Correction to: 'Valid sequential inference on probability forecast performance'

ALEXANDER HENZI and JOHANNA F. ZIEGEL

Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland alexander.henzi@stat.unibe.ch johanna.ziegel@stat.unibe.ch

Biometrika (2021), 109, pp. 647-63.

In the paragraph before Proposition 2 of Henzi & Ziegel (2021) it is claimed that

$$e_T = \frac{1}{h} \sum_{k=1}^{h} \prod_{l \in I_k} E_{p_l, q_l; \lambda_l}(Y_{l+h}), \quad I_k = \{k + hs \colon s = 0, \dots \lfloor (T-k)/h \rfloor - 1\},\$$

is a nonnegative supermartingale. This is generally not true for h > 1. As a consequence, Proposition 2 is not correct for h > 1, and should be adapted as follows.

PROPOSITION 2. Let $\tau \in \mathbb{N}$ be a stopping time. Then under the assumptions of Proposition 1,

$$\mathbb{E}_{\mathbb{Q}}(e_{\tau+h-1}) \leqslant 1, \quad \mathbb{Q} \in \mathcal{H}_{S}$$

The quantity $p_{t_0} = \min\{1, \inf_{s=1,\dots,t_0} 1/e_s\}$ defined in the last paragraph of § 3 is an anytime-valid *p*-value only for h = 1, but the stopping time $\tau_{\alpha,h}$ guarantees that $\mathbb{Q}(\tau_{\alpha,h} < \infty) \leq \alpha$ for $h > 1, \alpha \in (0, 1)$, and $\mathbb{Q} \in \mathcal{H}_{S}$, because $\tau_{\alpha,h} < \infty$ implies $e_{\tau_{\alpha,h}+h-1} \geq 1/\alpha$. Hence all empirical results in the article remain valid. An anytime-valid *p*-value for h > 1 is given by

$$p_{t_0} = \min\left(1, \inf_{s=1,\dots,t_0}\left[\max_{j=s-h+1,\dots,s-1} E_{p_j,q_j;\lambda_j}\{\mathbb{1}(p_j > q_j)\}^{-1}/e_s\right]\right),$$

since $p_t \leq \alpha$ for some $t \in \mathbb{N}$ if and only if $\tau_{\alpha,h} < \infty$.

Proof of Proposition 2. Recall that the process $(Y_t, p_t, q_t, \lambda_t)_{t \in \mathbb{N}}$ is adapted to $\mathfrak{F} = (\mathcal{F}_t)_{t \in \mathbb{N}}$. Let h > 1. For k = 1, ..., h, define $I_k(t) = \{k + hs : s = 0, ... \lfloor (t - k)/h \rfloor - 1\}$,

$$M_t^{[k]} = \prod_{l \in I_k(t)} E_{p_l, q_l; \lambda_l}(Y_{l+h}), \quad \mathfrak{F}^{[k]} = \left(\mathcal{F}_{\lfloor \frac{t-k}{h} \rfloor h+k}\right)_{t \in \mathbb{N}},$$

with $\prod_{\emptyset} := 1$ and $\mathcal{F}_j := \{\Omega, \emptyset\}$ for $j \leq 0$. Then $e_t = \sum_{k=1}^h M_t^{[k]}/h$. For k = 1, ..., h, the process $(M_t^{[k]})_{t \in \mathbb{N}}$ is a nonnegative supermartingale with respect to $\mathfrak{F}^{[k]}$ for any $\mathbb{Q} \in \mathcal{H}_S$, and therefore satisfies $\mathbb{E}_{\mathbb{Q}}(M_{\tau[k]}^{[k]}) \leq 1$ for any $\mathfrak{F}^{[k]}$ -stopping time $\tau^{[k]}$. So

$$\mathbb{E}_{\mathbb{Q}}\left(\frac{1}{h}\sum_{\ell=1}^{h}M_{\tau^{[k]}}^{[k]}\right)\leqslant 1.$$

© 2022 Biometrika Trust

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

for $\mathfrak{F}^{[k]}$ -stopping times $\tau^{[k]}$, $k = 1, \ldots, h$. If τ is an \mathfrak{F} -stopping time, then

$$\left(\left\lfloor \frac{\tau-k-1}{h} \right\rfloor + 1\right)h + k =: f_k(\tau) \in \{\tau, \dots, \tau+h-1\}$$

is an $\mathfrak{F}^{[k]}$ -stopping time. To see this, let t = k + hs + j for $s \in \mathbb{N}_0$, $k \in \{1, \dots, k\}, j \in \{0, \dots, h-1\}$. Then $\lfloor (t-k)/h \rfloor h + k = k + hs$, and $f_k(\tau) \leq t$ if and only if $\tau \leq k + hs$, so

$$\{f_k(\tau) \leqslant t\} = \{\tau \leqslant k + hs\} \in \mathcal{F}_{k+hs} = \mathcal{F}_{\lfloor \frac{t-k}{h} \rfloor h+k}.$$

This implies that for any \mathfrak{F} -stopping time τ , we obtain

$$\mathbb{E}_{\mathbb{Q}}(M_{\tau+h-1}) = \mathbb{E}_{\mathbb{Q}}\left(\frac{1}{h}\sum_{k=1}^{h}M_{f_{k}(\tau)}^{[k]}\right) \leqslant 1, \quad \mathbb{Q} \in \mathcal{H}_{S},$$

using the fact that $M_{t+h-1} = \sum_{k=1}^{h} M_{f_k(t)}^{[k]} / h$ for $t \in \mathbb{N}$.

The following example demonstrates that the statement of Proposition 2 with τ instead of $\tau + h - 1$ is not true. Let $h = 2, \varepsilon \in (0, 1)$, and $\delta \in (0, \varepsilon)$. Define $p_1 = \varepsilon - \delta, q_1 = \varepsilon + \delta$, and $p_t = q_t = 0.5$ for t > 1. Let $S(p, y) = (p - y)^2$. Then the one-period e-value for t = 1 equals

$$E_{p_1,q_1}^{\pi_{1,1}}(y) = \frac{\pi_{1,1}^{y}(1-\pi_{1,1})^{1-y}}{\varepsilon^{y}(1-\varepsilon)^{1-y}},$$

with $\pi_{1,1} \in (\varepsilon, 1]$, and $E_{p_t,q_t}^{\pi_{1,t}}(y) \equiv 1$ for t > 1, which gives

$$e_t = \begin{cases} 1, & t = 1, 2, \\ 0.5 E_{p_1, q_1}^{\pi_{1,1}}(Y_3) + 0.5, & t \ge 3. \end{cases}$$

The null hypothesis consists of all distributions \mathbb{Q} generating the sequence $(Y_t)_{t\in\mathbb{N}}$ such that $\mathbb{Q}(Y_3 = 1 | Y_1) \leq \varepsilon$. Define \mathbb{Q} as follows. Let $\mathbb{Q}(Y_1 = 1)$ be arbitrary; Y_2 , Y_3 independent of Y_1 with $Y_2 = Y_3$ almost surely and $\mathbb{Q}(Y_2 = Y_3 = 1) = p \in (0, \varepsilon]$; and Y_t for t > 3 with arbitrary distribution. Define the stopping time $\tau = 3Y_2 + 2(1 - Y_2)$. Then,

$$e_{\tau} = \begin{cases} 1, & Y_2 = 0, \\ 0.5\pi_{1,1}/\varepsilon + 0.5, & Y_2 = 1, \end{cases}$$

so that $\mathbb{E}_{\mathbb{Q}}(e_{\tau}) > 1$ for $\pi_{1,1} > \varepsilon$, since $\mathbb{Q}(Y_2 = 1) = p > 0$.

REFERENCES

HENZI, A. & ZIEGEL, J. F. (2021). Valid sequential inference on probability forecast performance. *Biometrika* **109**, 647–63.

[Received on 1 July 2022. Editorial decision on 1 July 2022]

1182