
Biometrika (2022), 109, 2, pp. 351–367 doi: 10.1093/biomet/asab036
Advance Access publication 28 September 2021

Semi-exact control functionals from Sard’s method

By L. F. SOUTH

School of Mathematical Sciences, Queensland University of Technology,
2 George Street, Brisbane, Queensland 4000, Australia.

l1.south@qut.edu.au

T. KARVONEN

The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, U.K.
tkarvonen@turing.ac.uk

C. NEMETH

Department of Mathematics and Statistics, Lancaster University,
Bailrigg, Lancaster LA1 4YF, U.K.

c.nemeth@lancaster.ac.uk

M. GIROLAMI

Department of Engineering, University of Cambridge,
St Andrew’s Street, Cambridge CB2 1PZ, U.K.

mag92@eng.cam.ac.uk

AND C. J. OATES

School of Mathematics, Statistics & Physics, Newcastle University,
Newcastle upon Tyne NE1 7RU, U.K.

chris.oates@ncl.ac.uk

Summary

A novel control variate technique is proposed for the post-processing of Markov chain Monte
Carlo output, based on both Stein’s method and an approach to numerical integration due to Sard.
The resulting estimators of posterior expected quantities of interest are proven to be polynomially
exact in the Gaussian context, while empirical results suggest that the estimators approximate
a Gaussian cubature method near the Bernstein–von Mises limit. The main theoretical result
establishes a bias-correction property in settings where the Markov chain does not leave the
posterior invariant. Empirical results across a selection of Bayesian inference tasks are presented.

Some key words: Control variate; Stein operator; Variance reduction.

1. Introduction

This paper focuses on the numerical approximation of integrals of the form

I (f ) =
∫

f (x)p(x) dx,
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352 L. South et al.

where f is a function of interest and p is a positive and continuously differentiable probability
density on R

d , under the restriction that p and its gradient can only be evaluated pointwise
up to an intractable normalization constant. The standard approach to computing I (f ) in this
context is to simulate the first n steps of a p-invariant Markov chain (x(i))∞i=1, possibly after an
initial burn-in period, and to take the average along the sample path as an approximation to the
integral:

I (f ) ≈ IMC(f ) = 1

n

n∑
i=1

f (x(i)); (1)

see Robert & Casella (2013, Ch. 6–10) for background. In this paper E, V and C respectively
denote expectation, variance and covariance with respect to the law P of the Markov chain. Under
regularity conditions on p which ensure that the Markov chain (x(i))∞i=1 is aperiodic, irreducible
and reversible, the convergence of IMC(f ) to I (f ) as n → ∞ is described by a central limit
theorem where convergence occurs in distribution and, if the chain starts in stationarity,

σ(f )2 = V{f (x(1))} + 2
∞∑

i=2

C{f (x(1)), f (x(i))}

is the asymptotic variance of f along the sample path. See Theorem 4.7.7 of Robert & Casella
(2013) and more generally Meyn & Tweedie (2012) for theoretical background. For all but the
most trivial function f we have σ(f )2 > 0, and hence, to achieve an approximation error of
OP(ε), a potentially large number O(ε−2) of calls to f and p is required.

One approach to reducing this computational cost is to employ control variates (Hammersley
& Handscomb, 1964; Ripley, 1987), which involves finding an approximation fn to f that can
be exactly integrated under p, such that σ(f − fn)2 � σ(f )2. Given a choice of fn, the standard
estimator (1) is replaced with

ICV(f ) = 1

n

n∑
i=1

{f (x(i)) − fn(x
(i))} +

∫
fn(x)p(x) dx︸ ︷︷ ︸

(∗)

, (2)

where (∗) is computed exactly. This last requirement makes it challenging to develop control
variates for general use, particularly in Bayesian statistics where often the density p can be
accessed only in a form that is unnormalized. In the Bayesian context, Assaraf & Caffarel (1999),
Mira et al. (2013) and Oates et al. (2017) addressed this challenge by using fn = cn + Lgn
where cn ∈ R, gn is a user-chosen parametric or nonparametric function and L is an operator,
such as the Langevin–Stein operator (Stein, 1972; Gorham & Mackey, 2015), that depends
on p through its gradient and satisfies

∫
(Lgn)(x)p(x) dx = 0 under regularity conditions; see

Lemma 1. Convergence of ICV(f ) to I (f ) has been studied under strong regularity conditions,
and in particular: (i) if gn is chosen parametrically, then in general lim inf σ(f − fn)2 > 0 so
that even if the asymptotic variance is reduced, convergence rates are unaffected; (ii) if gn is
chosen in an appropriate nonparametric manner, then lim sup σ(f − fn)2 = 0 and a smaller
number O(ε−2+δ), with 0 < δ < 2, of calls to f , p and its gradient is required to achieve an
approximation error of OP(ε) for the integral (see Mijatović & Vogrinc, 2018; Oates et al., 2019;
Belomestny et al., 2020a,b,c; Barp et al., 2021). In the parametric case Lgn is called a control
variate, while in the nonparametric case it is called a control functional.
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Semi-exact control functionals 353

Practical parametric approaches to choosing gn have been well studied in the Bayesian context,
typically based on polynomial regression models (Assaraf & Caffarel, 1999; Mira et al., 2013;
Papamarkou et al., 2014; Oates et al., 2016; Brosse et al., 2019), but neural networks have also
been proposed recently (Wan et al., 2019; Si et al., 2020). In particular, existing control variates
based on polynomial regression have the attractive property of being semi-exact, meaning that
there is a well-characterized set of functions f ∈ F for which fn can be shown to exactly equal
f after a finite number n of samples have been obtained. For the control variates of Assaraf &
Caffarel (1999) and Mira et al. (2013), the set F contains certain low-order polynomials when p
is a Gaussian distribution on R

d . Those authors call their control variates zero-variance, but we
prefer the term semi-exact since a general integrand f will not be an element of F . Regardless
of terminology, semi-exactness of the control variate is an appealing property because it implies
that the approximation ICV(f ) to I (f ) is exact on F . Intuitively, the performance of the control
variate method is related to the richness of the set F on which it is exact. For example, polynomial
exactness of cubature rules can be used to establish their high-order convergence rates via a Taylor
expansion argument (e.g., Hildebrand, 1987, Ch. 8).

The development of nonparametric approaches to the choice of gn has focused on ker-
nel methods (Oates et al., 2017; Barp et al., 2021), piecewise-constant approximations
(Mijatović & Vogrinc, 2018) and nonlinear approximations based on selecting basis func-
tions from a dictionary (Belomestny et al., 2020b; South et al., 2020). Theoretical analysis
of nonparametric control variates was provided in the papers cited above, but compared
with parametric methods, practical implementations of nonparametric methods are less well
developed.

In this paper we propose a semi-exact control functional method. This represents the best of
both worlds, in that at small n the semi-exactness property promotes stability and robustness of the
estimator ICV(f ), while at large n the nonparametric regression component can be used to accel-
erate the convergence of ICV(f ) to I (f ). In particular, we argue that in the Bernstein–von Mises
limit, the set F on which our method is exact is precisely the set of low-order polynomials, so
that our method can be regarded as an approximately polynomially exact cubature rule developed
for the Bayesian context. Furthermore, we establish a bias-correction property, which guarantees
that the approximations produced using our method are consistent in certain settings where the
Markov chain is not p-invariant.

Our motivation comes from an approach to numerical integration due to Sard (1949). Many
numerical integration methods are based on constructing an approximation fn to the integrand
f that can be exactly integrated. In this case the integral I (f ) is approximated using (∗) in (2).
In Gaussian and related cubatures, the function fn is chosen in such a way that polynomial
exactness is guaranteed (Gautschi, 2004, § 1.4). On the other hand, in kernel cubature and related
approaches, fn is an element of a reproducing kernel Hilbert space chosen such that an error
criterion is minimized (Larkin, 1970). The contribution of Sard was to combine these two concepts
in numerical integration by choosing fn to enforce exactness on a low-dimensional space F of
functions and using the remaining degrees of freedom to find a minimum-norm interpolant to the
integrand.

2. Methods

2.1. Sard’s method

Many popular methods for numerical integration are based on either (i) enforcing exactness
of the integral estimator on a finite-dimensional set of functions F , typically a linear space
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354 L. South et al.

of polynomials, or (ii) integration of a minimum-norm interpolant selected from an infinite-
dimensional set of functions H. In each case, the result is a cubature method of the form

INI(f ) =
n∑

i=1

wif (x(i)) (3)

for weights {wi}n
i=1 ⊂ R and points {x(i)}n

i=1 ⊂ R
d . Classical examples of methods in the

former category include univariate Gaussian quadrature rules (Gautschi, 2004, § 1.4), which are
determined by the unique {(wi, x(i))}n

i=1 ⊂ R × R
d such that INI(f ) = I (f ) whenever f is a

polynomial of order at most 2n − 1, and Clenshaw–Curtis rules (Clenshaw & Curtis, 1960).
Methods in the minimum-norm interpolant category specify a suitable normed space (H, ‖ · ‖H)

of functions, construct an interpolant fn ∈ H such that

fn ∈ arg min
h∈H

{‖h‖H : h(x(i)) = f (x(i)) for i = 1, . . . , n
}
, (4)

and use the integral of fn to approximate the true integral. Specific examples include splines
(Wahba, 1990) and methods based on kernels or Gaussian processes (Larkin, 1970; O’Hagan,
1991; Briol et al., 2019).

If the set of points {x(i)}n
i=1 is fixed, the cubature method in (3) has n degrees of freedom

corresponding to the choice of the weights {wi}n
i=1. The approach proposed by Sard (1949) is

a hybrid of the two classical approaches just described, calling for m � n of these degrees of
freedom to be used to ensure that INI(f ) is exact for f in a given m-dimensional linear function
space F and, if m < n, allocating the remaining n − m degrees of freedom to select a minimum-
norm interpolant from a large class of functions H. The approach of Sard is therefore exact for
functions in the finite-dimensional set F and, at the same time, suitable for the integration of
functions in the infinite-dimensional set H. Further background on Sard’s method can be found
in Larkin (1974) and Karvonen et al. (2018).

However, it is difficult to implement Sard’s method, or indeed any of the classical approaches
just discussed, in the Bayesian context, because:

(i) the density p can be evaluated pointwise only up to an intractable normalization constant;
(ii) to construct weights, one needs to evaluate the integrals of basis functions of F and of the

interpolant fn, which can be as difficult as evaluating the original integral.

To circumvent these issues, we propose to combine Sard’s approach to integration with Stein oper-
ators (Stein, 1972; Gorham & Mackey, 2015), thus eliminating the need to access normalization
constants and to exactly evaluate integrals.

2.2. Stein operators

Denote the dot product by a · b = aTb, the gradient by ∇x = (∂x1 , . . . , ∂xd )
T and the Laplacian

by �x = ∇x · ∇x. Let ‖x‖ = (x · x)1/2 denote the Euclidean norm on R
d . The construction that

enables us to realize Sard’s method in the Bayesian context is the Langevin–Stein operator L on
R

d (Gorham & Mackey, 2015), defined for sufficiently regular g and p as

(Lg)(x) = �xg(x) + ∇xg(x) · ∇x log p(x). (5)

We refer to L as a Stein operator owing to the use of equations of the form (5), up to a simple
substitution, in the method of Stein (1972) for assessing convergence in distribution and because
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Semi-exact control functionals 355

of its property of producing functions whose integrals with respect to p are zero under suitable
conditions such as those described in Lemma 1.

Lemma 1. If g : R
d → R is twice continuously differentiable, log p : R

d → R is continuously
differentiable and ‖∇xg(x)‖ � C‖x‖−δp(x)−1 is satisfied for some C ∈ R and δ > d − 1, then

∫
(Lg)(x)p(x) dx = 0,

where L is the Stein operator in (5).

The proof is provided in the Supplementary Material. Although our attention is limited to (5),
the choice of Stein operator is not unique, and other Stein operators can be derived using the
generator method of Barbour (1988) or using Schrödinger Hamiltonians (Assaraf & Caffarel,
1999). Contrary to the standard requirements for a Stein operator, the operator L in control
functionals does not need to fully characterize convergence, and consequently a broader class
of functions g can be considered than in more traditional applications of Stein’s method (Stein,
1972).

It follows that if the conditions of Lemma 1 are satisfied by gn : R
d → R, the integral of a

function of the form fn = cn + Lgn is simply cn, the constant. The main challenge in developing
control variates, or functionals, based on Stein operators is therefore to find a function gn such
that the asymptotic variance σ(f − fn)2 is small. To explicitly minimize asymptotic variance,
Mijatović & Vogrinc (2018), Brosse et al. (2019) and Belomestny et al. (2020a) restricted atten-
tion to particular Metropolis–Hastings or Langevin samplers for which the asymptotic variance
can be explicitly characterized. The minimization of empirical variance has also been proposed
and studied in cases where samples are independent (Belomestny et al., 2020b) and dependent
(Belomestny et al., 2020a,c). For an approach that is not tied to a particular Markov kernel,Assaraf
& Caffarel (1999) and Mira et al. (2013), among others, proposed minimizing the mean squared
error along the sample path, which corresponds to the case of an independent sampling method.
In a similar spirit, the constructions in Oates et al. (2017, 2019) and Barp et al. (2021) are based
on a minimum-norm interpolant, where the choice of norm is decoupled from the mechanism by
which the points are sampled.

2.3. The proposed method

In this section we first construct an infinite-dimensional space H and a finite-dimensional
space F of functions; these will underpin the proposed semi-exact control functional method.

For the infinite-dimensional component, let k : R
d × R

d → R be a positive-definite kernel,
meaning that (i) k is symmetric, with k(x, y) = k(y, x) for all x, y ∈ R

d , and (ii) the kernel matrix
(K)i,j = k(x(i), x(j)) is positive definite for any distinct points {x(i)}n

i=1 ⊂ R
d and any n ∈ N.

Recall that such a k induces a unique reproducing kernel Hilbert space H(k). This is a Hilbert
space consisting of functions g : R

d → R that is equipped with an inner product 〈· , ·〉H(k). The
kernel k is such that k(· , x) ∈ H(k) for all x ∈ R

d , and it is reproducing in the sense that
〈g, k(·, x)〉H(k) = g(x) for any g ∈ H(k) and x ∈ R

d . For α ∈ N
d
0 the multi-index notation

xα = xα1
1 · · · xαd

d and |α| = α1 + · · · + αd will be used. If k is twice continuously differentiable
in the sense of Steinwart & Christmann (2008, Definition 4.35), meaning that the derivatives

∂α
x ∂α

y k(x, y) = ∂2|α|

∂xα∂yα
k(x, y)
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356 L. South et al.

exist and are continuous for every multi-index α ∈ N
d
0 with |α| � 2, then

k0(x, y) = LxLyk(x, y), (6)

where Lx stands for application of the Stein operator defined in (5) with respect to variable x, is
a well-defined and positive-definite kernel (Steinwart & Christmann, 2008, Lemma 4.34). The
kernel in (6) can be written as

k0(x, y) = �x�yk(x, y) + u(x)T∇x�yk(x, y)

+ u(y)T∇y�xk(x, y) + u(x)T
{∇x∇T

y k(x, y)
}
u(y),

(7)

where ∇x∇T
y k(x, y) is the d × d matrix with entries {∇x∇T

y k(x, y)}i,j = ∂xi∂yj k(x, y) and u(x) =
∇x log p(x). If k is radial, then (7) can be simplified; see the Supplementary Material. Lemma 2
establishes conditions under which the functions x 
→ k0(x, y), y ∈ R

d , and hence elements
of the Hilbert space H(k0) reproduced by k0, have zero integral. Let ‖M‖OP = sup‖x‖=1 ‖Mx‖
denote the operator norm of a matrix M ∈ R

d×d .

Lemma 2. If k : R
d × R

d → R is twice continuously differentiable in each argument,
log p : R

d → R is continuously differentiable, and ‖∇x∇T
y k(x, y)‖OP � C(y)‖x‖−δp(x)−1

and ‖∇x�yk(x, y)‖ � C(y)‖x‖−δp(x)−1 are satisfied for some C : R
d → (0, ∞) and δ > d − 1,

then ∫
k0(x, y)p(x)dx = 0 (8)

for every y ∈ R
d , where k0 is defined in (6).

The proof is provided in the Supplementary Material. The infinite-dimensional space H used
here is exactly the reproducing kernel Hilbert space H(k0). The basic mathematical properties of
k0 and the Hilbert space it reproduces are given in the Supplementary Material, and these can be
used to inform the selection of an appropriate kernel.

For the finite-dimensional component, let � be a linear space of twice continuously differ-
entiable functions with dimension m − 1, where m ∈ N, and a basis {φi}m−1

i=1 . Define the space
obtained by applying the differential operator (5) to � as L� = span{Lφ1, . . . , Lφm−1}. If the
preconditions of Lemma 1 are satisfied for each basis function g = φi, then linearity of the
Stein operator implies that

∫
(Lφ) dp = 0 for every φ ∈ �. Typically we will select � = Pr as

the polynomial space Pr = span{xα : α ∈ N
d
0 , 0 < |α| � r} for some nonnegative integer r.

Constant functions are excluded from Pr since they are in the null space of L; when required
we let Pr

0 = span{1} ⊕ Pr denote the larger space with the constant functions included. The
finite-dimensional space F is then taken to be F = span{1} ⊕ L� = span{1, Lφ1, . . . Lφm−1}.

We are now ready to state the proposed method. Following Sard, we approximate the integrand f
with a function fn that interpolates f at the locations x(i), is exact on the m-dimensional linear space
F , and minimizes a particular seminorm subject to the first two constraints. It will occasionally
be useful to emphasize the dependence of fn on f using the notation fn(·) = fn(· ; f ). The proposed
interpolant takes the form

fn(x) = b1 +
m−1∑
i=1

bi+1(Lφi)(x) +
n∑

i=1

aik0(x, x(i)), (9)
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Fig. 1. (a) The interpolant fn from (9) at n = 5 points to the function f (x) = sin{0.5π(x − 1)} + exp{−(x − 0.5)2}
for the Gaussian density p(x) = N (x; 0, 1); the interpolant uses the Gaussian kernel k(x, y) = exp{−(x − y)2} and a
polynomial parametric basis with r = 2. Two translates (b) k0(· , 0) and (c) k0(· , 1) of the kernel (6).

where the coefficients a = (a1, . . . , an) ∈ R
n and b = (b1, . . . , bm) ∈ R

m are selected such that
the following two conditions hold.

Condition 1 (Interpolation). We have fn(x(i); f ) = f (x(i)) for i = 1, . . . , n.

Condition 2 (Semi-exactness). We have fn(· ; f ) = f (·) whenever f ∈ F .

Since F is m-dimensional, these requirements yield a total of n + m constraints. Under weak
conditions, discussed in § 2.5, the total number of degrees of freedom due to selection of a and
b is equal to n + m and Conditions 1 and 2 can be satisfied. Furthermore, the corresponding
function fn can be shown to minimize a particular seminorm on a larger space of functions,
subject to the interpolation and exactness constraints; to limit the scope of the paper, we do not
discuss this characterization further, but the seminorm is defined in (16) and the reader can find
full details in Wendland (2004, Theorem 13.1). Figure 1 illustrates one such interpolant. The
proposed estimator of the integral is then

ISECF(f ) =
∫

fn(x)p(x)dx, (10)

a special case of (2) that we call a semi-exact control functional, as the interpolation condition
causes the first term in (2) to vanish. The following is immediate from (9) and (10).

Corollary 1. Under the hypotheses of Lemma 1 for each g = φi (i = 1, . . . , m − 1) and
Lemma 2, whenever the estimator ISECF(f ) is well-defined, we have ISECF(f ) = b1 where b1 is
the constant term in (9).

The earlier work of Assaraf & Caffarel (1999) and Mira et al. (2013) corresponds to a = 0
and b |= 0, while setting b = 0 in (9) and ignoring the semi-exactness requirement recovers
the unique minimum-norm interpolant in the Hilbert space H(k0) where k0 is reproducing, in
the sense of (4). The work of Oates et al. (2017) corresponds to bi = 0 for i = 2, . . . , m. It is
therefore clear that the proposed approach is a strict generalization of existing work and can be
seen as a compromise between semi-exactness and minimum-norm interpolation.

2.4. Polynomial exactness in the Bernstein–von Mises limit

A central motivation for our approach is the prototypical case where p is the density of a
posterior distribution Px|y1,...,yN for a latent variable x given independent and identically distributed
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data y1, . . . , yN ∼ Py1,...,yN |x. Under regularity conditions discussed in van derVaart (1998, § 10.2),
the Bernstein–von Mises theorem states that

∥∥Px|y1,...,yN − N {x̂N , N−1I (x̂N )−1}∥∥TV → 0,

where x̂N is a maximum likelihood estimate for x, I (x) is the Fisher information matrix evaluated
at x, ‖ · ‖TV is the total variation norm, and convergence is in probability as N → ∞ with respect
to the law Py1,...,yN |x of the dataset. In this limit, polynomial exactness of the proposed method
can be established. Indeed, for a Gaussian density p with mean x̂N ∈ R

d and precision NI (x̂N ),
if φ(x) = xα for a multi-index α ∈ N

d
0 , then

(Lφ)(x) =
d∑

i=1

αi

{
(αi − 1)xαi−2

i − N

2
Pi(x)x

αi−1
i

} ∏
j |=i

x
αj
j ,

where Pi(x) = 2eT
i I (x̂N )(x − x̂N ) with ei being the ith coordinate vector in R

d . This allows us to
obtain the following result, whose proof is provided in the Supplementary Material.

Lemma 3. Consider the Bernstein–von Mises limit and suppose that the Fisher information
matrix I (x̂N ) is nonsingular. Then, for the choice � = Pr with r ∈ N, the estimator ISECF is
exact on F = Pr

0 .

Thus the proposed estimator is polynomially exact up to order r in the Bernstein–von Mises
limit. We believe that this property can confer robustness of the estimator in a broad range of
applied contexts. At finite N , when the limit has not been reached, the above argument can be
expected to hold only approximately.

2.5. Computation for the proposed method

Define the n × m matrix

P =
⎛
⎜⎝

1 Lφ1(x(1)) · · · Lφm−1(x(1))
...

...
. . .

...
1 Lφ1(x(n)) · · · Lφm−1(x(n))

⎞
⎟⎠ , (11)

which is sometimes called a Vandermonde or alternant matrix, corresponding to the linear space
F . Let K0 be the n × n matrix with entries (K0)i,j = k0(x(i), x(j)), and let f be the n-dimensional
column vector with entries (f )i = f (x(i)).

Lemma 4. Let the n � m points x(i) be distinct and F-unisolvent, meaning that the matrix P
in (11) has full rank. Let k0 be a positive-definite kernel for which (8) is satisfied. Then ISECF(f )

is well-defined and the coefficients a and b are given by the solution of the linear system

(
K0 P
PT 0

) (
a
b

)
=

(
f
0

)
. (12)

In particular,

ISECF(f ) = eT
1(P

TK−1
0 P)−1PTK−1

0 f . (13)
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The proof is provided in the Supplementary Material. Equation (13) is a linear combination
of the values in f and so the proposed estimator can be recognized as a cubature method of the
form (3) with weights

w = K−1
0 P(PTK−1

0 P)−1e1. (14)

The requirement in Lemma 4 for the x(i) to be distinct precludes, for example, the direct use of
Metropolis–Hastings output. However, as emphasized in Oates et al. (2017) for control functionals
and studied further in Liu & Lee (2017) and Hodgkinson et al. (2020), the consistency of ISECF
does not require that the Markov chain be p-invariant. It is therefore trivial to, for example, filter
out duplicate states from Metropolis–Hastings output.

The solution of linear systems of equations defined by an n × n matrix K0 and an m × m
matrix PTK−1

0 P entails a computational cost of O(n3 + m3). In some situations this cost may yet
be smaller than the cost associated with evaluation of f and p, but in general this computational
requirement limits the applicability of the method just described. In the Supplementary Material
we propose a computationally efficient approximation, IASECF, to the full method, based on
a combination of the Nyström approximation (Williams & Seeger, 2001) and the well-known
conjugate gradient method, inspired by the recent work of Rudi et al. (2017).

3. Empirical assessment

3.1. Experimental set-up

We performed a detailed comparison of existing and proposed control variate and control
functional techniques. Three examples were considered: a Gaussian target, representing the
Bernstein–von Mises limit; a setting in which nonparametric control functional methods per-
form well; and a setting where parametric control variate methods are known to be successful.
In each case we determine whether or not the proposed semi-exact control functional method is
competitive with the state-of-the-art technique.

Specifically, we compare the following estimators, all instances of ICV in (2) for a particular
choice of fn, which may or may not be an interpolant:

(i) standard Monte Carlo integration, (1), based on Markov chain output;
(ii) the control functional estimator recommended in Oates et al. (2017), ICF(f ) =

(1TK−1
0 1)−11TK−1

0 f ;
(iii) the zero-variance polynomial control variate method of Assaraf & Caffarel (1999) and Mira

et al. (2013), IZV(f ) = eT
1(P

TP)−1PTf ;
(iv) the auto-zero-variance approach of South et al. (2020), which uses five-fold cross-validation

to automatically select (A) between the ordinary least squares solution IZV and an �1-
penalized alternative, where the penalization strength is itself selected using 10-fold cross-
validation within the test dataset, and (B) the polynomial order;

(v) the proposed semi-exact control functional estimator, (13);
(vi) an approximation, IASECF, of (13) based on the Nyström approximation and the conjugate

gradient method, described in the Supplementary Material.
Open-source software for implementing all of the above methods is available in the R (R Devel-
opment Core Team, 2022) package ZVCV (South, 2020). The same sets of n samples were used
for all estimators, in both the construction of fn and the evaluation of ICV. For methods in which
there is a fixed polynomial basis we considered only orders r = 1 and r = 2, following the
recommendation of Mira et al. (2013). For kernel-based methods, duplicate values of xi were
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removed, as discussed in § 2.5, and Frobenius regularization was employed whenever the con-
dition number of the kernel matrix K0 was close to machine precision (Higham, 1988). Several
choices of kernel were considered, but for brevity we focus here on the rational quadratic kernel
k(x, y; λ) = (1 + λ−2‖x − y‖2)−1. This kernel was found to yield the best performance across
a range of experiments; a comparison with the Matérn and Gaussian kernels is provided in the
Supplementary Material. The parameter λ was selected using five-fold cross-validation, based
again on performance across a spectrum of experiments; a comparison with the median heuristic
(Garreau et al., 2017) is presented in the Supplementary Material.

To ensure that our assessment is practically relevant, the estimators were compared on the basis
of both statistical and computational efficiency relative to the standard Monte Carlo estimator.
The statistical efficiency E(ICV) and computational efficiency C(ICV) of an estimator ICV of the
integral I are defined as

E(ICV) = E{(IMC − I )2}
E{(ICV − I )2} , C(ICV) = E(ICV)

TMC

TCV
,

where TCV denotes the combined wall time for sampling the x(i) and computing the estimator
ICV. For the results reported below, E and C were approximated using averages Ê and Ĉ over 100
realizations of the Markov chain output.

3.2. Gaussian illustration

Here we consider a Gaussian integral that serves as an analytically tractable caricature of
a posterior near the Bernstein–von Mises limit. This enables us to assess the effect of the
sample size n and dimension d on each estimator, in a setting that is not confounded by
the idiosyncrasies of any particular Markov chain Monte Carlo method. Specifically, we set
p(x) = (2π)−d/2 exp(−‖x‖2/2) where x ∈ R

d . For the parametric component we set � = Pr

so that, from Lemma 3, ISECF is exact on polynomials of order at most r; this holds also for IZV.
For the integrand f : R

d → R with d � 3, we took

f (x) = 1 + x2 + 0.1x1x2x3 + sin(x1) exp{−(x2x3)
2} (15)

so that the integral is analytically tractable, i.e., I (f ) = 1, and no method will be exact.
Figure 2 displays the statistical efficiency of each estimator for 10 � n � 1000 and 3 �

d � 100. Computational efficiency is not shown since exact sampling from p in this example is
trivial. The proposed semi-exact control functional method performs consistently well compared
to its competitors for this nonpolynomial integrand. Unsurprisingly, the best improvements are
for large n and small d, where the proposed method results in a statistical efficiency over 100
times better than the baseline estimator and up to five times better than the next-best method.

3.3. Capture-recapture example

The two remaining examples, presented here and in § 3.4, are applications of Bayesian sta-
tistics described in South et al. (2020). In each case the aim is to estimate expectations with
respect to a posterior distribution Px|y of the parameters x of a statistical model based on y,
an observed dataset. Samples x(i) were obtained using the Metropolis-adjusted Langevin algo-
rithm (Roberts & Tweedie, 1996), which is a Metropolis–Hastings algorithm with proposal
N {x(i−1)+(h2/2)
∇x log Px|y(x(i−1) | y), h2
}. Step sizes of h = 0.72 for the capture-recapture
example and h = 0.3 for the sonar example in § 3.4 were selected, and an empirical approxi-
mation of the posterior covariance matrix was used as the preconditioner 
 ∈ R

d×d . Since the
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Fig. 2. Gaussian example: (a) estimated statistical efficiency Ê with d = 4 and (b) estimated statistical efficiency Ê with
n = 1000 for the integrand (15). The methods compared are standard Monte Carlo integration (light blue), the control
functional estimator of Oates et al. (2017) (dark blue), the zero-variance polynomial control variate method of Assaraf
& Caffarel (1999) and Mira et al. (2013) (green), the auto-zero-variance approach of South et al. (2020) (yellow), the
proposed semi-exact control functional estimator (orange), and an approximate semi-exact control functional estimator
(pink); dashed and solid lines correspond to polynomial order 2 and order 1, respectively (if applicable).

proposed method does not rely on the Markov chain being Px|y-invariant, we also repeated these
experiments using the unadjusted Langevin algorithm (Ermak, 1975; Parisi, 1981); the results
are similar and are reported in the Supplementary Material.

In this first example, a Cormack–Jolly–Seber capture-recapture model (Lebreton et al., 1992)
is used to model data on the capture and recapture of the bird species Cinclus cinclus (Marzolin,
1988). The integrands of interest are the marginal posterior means fi(x) = xi (i = 1, . . . , 11),
where x = (φ1, . . . , φ5, p2, . . . , p6, φ6p7), with φj the probability of survival from year j to j + 1
and pj the probability of being captured in year j. The likelihood is

�(y | x) ∝
6∏

i=1

χ
di
i

7∏
k=i+1

{
φipk

k−1∏
m=i+1

φm(1 − pm)

}yik

,

where di = Di − ∑7
k=i+1 yik , χi = 1 − ∑7

k=i+1 φipk
∏k−1

m=i+1 φm(1 − pm) and the data y consist
of Di, the number of birds released in year i, and yik , the number of birds caught in year k out
of those released in year i, for i = 1, . . . , 6 and k = 2, . . . , 7. Following South et al. (2020),
parameters are transformed to the real line using x̃j = log{xj/(1 − xj)} and the adjusted prior
density for x̃j is exp(x̃j)/{1 + exp(x̃j)}2 (j = 1, . . . , 11).

South et al. (2020) found that nonparametric methods outperformed standard parametric meth-
ods for this 11-dimensional example. The estimator ISECF combines elements of both approaches,
so one is interested in determining how the method performs. It is clear from Fig. 3 that all
variance-reduction approaches are helpful in improving upon the vanilla Monte Carlo estimator
in this example. The best improvement in terms of statistical and computational efficiency is
provided by ISECF, which also has similar performance to ICF.
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Fig. 3. Capture-recapture example: (a) estimated statistical efficiency Ê and (b) estimated computational efficiency
Ĉ. Efficiency here is reported as an average over the 11 expectations of interest. The methods compared are standard
Monte Carlo integration (light blue), the control functional estimator of Oates et al. (2017) (dark blue), the zero-variance
polynomial control variate method of Assaraf & Caffarel (1999) and Mira et al. (2013) (green), the auto-zero-variance
approach of South et al. (2020) (yellow), the proposed semi-exact control functional estimator (orange), and an
approximate semi-exact control functional estimator (pink); dashed and solid lines correspond to polynomial order 2
and order 1, respectively (if applicable).

3.4. Sonar example

Our final application is a 61-dimensional logistic regression example using data from Gorman
& Sejnowski (1988) and Dheeru & Karra Taniskidou (2017). In standard regression notation, the
parameters are denoted by β ∈ R

61, the matrix of covariates in the logistic regression model is
X ∈ R

208×61, where the first column consists of all ones to fit an intercept, and the response is
denoted by y ∈ R

208. In this application, X contains information related to energy frequencies
reflected from either a metal cylinder, y = 1, or a rock, y = 0. The loglikelihood for this model is

log �(y, X | β) =
208∑
i=1

[
yiXi,·β − log{1 + exp(Xi,·β)}].

We use an N (0, 52) prior for the predictors, after standardizing to a standard deviation of 0.5, and
a N (0, 202) prior for the intercept, following Chopin & Ridgway (2017) and South et al. (2020);
however, we focus on estimating the more challenging integrand f (β) = {1 + exp(−X̃ β)}−1,
which can be interpreted as the probability that observed covariates X̃ emanate from a metal
cylinder. The gold standard of I ≈ 0.4971 was obtained from a Metropolis–Hastings procedure
(Hastings, 1970) with 10 million iterations, run with a multivariate normal random walk proposal.

Figure 4 illustrates the statistical and computational efficiency of estimators for various n in this
example. It is interesting that ISECF and IASECF offer similar statistical efficiency to IZV, especially
given the poor relative performance of ICF. Since it is inexpensive to obtain the n samples using the
Metropolis-adjusted Langevin algorithm in this example, IZV and IASECF are the only approaches
that yield improvements in computational efficiency over the baseline estimator for the majority
of n values considered, and even in these instances the improvements are marginal.
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Fig. 4. Sonar example: (a) estimated statistical efficiency Ê and (b) estimated computational efficiency Ĉ. The methods
compared are standard Monte Carlo integration (light blue), the control functional estimator of Oates et al. (2017)
(dark blue), the zero-variance polynomial control variate method of Assaraf & Caffarel (1999) and Mira et al. (2013)
(green), the auto-zero-variance approach of South et al. (2020) (yellow), the proposed semi-exact control functional
estimator (orange), and an approximate semi-exact control functional estimator (pink).

4. Theoretical properties and convergence assessment

4.1. Finite-sample error and a practical diagnostic

The performance of the proposed method can be monitored using the finite-sample error bound
provided in Proposition 1. Proposition 1 makes use of the seminorm

|f |k0,F = inf
f =h+g,

h∈F , g∈H(k0)

‖g‖H(k0), (16)

which is well-defined when the infimum is taken over a nonempty set; otherwise |f |k0,F = ∞.

Proposition 1. Suppose that the hypotheses of Corollary 1 hold. Then the integration error
satisfies the bound

|I (f ) − ISECF(f )| � |f |k0,F (wTK0w)1/2, (17)

where the weights w, defined in (14), satisfy

w = arg min
v∈Rn

(vTK0v)1/2 such that
n∑

i=1

vih(x(i)) =
∫

h(x)p(x)dx for every h ∈ F .

The proof is provided in the Supplementary Material. The first quantity on the right-hand side
of (17), |f |k0,F , can be approximated by |fn|k0,F when fn is a reasonable approximation for f ,
and this can in turn can be bounded as |fn|k0,F � (aTK0a)1/2. The finiteness of |f |k0,F ensures
the existence of a solution to the Stein equation, sufficient conditions for which are discussed in
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Fig. 5. The mean absolute error (blue) and mean of the approximate upper bound (wTK0w)1/2(aTK0a)1/2 (green) for
different values of n in the sonar example of § 3.4. Both are based on the semi-exact control functional method with
� = P1.

Mackey & Gorham (2016) and Si et al. (2020). The second quantity on the right-hand side of
(17), (wTK0w)1/2, is computable and can be recognized as a kernel Stein discrepancy between
the empirical measure

∑n
i=1 wiδ(x(i)) and the distribution whose density is p, based on the Stein

operator L (Chwialkowski et al., 2016; Liu et al., 2016). Our choice of Stein operator differs
from that in Chwialkowski et al. (2016) and Liu et al. (2016). There has been substantial recent
research into the use of kernel Stein discrepancies for assessing algorithm performance in the
Bayesian computational context (Gorham & Mackey, 2017; Chen et al., 2018, 2019; Singhal et al.,
2020; Hodgkinson et al., 2020), and one can also exploit this discrepancy as a diagnostic for the
performance of the semi-exact control functional. The diagnostic that we propose to monitor is
the product (wTK0w)1/2(aTK0a)1/2. This approach to error estimation was also suggested, outside
the Bayesian context, in Fasshauer (2011, § 5.1).

The empirical results shown in Fig. 5 suggest that this diagnostic provides a conservative
approximation of the actual error. Further work is needed to establish whether this diagnostic
detects convergence and nonconvergence in general.

4.2. Consistency of the estimator

In what follows we consider an increasing number n of samples x(i), while the finite-
dimensional space �, with basis {φ1, . . . , φm−1}, is held fixed. The samples x(i) will be assumed
to arise from a V -uniformly ergodic Markov chain; the reader is referred to Meyn & Tweedie
(2012, Ch. 16) for the relevant background. Recall that the points (x(i))n

i=1 are said to be F-
unisolvent if the matrix in (11) has full rank. It will be convenient to introduce an inner product
〈u, v〉n = uTK−1

0 v and associated norm ‖u‖n = 〈u, u〉1/2
n . Let � be the matrix that projects

orthogonally onto the columns of [�]i,j = Lφj(x(i)) with respect to the 〈· , ·〉n inner product.

Theorem 1. Suppose that the hypotheses of Corollary 1 hold, and let f be any function for
which |f |k0,F < ∞. Let q be a probability density with p/q > 0 on R

d , and consider a q-invariant
Markov chain (x(i))n

i=1, assumed to be V -uniformly ergodic for some V : R
d → [1, ∞), such

that
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(i) supx∈Rd V (x)−r {p(x)/q(x)}4 k0(x, x)2 < ∞ for some 0 < r < 1;
(ii) the points (x(i))n

i=1 are almost surely distinct and F-unisolvent;
(iii) lim supn→∞ ‖� 1‖n/‖1‖n < 1 almost surely.

Then |ISECF(f ) − I (f )| = OP(n1/2).

This demonstrates that, even in the biased-sampling setting, the proposed estimator is con-
sistent. The proof is provided in the Supplementary Material and exploits a recent theoretical
contribution from Hodgkinson et al. (2020). Assumption (i) serves to ensure that q is simi-
lar enough to p that a q-invariant Markov chain will also explore the high-probability regions
of p, as discussed in Hodgkinson et al. (2020). Sufficient conditions for V -uniform ergodic-
ity are necessarily Markov chain-dependent. The case of the Metropolis-adjusted Langevin
algorithm is discussed in Roberts & Tweedie (1996) and Chen et al. (2019), and in particu-
lar Theorem 9 of Chen et al. (2019) gives sufficient conditions for V -uniform ergodicity with
V (x) = exp(s‖x‖) for all s > 0. Under these conditions, and with the rational quadratic ker-
nel k considered in § 3, we have k0(x, x) = O{‖∇x log p(x)‖2} and so (i) is satisfied whenever
{p(x)/q(x)}‖∇x log p(x)‖ = O{exp(t‖x‖)} for some t > 0, a weak requirement. Assumption (ii)
ensures that the finite-sample error bound (17) is almost surely well-defined. Assumption (iii)
ensures that the points in the sequence (x(i))n

i=1 distinguish, asymptotically, the constant function
from the functions {φi}m−1

i=1 , which is a weak technical requirement.

5. Discussion

Several possible extensions of the proposed method can be considered. For example, the
parametric component � could be adapted to the particular f and p using a dimensionality
reduction method. Likewise, extending cross-validation to encompass the choice of kernel and
even the choice of control variate or control functional estimator may be useful. The potential for
alternatives to the Nyström approximation to further improve scalability of the method can also
be explored. In terms of the points x(i) on which the estimator is defined, these could be optimally
selected to minimize the error bound in (17), for example following the approaches of Chen
et al. (2018, 2019). Finally, we highlight a possible extension to the case where only stochastic
gradient information is available, following Friel et al. (2016) in the parametric context.
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