiprobability across observations, relative to maximum like-
lihood. Shrinkage here is with respect to a metric based on the expected information matrix
rather than with respect to Euclidean distance. Hence, the reduced-bias estimates are only typi-
cally, rather than always, smaller in absolute value than the corresponding maximum likelihood
estimates.

If the determinant of the inverse of the expected information matrix is taken as a general-
ized measure of the asymptotic variance, then the estimated generalized asymptotic variance at
the reduced-bias estimates is always smaller than the corresponding estimated variance at the
maximum likelihood estimates. Hence, approximate confidence ellipsoids based on asymptotic
normality of the reduced-bias estimator are reduced in volume.

3. Non-logistic link functions

3.1. Finiteness

The results in this section generalize those of § 2.1 and § 2.2 beyond the logit link function,
still for estimators from penalized likelihoods of the form (4). For non-logistic link functions,
such estimators no longer coincide with the bias-reduced estimator of Firth (1993).

Theorem 1 and Corollary 1 readily extend to link functions other than the logistic one. Specif-
ically, if G(η) = exp(η)/{1 + exp(η)} in model (1) is replaced by an at least twice differentiable
and invertible function G : R → (0, 1), then the expected information matrix again has the
form X TW (β)X , but with working weights wi(β) = mi(ω ◦ ηi)(β) (i = 1, . . . , n), where
ω(η) = g(η)2/[G(η){1 − G(η)}] and g(η) = dG(η)/dη. If the link function is such that
ω(η) → 0 as η diverges to either −∞ or ∞, then the proofs of Theorem 1 and Corollary 1
in the Supplementary Material carry through unaltered to show that limr→∞ |X TW ∗(r)X | = 0
and that, when the penalty is a positive power of Jeffreys’ invariant prior, the maximum penalized
likelihood estimates have finite components. The logit, probit, complementary log-log, log-log
and cauchit links are some commonly used link functions for which ω(η) → 0. The functions
G(η) and ω(η) for each of these link functions are shown in Table 1.

3.2. Shrinkage

Let ω̄(z) = {(g ◦ G−1)(z)}2/{z(1 − z)}. If the link function is such that ω̄(z) is maximized
at some value z0 ∈ (0, 1), then the same arguments as in the proof of Theorem 2(i) can be used
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Table 1. Common link functions and the corresponding forms for G(η) and ω(η);
for all the displayed link functions, ω(η) vanishes as η diverges

Link function G(η) ω(η)

logit
exp(η)

1 + exp(η)

exp(η)

{1 + exp(η)}2

probit 
(η)
{φ(η)}2


(η){1 − 
(η)}

complementary log-log 1 − exp{− exp(η)} exp(2η)

exp{exp(η)} − 1

log-log exp{− exp(−η)} exp(−2η)

exp{exp(−η)} − 1

cauchit
1

2
+ arctan(η)

π

1

(1 + η2)2
[

π2

4 − {tan−1(η)}2
]

z0 = 0.5

complementary log-log cauchit

logit probit
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(a) (b)

Fig. 2. (a) ω̄(z) for various link functions; in each plot the dashed vertical line is at z0. (b) Demonstration of how
fitted probabilities from the penalized likelihood fit shrink relative to those of the maximum likelihood fit, from a
complete enumeration of a saturated model with πi = G(β1 + β2xi) (i = 1, 2), where x1 = −1 and x2 = 1, and with
m1 = 9 and m2 = 9; the arrows point from the estimated probabilities based on the maximum likelihood estimates

to those based on the penalized likelihood estimates, and the grey curves are the contours of log |X TW̄ (π)X |.

to show that |X TW̄ (π)X | is globally maximized at (z0, . . . , z0)
T. Figure 2(a) illustrates that this

condition is satisfied for the logit, probit, log-log and complementary log-log link functions. If
xi1 = 1 (i = 1, . . . , n), then the maximum of |X TW (β)X | is achieved at β = (b0, 0, . . . , 0)T,
where b0 = g−1(z0). Moreover, it can be seen directly from the proof of Theorem 2 that a sufficient
condition for the log-concavity of |X TW̄ (π)X | for non-logit link functions is that ω̄(z) is concave.

4. Maximum penalized likelihood as repeated maximum likelihood

The maximum penalized likelihood estimates, when X has full rank, can be computed by direct
numerical optimization of the penalized loglikelihood l†(β; a) in (4) or by using a quasi-Newton–
Raphson iteration as in Kosmidis & Firth (2010). Nevertheless, the particular form of the Jeffreys
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78 I. Kosmidis and D. Firth

prior allows the convenient computation of penalized likelihood estimates by leveraging readily
available maximum likelihood implementations for binomial-response generalized linear models.

If G(η) = exp(η)/{1 + exp(η)} in model (1) is replaced by any invertible function G :
R → (0, 1) that is at least twice differentiable, then differentiation of l†(β; a) with respect to βt
(t = 1, . . . , q) gives that the penalized likelihood estimates are the solutions to

n∑
i=1

wi(β)

di(β)

[
yi + 2ahi(β)

{
qi(β) − 1

2

}
− miπi(β)

]
xit = 0 (t = 1, . . . , p), (5)

where πi(β) = (G ◦ ηi)(β), di(β) = mi(g ◦ ηi)(β), qi(β) = d ′
i(β)/wi(β) + πi(β), and d ′

i(β) =
mi(g′ ◦ ηi)(β) with g′(η) = d2G(η)/dη2. The quantity hi(β) (i = 1, . . . , n) is the ith diagonal
element of the ‘hat’ matrix H (β) = X {X TW (β)X }−1X TW (β).

If we temporarily omit the observation index and suppress the dependence of the various
quantities on β, the derivatives of l†(β; a) are the derivatives of the binomial loglikelihood l(β)

with link function G(η), after adjusting the binomial response y to y + 2ah(q − 1/2). Hence,
the penalized likelihood estimates can be conveniently computed through repeated maximum
likelihood fits, where each repetition consists of two steps: (i) the adjusted responses are computed
at the current parameter values; and (ii) the maximum likelihood estimates of β are computed at
the current value of the adjusted responses.

However, depending on the sign and magnitude of 2ah(q − 1/2), the adjusted response can be
either negative or greater than the binomial total m. In such cases, standard implementations
of maximum likelihood either are unstable or report an error. This is because the binomial
loglikelihood is not necessarily concave when y < 0 or y > m for at least one observation,
if a link function with concave log{G(η)} and log{1 − G(η)} is used. The logit, probit, log-log
and complementary log-log link functions are of this kind. See, for example, Pratt (1981, § 5) for
results and discussion on concavity of the loglikelihood.

Such issues with the use of repeated maximum likelihood fits can be avoided by noting that
expression (5) results if, in the derivatives of the loglikelihood, y and m are replaced by their
adjusted versions

ỹ = y + 2ah(q − 1/2 + πc), m̃ = m + 2ahc. (6)

Here c is some arbitrarily chosen function of β. The following theorem identifies one function c
for which 0 � ỹ � m̃.

Theorem 3. Let I (A) be equal to 1 if A holds and 0 otherwise. If c = 1+ (q−1/2){π − I (q �
1/2)}/{π(1 − π)}, then 0 � ỹ � m̃.

The proof of Theorem 3 is given in the Supplementary Material, which also provides pseudo-
code and R code for the algorithmJeffreysMPL that implements repeated maximum likelihood
fits to maximize l†(β; a) for any supplied a and link function G(η).

The variance-covariance matrix of the penalized likelihood estimator can be obtained as
(RTR)−1, where R is the upper triangular matrix from the QR decomposition of W (β)1/2X
at the final iteration of the procedure. That decomposition is a by-product of the algorithm
JeffreysMPL.

If, in addition to X having of full rank, we require that X has a column of ones and that g(η) is a
unimodal density function, it can be shown that if the starting value of the parameter vector β in the
repeated maximum likelihood fits procedure has finite components, then the values of β computed
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in step (ii) will also have finite components at all repetitions. This is because, with a column of
ones in the full-rank X , the adjusted responses and totals in (6) satisfy 0 < ỹ < m̃, and hence
maximum likelihood estimates with infinite components are not possible. The strict inequalities
0 < ỹ < m̃ hold because, under the aforementioned conditions, wi(β) > 0 and X TW (β)X is
positive definite for β with finite components. Then, Theorem 4 in Magnus & Neudecker (1999,
Ch. 11) on bounds for the Rayleigh quotient gives the inequality hi(β) � wi(β)xT

i xiλ(β) > 0
(1, . . . , n), where λ(β) > 0 is the minimum eigenvalue of (X TW (β)X )−1.

The repeated maximum likelihood fits procedure has the correct fixed point even if in step (ii)
full maximum likelihood estimation is replaced by a procedure that merely increases the log-
likelihood, such as a single step of iteratively reweighted least squares for the adjusted responses
and totals. Firth (1992) suggested such a scheme for logistic regressions with a = 1/2. There is
currently no conclusive result on whether full maximum likelihood iteration with a reasonable
stopping criterion is better or worse than, for example, one step of iteratively reweighted least
squares in terms of computational efficiency. A satisfactory starting value for the above procedure
is the maximum likelihood estimate of β, after adding a small positive constant and twice that
constant to the actual binomial responses and totals, respectively.

Finally, for a = 1/2, repeated maximum likelihood fits can be used to compute the posterior
normalizing constant when implementing the importance sampling algorithm in Chen et al. (2008,
§ 5) for posterior sampling of the parameters of Bayesian binomial-response generalized linear
models with the Jeffreys prior.

The Supplementary Material illustrates the evolution of adjusted responses and totals through
the iterations of JeffreysMPL, for the first six games of the Philadelphia 76ers in Example 1.
We also compute the reduced-bias estimates for a logistic regression model with n = 1000 binary
responses and p = 200 covariates, as considered in Fig. 2(b) of the supplementary information
appendix of Sur & Candès (2019), and show that such computation takes only a couple of seconds
on a standard laptop computer.

5. Illustrations

Figure 2(a) shows ω̄(z) and z0 for the various link functions. The plot for the log-log link is the
reflection of the one for the complementary log-log link in z = 0.5.As is apparent, ω̄(z) is concave
for the logit, probit and complementary log-log links, but not for the cauchit link. Figure 2(b)
visualizes the shrinkage induced by the penalization by Jeffreys’ invariant prior for the logit,
probit, complementary log-log and cauchit links. For each link function, we obtain all possible
fitted probabilities from a complete enumeration of a saturated model with πi = G(β1 + β2xi)

(i = 1, 2), where x1 = −1, x2 = 1, m1 = 9 and m2 = 9. The grey curves are the contours
of log |X TW̄ (π)X |. An arrow is drawn from each pair of estimated probabilities based on the
maximum likelihood estimates to the corresponding pair of estimated probabilities based on the
penalized likelihood estimates, to demonstrate the induced shrinkage towards (z0, z0)

T according
to the results in § 3. Despite the fact that ω̄(z) is not concave for the cauchit link, the fitted
probabilities still shrink towards (z0, z0)

T = (1/2, 1/2)T. The plots in Fig. 2 are invariant with
respect to the particular choices of x1 and x2, as long as x1 |= x2. For either maximum likelihood
or maximum penalized likelihood, if the estimates of β1 and β2 are b1 and b2 for x1 = −1 and
x2 = 1, then the new estimates for any x1, x2 ∈ R with x1 |= x2 are b1 − b2(x1 + x2)/(x2 − x1)

and 2b2/(x2 − x1), respectively. Hence, the fitted probabilities will be identical.
Another illustration of finiteness and shrinkage follows from Example 1. Figure 3 shows

the paths of the team ability contrasts as a varies from 0 to 5. The estimates are obtained using
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Fig. 3. Paths of the estimated ability contrasts from the maximization of (4) for a ∈ (0, 5]; in each plot the dashed
horizontal line is at zero and the dotted vertical line is at a = 0.5, identifying the reduced-bias estimates on the paths.

JeffreysMPL, starting at the maximum likelihood estimates of the ability contrasts after adding
0.01 and 0.02 to the actual responses and totals, respectively. In accordance with the theoretical
results in § 2.1, the estimated ability contrasts are finite for every a > 0; and, as expected from
the results in § 2.2, shrinkage towards equiprobability becomes stronger as a increases.

6. Concluding remarks

A recent stream of literature investigates the use of the coefficient path defined by maximization
of the penalized loglikelihood (4) for the prediction of rare events through logistic regression.
Elgmati et al. (2015) studied that path for a ∈ (0, 1/2] and proposed taking a to be around 0.1
in order to handle issues related to infinite estimates, and they obtained predicted probabilities
that are less biased than those based on the reduced-bias estimates (a = 0.5). More recently,
Puhr et al. (2017) proposed two new methods for the prediction of rare events, and performed
extensive simulation studies to compare the performance of their methods and various others,
including maximum penalized likelihood with a = 0.1 and a = 0.5.

The coefficient path can be computed efficiently by using repeated maximum likelihood fits
with warm starts. For a grid of values a1 < · · · < ak with aj > 0 (j = 1, . . . , k), the algorithm
JeffreysMPL is first applied with a = a1 to obtain the maximum penalized likelihood estimates
β(a1); then JeffreysMPL is applied again with a = a2 and starting values b = β(a1), and so
on, until β(ak ) has been computed. This process supplies JeffreysMPL with the best available
starting values as the algorithm walks through the grid. The finiteness of the components of
β(a1), . . . , β(ak ) and the shrinkage properties described in § 2.2 and § 3 contribute to the stability
of the overall process. The properties of the coefficient path for inference and prediction from
binomial regression models, and the development of general procedures for selecting a, are
interesting open research topics.

Kenne Pagui et al. (2017) developed a method that can reduce the median bias of the com-
ponents of the maximum likelihood estimator. According to their results, median bias reduction
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for one-parameter logistic regression models is equivalent to maximizing (4) with a = 1/6.
Hence, the results in § 2 also establish the finiteness of the estimate from median bias reduction
in one-parameter logistic regression, and imply that the induced shrinkage to equiprobability will
be less strong than penalization by the Jeffreys prior. Kenne Pagui et al. (2017) observed such
properties in numerical studies for p > 1. When p > 1, though, median bias reduction is no
longer equivalent to maximizing (4) with a = 1/6.
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