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Summary

We propose a new inference framework called localized conformal prediction. It generalizes
the framework of conformal prediction by offering a single-test-sample adaptive construction that
emphasizes a local region around this test sample, and can be combined with different conformal
scores. The proposed framework enjoys an assumption-free finite sample marginal coverage
guarantee, and it also offers additional local coverage guarantees under suitable assumptions. We
demonstrate how to change from conformal prediction to localized conformal prediction using
several conformal scores, and we illustrate a potential gain via numerical examples.
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1. Introduction

Conformal prediction is an increasingly popular framework for measuring prediction uncer-
tainty. Let Zi := (Xi, Yi) (i = 1, . . . , n) be independent and identically distributed regression data
from some joint distribution PXY , where Xi ∈ R

p is the feature and Yi ∈ R is the response. Given
a new feature Xn+1 with its response Yn+1 unobserved, the goal of conformal prediction is to
construct a prediction interval C(Xn+1) that covers Yn+1 with probability at least α:

P{Yn+1 ∈ C(Xn+1)} � α (1)

for some desired coverage level α ∈ (0, 1), usually close to 1. Setting Zn+1 = (Xn+1, Yn+1) as
the (n + 1)th observation, conformal prediction achieves (1) under the assumption that Zn+1 is
also independently generated from PXY , without additional distributional assumptions on PXY
itself (Vovk et al., 2005, 2009; Shafer & Vovk, 2008; Lei & Wasserman, 2014; Lei et al., 2018).

Let Z = {Z1, . . . , Zn+1} be the unordered set of feature-response pairs, including Zn+1 =
(Xn+1, Yn+1). Conformal prediction relies on a conformal score function V (·) for the observation
z = (x, y), whose form may also depend on the unordered data Z , i.e., V (z) = V (z; Z). We
consider score functions V (·) where large values of V (z) indicate that z is less likely to be a
sample from PXY . For instance, we may choose V (z) = |μ̂(x) − y|, where μ̂(·) is a prediction
function learned from the data Z or from a separate independent dataset.

It is guaranteed that the Vi := V (Zi) are exchangeable when Z1, . . . , Zn+1 are independent
and identically distributed. Letting Q(α; V1:n+1) denote the level-α quantile of the empirical
distribution of V1, . . . , Vn+1, then

P{Vn+1 � Q(α; V1:n+1)} � α. (2)
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34 L. Guan

Conformal prediction constructs the level-α prediction interval for Yn+1 by inverting the above
relationship:

C(Xn+1) = [y : V (Xn+1, y) � Q{α; V1:n ∪ V (Xn+1, y)}]. (3)

If the form of V (z) = V (z; Z) also depends on Z then in (3) each score Vi = V (Zi; Z) also
depends on y and is understood to be evaluated at Zn+1 = (Xn+1, y). By the guarantee (2),
C(Xn+1) constructed in this way satisfies (1) for any distribution PXY .

It is common in data applications for the conditional distribution of Y given X = x to be
heterogeneous across different values of x ∈ R

p. We want the constructed prediction interval to
adapt to this heterogeneity in such settings. However, by definition, the interval C(Xn+1) from
conformal prediction is based on the global exchangeability of the conformal scores V1, . . . , Vn+1,
and depends equally on scores where Xi is far from Xn+1 as on scores where Xi is close to Xn+1.
To adapt to the heterogeneity of Y given X = x, one active area of research has been to design the
score function V (·) to directly capture this heterogeneity, in a way so that the quantiles of V (·)
are more homogeneous across different x ∈ R

p (Lei & Wasserman, 2014; Lei et al., 2018; Izbicki
et al., 2019; Romano et al., 2019; Chernozhukov et al., 2021; Gupta et al., 2021). For example,
Romano et al. (2019) considered the quantile regression score V (z) = max{q̂lo(x)−y, y−q̂hi(x)},
where q̂lo(x) and q̂hi(x) are estimated quantiles for the conditional distribution of Y given X = x.
However, this approach may yield deteriorated performance when these quantile functions are
difficult to estimate for some regions.

In this paper, we take a different approach, and generalize the inference framework itself by
weighting the conformal scores V1, . . . , Vn differently based on the observed feature value Xn+1.
Our method places more weight on scores Vi for which Xi belongs to a local region around Xn+1.
Performing conformal inference while emphasizing the unique role of Xn+1 is an interesting and
open problem, and we provide the first such generalization with theoretical guarantees. We call
this generalized framework localized conformal prediction, which can be flexibly combined with
recently developed conformal score functions.

The main idea of localized conformal prediction is to introduce a localizer around Xn+1, and up-
weight samples close to Xn+1 according to this localizer. For example, we may take the localizer
H (Xn+1, Xi) = exp(−5|Xi − Xn+1|), consider the weighted empirical distribution where Vi has
weight proportional to H (Xn+1, Xi), and include the value y in C(Xn+1) if and only if V (Xn+1, y)
is smaller than the α̃ quantile of this weighted distribution. As this weighted distribution is no
longer exchangeable, we need to choose α̃ strategically to guarantee finite-sample coverage as
described in (1).

We demonstrate the difference between localized conformal prediction and conformal predic-
tion with a simple example: features X ∼ Un(−5, 5) follow a uniform distribution on [−5, 5],
and the response Y given X follows a mean-zero normal distribution with heterogeneous variance
across X :

Y | X ∼
⎧⎨
⎩cos

(
π

10
Xi

)
× N (0, 1) if |X | � 4.5,

2× N (0, 1) if |X | > 4.5.

We fix the desired coverage level α = 0.95, take n = 1000 samples, and perform both conformal
prediction and localized conformal prediction with the localizer H (Xn+1, Xi) = exp(−5|Xi −
Xn+1|) and two score functions: (i) the regression score V (z) = |μ(x) − y| = |y|, where here
μ(x) = 0 (Lei et al., 2018), and (ii) the quantile regression score V (z) = max{q̂lo(x)−y, y−q̂hi(x)}
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Fig. 1. Comparison of conformal bands (CR, CQR) and localized conformal bands (LCR, LCQR) using regression
and quantile regression scores. The left panels show the prediction bands for the conformal score Vn+1, and the right
panel shows the prediction bands response value Yn+1. True prediction bands for the distribution of Y given X are
also shown on the right (truth), and dots show the realized test observation values in all plots. Values in the legends
indicate the average prediction interval length associated with different approaches, which is shorter for the localized

procedures.

(Romano et al., 2019), where q̂lo and q̂hi are 0.025 and 0.975 quantile curves estimated from
2000 independent samples using a neural network model, as described in § 4. We refer to the two
corresponding conformal prediction procedures as CR and CQR, and the two localized conformal
prediction procedures as LCR and LCQR.

Figures 1(a) and 1(b) show the conformal confidence bands for Vn+1 using CR/LCR and
using CQR/LCQR, respectively. Figures 1(c) shows the inverted prediction interval for Yn+1
using the four procedures. The green curves in (c) represent the true level-α confidence bands
for Y given X . This example demonstrates that, by definition, the CR and CQR intervals are
homogeneous for V . In this example, the CR intervals are furthermore homogeneous for Y . CQR
provides a heterogeneous prediction interval for Y by inverting the interval for V . However,
the true quantile functions are hard to estimate at the two ends, and thus some heterogeneity of
Vn+1 still remains for the quantile regression score. In comparison, localized conformal prediction
introduces more flexibility by directly constructing intervals that are heterogeneous for V . It yields
an improvement even when applied to the quantile regression score, where it better captures the
remaining heterogeneity. We summarize our contributions as follows.

(i) We generalize the probabilistic framework of conformal prediction to localized conformal
prediction, where we assign a unique role to the test point. The generalized framework
still enjoys a distribution-free and finite-sample marginal coverage guarantee. Localized
conformal prediction includes conformal prediction as a special case where the localizer
takes a constant value.

(ii) We develop an efficient implementation for sample-splitting localized conformal prediction.
We also demonstrate how to combine it with some recently developed conformal scores
with numerical examples.
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36 L. Guan

(iii) We investigate the local behaviour of sample-splitting localized conformal prediction and
show that it enjoys additional local coverage guarantees under proper assumptions.

We defer all proofs to the Supplementary Material.

2. Localized conformal prediction

2.1. Notation

We use P{·} to denote the probability of a given event. For any distribution F on R, we define
its level-α quantile as

Q(α; F) = inf {t : PT∼F {T � t} � α}.
Let X = {X1, . . . , Xn+1} be the unordered set of feature values from all n + 1 samples. Let
H (x, x′) : R

p×R
p �→ [0, 1] be a bivariate localizer function H (x, x′) : R

p×R
p �→ [0, 1], whose

function form may depend on the data through only X . We require H (x, x) = 1 for all x and
use H (x, x′) to capture the dissimilarity between two given feature values. In § 1, we considered
H (x, x′) = exp(−5|x − x′|) as an example where H (Xn+1, Xi) is the localizer evaluated at Xn+1
and Xi. The localizer function H (x, x′) is used to construct different weighted distributions for
performing localized conformal prediction. Define Hi(·) := H (Xi, ·) as the localizer centred at
Xi, and Hi,j := Hi(Xj) = H (Xi, Xj) as a measure of dissimilarity between samples Xi and Xj. Let
δv be a point mass at v ∈ R. Define weighted distributions

F̂i :=
( n+1∑

j=1

pH
i,jδVj

)
(i = 1, . . . , n+ 1),

where the empirical weights pH
i,j := Hij/(

∑n+1
k=1 Hik) for j = 1, . . . , n + 1 are constructed using

the localizer centred at Xi. We also define

F̂ :=
( n∑

j=1

pH
n+1,jδVj + pH

n+1,n+1δ∞
)

as the distribution when replacing Vn+1 by ∞ in F̂n+1. Both Vn+1 and Vi (i = 1, . . . , n) may
depend on Yn+1 when V (·) depends on the set Z . Hence, there could be a dependence on Yn+1
from F̂ and F̂i (i = 1, . . . , n+ 1). We have masked such a dependence for convenience.

Throughout this paper, we call {Z1, . . . , Zn} the calibration set and assume that Zi
i.i.d.∼ PXY for

i = 1, . . . , n+ 1, and α ∈ (0, 1) is a constant and user-specified targeted coverage.

2.2. Marginal coverage guarantee

We now establish the probabilistic guarantees of localized conformal prediction regarding
its marginal coverage. Instead of using the level-α quantile of the empirical distribution as in
conformal prediction, localized conformal prediction considers a level-α̃ quantile of a weighted
empirical distribution, with weight proportional to Hn+1,i. Recall that Hn+1,i measures the distance
between a training sample Xi and the test sample Xn+1. This weighted distribution allows more
emphasis on training samples closer to Xn+1.

Theorem 1 below states how we can choose α̃ to achieve finite sample coverage. In Theorem 2
below we show that a randomized decision rule can lead to a prediction interval with exact cover-
age. Let � = {∑k∈Ii

pH
ik : i = 1, . . . , n+ 1, Ii ⊆ {1, . . . , n+ 1}} represent all possible empirical
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Localized conformal prediction 37

cumulative distribution function values from weighted distributions F̂i for i = 1, . . . , n+1, under
all possible orderings of V1, . . . , Vn+1.

Theorem 1. Let α̃ be the smallest value in � such that

(n+ 1)−1
n+1∑
i=1

1Vi�Q(α̃;F̂i)
� α. (4)

Then P{Vn+1 � Q(α̃; F̂n+1)} � α. Equivalently, P{Vn+1 � Q(α̃; F̂)} � α.

Remark 1. If Hi,j = 1 (i, j = 1, . . . , n+1) then we have F̂ = (n+ 1)−1(
∑n

i=1 δVi + δ∞) and
F̂i = (n+ 1)−1(

∑n+1
i=1 δVi) (i = 1, . . . , n+ 1). Then (4) holds if and only if α̃ � α by definition.

Also, � = {k/(n + 1) : k = 1, . . . , n + 1}. Thus, we recover usual conformal prediction (Vovk
et al., 2005), and

P

{
Vn+1 � Q

(
k

n+ 1
; (n+ 1)−1

n+1∑
i=1

δVi

)}
� α for k � 
(n+ 1)α�.

Here, we provide some intuition for why such α̃ can guarantee level-α coverage. Conformal
prediction relies on the exchangeability of data. Conditional on the set Z , the set of observed
values V = {v1, . . . , vn+1} for V1:(n+1) is fixed and Vn+1 has equal probability of taking each
value in V . Hence, Q{α, (n+ 1)−1 ∑n+1

i=1 δvi} leads to a coverage guarantee conditional on the
observed values, and a marginal coverage guarantee after marginalizing over all value sets. When
the prediction interval is constructed as Q(α̃, F̂n+1), since F̂n+1 changes as we permute the value
assignments, we need to account for this change when calculating the conditional coverage. The
left-hand side of (4) turns out to be this coverage conditional on {v1, . . . , vn+1} for any given α̃.
As in conformal prediction, we can invert relationship (4) to construct a prediction interval for
Yn+1.

Corollary 1. In the setting of Theorem 1, define α̃(y) ∈ � as the smallest value in � such
that (4) holds at Zn+1 = (Xn+1, y). Let C(Xn+1) := {y : Vn+1 � Q(α̃(y); F̂)}. Then, we have
P{Yn+1 ∈ C(Xn+1)} � α.

What will happen if we simply let α̃ = α without tuning it based on (4)? The answer depends
on the localizer H . Setting α̃ = α can lead to overcoverage in the simple example described
by Proposition 1 below, where we tend to assign too little weight to the calibration samples. A
more interesting example is given in Proposition 2 below, showing that we may end up achieving
arbitrarily bad undercoverage by naively setting α̃ = α.

Proposition 1. Consider the localizer H (x1, x2) = exp{−|x1−x2|/h}with some small h > 0,
such that P{∑n+1

i=1 H (Xn+1, Xi) < 1/(1− α)} � ε ∈ (α, 1). Then

P{Q(α; F̂) = ∞} � ε, P{Vn+1 ∈ C(Xn+1)} � ε.

Proposition 2. Let {ej : j = 1, . . . , p} be the standard basis in R
p. Set q1 = (1− α)/{2p(1−

α) + α} and q0 = α/{2p(1 − α) + α}. Suppose that the feature X ∈ R
p and response Y are
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38 L. Guan

distributed as

Y | X ∼
{

Un(−1, 1) when X |= 0,

0 otherwise,
X =

⎧⎪⎨
⎪⎩

ej with probability q1 for all j = 1, . . . , p,

−ej with probability q1 for all j = 1, . . . , p,

0 with probability q0.

Let V (Zi) = |Yi| be the regression score. Then, for any constant p � 1, we have
limn→∞P{Vn+1 � Q(α; F̂)} = q0 < α.

Proposition 2 shows that we no longer enjoy the distribution-free marginal coverage guarantee
fixing α̃ = α, and the undercoverage can be arbitrarily poor for large p. Hence, strategically
choosing α̃ is crucial for a distribution-free marginal coverage guarantee, which is usually the
motivation for using conformal prediction instead of other model-based prediction intervals.

As in the case of conformal prediction, we may not have exact level-α coverage due to rounding
issues. However, we can have exact α coverage if we allow for some additional randomness, as
stated in Theorem 2.

Theorem 2. Consider the setting of Theorem 1. Let α̃1/α̃2 be the smallest/largest value in
� ∪ {0} such that

α1 := (n+ 1)−1
n+1∑
i=1

1Vi�Q(α̃1;F̂i)
� α, α2 := (n+ 1)−1

n+1∑
i=1

1Vi�Q(α̃2;F̂i)
< α.

Set

α̃ =
{

α̃1 with probability (α − α2)/(α1 − α2),

α̃2 with probability (α1 − α)/(α1 − α2).

Then P{Vn+1 � Q(α̃; F̂)} = α.

In this section, we presented localized conformal prediction with a potentially data dependent
V (·) = V (·; Z), and showed that conformal prediction is its special case at Hij = 1. The discus-
sion of this general construction is for theoretical completeness, as the general recipe described
in Theorem 1 or Corollary 1 is too computationally expensive: for every Yn+1 = y, we need to
retrain our prediction model to get V (·; Z). This problem also exists for conformal prediction
with data-dependent scores, and sample splitting is often used to reduce the computation cost
(Papadopoulos et al., 2002; Lei et al., 2015).

For the remainder of this paper, we shift our focus to localized conformal prediction with
sample splitting, where we divide the observed data into a training set and calibration set. The
score function V (·) is estimated with the training set and considered fixed afterward, and the
prediction interval is constructed using the fixed score function and the calibration set.

3. Localized conformal prediction with sample splitting

3.1. Marginal coverage guarantee

We divide the observed data into the training set D0 of size n0 and calibration set D of size n. We
first construct the score function V (·) based on D0. For example, we may let V (Z) = |Y − μ̂(X )|,
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Localized conformal prediction 39

where μ̂(·) is a prediction function for Y , learned using D0. Since V (Z) does not depend on the
calibration set and the test sample, we call it a fixed score function. We let {Z1, . . . , Zn} denote
samples of the calibration set, and Zn+1 the test sample. In this setting, because V (·) is fixed, the
empirical distributions F̂i for i = 1, . . . , n + 1 depend on the value y of a test sample (Xn+1, y)
only via v = V (Xn+1, y). Thus, α̃(y) as defined in Corollary 1 depends on y only via v. With a
slight abuse of notation, we henceforth write α̃(v) in place of α̃(y), where v = V (Xn+1, y). To
make explicit the dependence of the empirical distribution F̂i on v, we introduce

F̂i(v) := F̂i when Vn+1 = v. (5)

We express Theorem 1 and Corollary 1 for fixed V (·) using Lemma 1 below, where we can also
easily check that the resulting prediction interval for Vn+1 is an interval.

Lemma 1. Let V (·) be a fixed score function. At Vn+1 = v, define α̃(v) to be the smallest value
of α̃ ∈ � such that

(n+ 1)−1
n+1∑
i=1

1Vi�Q{α̃;F̂i(v)} � α.

Set CV (Xn+1) = [v : v � Q{α̃(v); F̂}], C(Xn+1) = {y : V (Xn+1, y) ∈ CV (Xn+1)}. Then
CV (Xn+1) is an interval, and

P{Vn+1 ∈ CV (Xn+1)} � α, P{Yn+1 ∈ C(Xn+1)} � α.

Lemma 1 is intuitively simple. However, even though the score function V (·) is prespecified,
it is still unrealistic to compute α̃(vn+1) for every possible value vn+1 = V (Xn+1, y). In § 3.2 we
provide an efficient implementation to tackle this problem.

3.2. An efficient implementation of localized conformal prediction

We provide an O(n log n) implementation of localized conformal prediction, given pre-
calculated localizer function values for each pair of calibration samples and the associated
unnormalized cumulative probabilities.

Without loss of generality, we assume that the calibration samples are ordered such that V1 �
V2 � · · · � Vn. Let V i be the augmented observation with V i = Vi (i = 1, . . . , n), V n+1 = ∞
and V 0 = −∞. For all i = 1, . . . , n+ 1, we introduce the following definitions.

(i) Let �(i) = max{i′ ∈ {1, . . . , n} : Vi′ < V i} be the largest index of Vi′ smaller than V i. When
all Vi are distinct, �(i) = i− 1. We set the maximum of an empty set as 0, so in particular,
�(1) = 0 always.

(ii) Let θi :=∑�(i)
j=1 pH

i,j be the cumulative probability at V l(i) in the distribution F̂i(∞).

(iii) Let θ̃i :=∑�(i)
j=1 pH

n+1,j be the cumulative probability at V l(i) in the distribution F̂ .

(iv) Let θi = θ̃i = 0 if �(i) = 0. In particular, θ1 = θ̃1 = 0 always.

Lemma 2 below is the foundation of our implementation. The first part of Lemma 2 describes a
formulation to construct the closure of CV (Xn+1) from Lemma 1 that does not explicitly require
calculation of α̃(vn+1) for different values of vn+1 = V (Xn+1, y). This formulation depends
on a quantity S(k) defined in (6) below. The second part of Lemma 2 gives another equivalent
characterization of S(k) that enables its calculation for all k = 1, . . . , n+ 1 in O(n log n) time.
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40 L. Guan

Lemma 2 (Implementation of localized conformal prediction).

(1) Let k∗ be the largest index k ∈ {1, . . . , n+ 1} such that

S(k) := (n+ 1)−1
n∑

i=1

1Vi�Q{θ̃k ;F̂i(V �(k))} < α. (6)

Then C̄V (Xn+1) = {v : v � V k∗} is the closure of CV (Xn+1) from Lemma 1.
(2) Partition n calibration samples into three sets: A1 := {i : pH

i,n+1+θi < θ̃i}, A2 := {i : θi � θ̃i}
and A3 := {i : pH

i,n+1 + θi � θ̃i, θi < θ̃i}. For k = 1, . . . , n+ 1, we have

S(k) = (n+ 1)−1
( ∑

i∈A1

1θi+pH
i,n+1<θ̃k

+
∑
i∈A2

1θi<θ̃k
+

∑
i∈A3

1l(i)<�(k)

)
. (7)

Here, we provide some intuition for why (6) and (7) are equivalent. Define the event Jik =
[Vi � Q{θ̃k ; F̂i(V̄�(k))}] in the indicator of (6). Observe that θ̃k and V �(k) are both nondecreasing in
k . Hence, the quantile Q{θ̃k , F̂i(V �(k))} is also nondecreasing in k , where we recall the definition
of F̂i(v) in (5). As a result, once Jik holds for some k , it also holds for all larger k . For each
i = 1, . . . , n, we need only determine the smallest k for which Jik first holds. There are two
cases.

(i) If Jik first holds at a value k with Vi > V̄�(k), by the definition of F̂i(V �(k)), we need

θ̃k >
∑

j�n : Vj<Vi

pH
i,j + pH

i,n+1 = θi + pH
i,n+1.

(ii) If Jik first holds at a value k with Vi � V̄�(k) then we need θ̃k >
∑

j�n : Vj<Vi
pH

i,j = θi. To

guarantee that Vi � V̄�(k), we also require that �(k) > �(i).

Let ki be the smallest index k for which Jik first holds. We can show that

(a) A1 contains all i such that Vi > V̄�(ki),
(b) A2 contains all i such that Vi � V̄�(ki) and {θ̃ki > θi, �(ki) > �(i)} = {θ̃ki > θi},
(c) A3 contains all i such that Vi � V̄�(ki) and {θ̃ki > θi, �(ki) > �(i)} = {�(ki) > �(i)}.

This will establish the equivalence between (6) and (7).
The desirable aspect of dividing calibration samples into A1, A2, A3 is that we can now order

the calibration samples in each set based on the values of θi+pH
i,n+1, θi and l(i) for A1, A2 and A3,

respectively, and then compute all values S(k) from (7) using a single scan through the values
k = 1, . . . , n+1. Algorithm 1 below implements this idea. Line 1 calculates θ̃i, θi and θi+pH

i,n+1
for each i = 1, . . . , n+1; line 2 creates A1, A2, A3 according to Lemma 2. Line 3 orders i ∈ A1 by
θi+ pH

i,n+1, i ∈ A2 by θi and i ∈ A3 by l(i). As we increase k , samples i in each set A1, A2, A3 will
satisfy Vi � Q{θ̃k ; F̂i(V �(k))} sequentially. Lines 5–6, 7–8 and 9–10 perform these sequential
checks within each set A1, A2, A3. Finally, line 12 produces the largest k∗ such that (6) holds for
any given target level α.
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Localized conformal prediction 41

Algorithm 1. Localized conformal prediction.

Input: (i) Ordered conformal scores V1 � · · · � Vn, (ii) associated unnormalized
cumulative probability matrix Qik =∑k

j=1 Hij for i, k = 1, . . . , n, (iii) Hn+1,i and
Hi,n+1 for i = 1, . . . , n and (iv) the targeted level α.
Output: A constructed prediction interval CV for Vn+1.

1: θi + pH
i,n+1 ← (Qi,�(i) + Hi,n+1)/(Qi,n + Hi,n+1), θi ← Qi,�(i)/(Qi,n + Hi,n+1),

θ̃i ← Qn+1,l(i)/
∑n+1

j=1 Hn+1,j for i = 1, . . . , n+ 1.

2: A1 ← {i : θi + pH
i,n+1 < θ̃i}, A2 ← {i : θi � θ̃i}, A3 ← {i : θi + pH

i,n+1 � θ̃i, θi < θ̃i}.
3: Set θ̌A1 , θ̌A2 , θ̌A3 as the ordered values of {θi + pH

i,n+1 : i ∈ A1}, {θi : i ∈ A2} and
{�(i) : i ∈ A3}, respectively. Set cm = 0, Lm = |Am|, for m = 1, 2, 3.

4: for k = 1, 2, . . . , n, n+ 1 do
5: while c1 < L1 and θ̌

A1
c1+1 < θ̃k do

6: c1 ← c1 + 1;
7: while c2 < L2 and θ̌

A2
c2+1 < θ̃k do

8: c2 ← c2 + 1;
9: while c3 < L3 and θ̌

A3
c3+1 < �(k) do

10: c3 ← c3 + 1;
11: Set S(k) = (c1 + c2 + c3)/n+ 1.
12: Set k∗ = arg max{k : S(k) < α}, and return CV = {v : v � V k∗}.

3.3. Choice of H

The choice of H will influence the localization. Given d(x1, x2) as a measure of dissimilarity
between two samples x1, x2, there are numerous ways of defining the functional form for the
localizer. In our experiments, we consider the localizer H (x1, x2) = exp{−d(x1, x2)/h}.

A smaller h results in more localization. We prefer h resulting in a relatively narrow prediction
interval for most samples. More specifically, we consider the constrained objective

J (h) = average of PIfinite length+ λ× average of conditional PIfinite length’s variability,

such that the average percentage of infinite prediction intervals is at most ε.

The parameter λ reflects our aversion to the variability of a constructed prediction interval’s
length at each fixed point Xn+1 = x in the feature space. We set λ = 1 by default.

These averages are unknown and need to be estimated from the data. Recall that the score
function V (·) is constructed using an independent training set D0, whose model complexity is
often tuned with cross-validation. We suggest using D0 and its cross-validated scores to estimate
the three terms in the above objective empirically. The mathematical definitions of J (h) and
details of the empirical estimates are given in the Supplementary Material.

In low dimensions, we can have asymptotic conditional coverage as n → ∞ using typical
distance dissimilarities, e.g., Euclidean distance, and by choosing h→ 0 under suitable assump-
tions as shown in § 5. This is an ideal setting. In practice, a good user-specified dissimilarity
function d(·, ·) will lead to improved performance in terms of a constructed prediction interval
length and adaptation to the underlying heterogeneity. Such a dissimilarity function should cap-
ture directions of feature space in which the prediction interval of V is more likely to vary. A
comprehensive and in-depth discussion of d(·, ·), especially in high dimensions, is beyond the
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scope of this paper. In our numerical experiments, we define d(·, ·) as a weighted sum of three
components:

(i) d1(x1, x2) = ‖ρ̂(x1)− ρ̂(x2)‖2, where ρ̂(X ) is the estimated spread of V (X , Y ) conditional
on X (Lei et al., 2018);

(ii) d2(x1, x2) = ‖P‖(x1 − x2)‖2, where P‖ is the projection onto the space spanned by the top
singular vectors of the Jacobian matrix of ρ̂(X ) for X ∈ D0; and

(iii) d3(x1, x2) = ‖P⊥(x1 − x2)‖2, where P⊥ is the projection onto the space orthogonal to P‖.

We include the first component since ρ̂(X ) is trying to capture the heterogeneity of V (X , Y ).
We include the second and the third components to make the dissimilarity depend on other
directions in the feature space because ρ̂(X ) may not fully capture the underlying heterogeneity.
Intuitively, we can think of the projection P‖ as capturing the directions of feature space in
which ρ(X ) is more variable across the training set, and P⊥ as capturing the remaining less
important directions. We provide more details on constructing d(·, ·) in the Supplementary
Material.

4. Empirical studies

This section compares localized conformal prediction and conformal prediction with different
numerical examples. We consider the usual regression problem,

Y = μ(X )+ ε, ε⊥⊥X ,

and four types of conformal score construction.

(i) Regression score: V R(X , Y ) = |Y − μ̂(X )|, where μ̂(X ) is an estimate of μ(X ) learned
from the training set. We denote conformal prediction with regression score as CR and
localized conformal prediction with regression score as LCR.

(ii) Locally weighted regression score: V R-local(X , Y ) = V R(X , Y )/ρ̂(X ), where ρ̂(X ) is the
estimated spread of V R(X , Y ) (Lei et al., 2018). When combined with conformal prediction
and localized conformal prediction, we denote the two resulting procedures as CLR and
LCLR, respectively.

(iii) Quantile regression score: V QR(X , Y ) = max{q̂lo(Xi)− Y , Y − q̂hi(X )}, where q̂lo(·) and
q̂hi(·) are the estimated lower and upper (α/2) quantiles from the training set (Romano et al.,
2019). When combined with conformal prediction and localized conformal prediction, we
denote the two resulting procedures as CQR and LCQR, respectively.

(iv) Locally weighted quantile regression score: V QR-local = V QR(X , Y )/ρ̂(X ), which com-
bines quantile regression with the locally weighted step. When combined with conformal
prediction and localized conformal prediction, we denote the two resulting procedures as
CLQR and LCLQR, respectively.

In Example 1 below we visually demonstrate conformal prediction and localized conformal
prediction to highlight the procedural differences, and compare results from localized confor-
mal prediction with different values for h. In Example 2, we use synthetic data and compare
the performance of the eight procedures. Example 3 compares the results using four publicly
available datasets from UCI. We learn the conformal scores using a neural network with three
fully connected layers and 32 hidden nodes in all empirical examples.
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Localized conformal prediction 43

Table 1. (Example 1) Coverage and length comparisons for conformal pre-
diction and localized conformal prediction (autotuned) across four simulation
set-ups. We also underline the smallest ave.PI, which is the average prediction
interval length using finite prediction intervals, and those within 0.05 from it

in different settings
Setting (A) Setting (B) Setting (C) Setting (D)

CR LCR CR LCR CR LCR CR LCR

Coverage 0.95 0.94 0.95 0.95 0.95 0.95 0.94 0.94
Infinite PI% – 0.00 – 0.00 – 0.01 – 0.00
ave.PI 2.77 2.27 3.14 3.01 4.26 3.15 3.81 3.86

CR, conformal prediction; LCR, localized conformal prediction.

Example 1 (Conformal prediction and localized conformal prediction). Let Y = ε, X ∼
N (0, 1) and ε ∼ ρ(X ), with four different cases for ρ(X ): (A) ρ(X ) = sin(X ); (B) ρ(X ) =
cos(X ); (C) ρ(X ) = √|X |; (D) ρ(X ) = 1. We compare conformal prediction, the autotuned
localized conformal prediction described in § 3.3 and localized conformal prediction using fixed
h values. The prefixed grids for h can be different for different settings because they are cho-
sen by looking at the dissimilarity measures on the training set. The sizes for the training and
calibration sets are both 1000. Table 1 compares conformal regression with autotuned localized
conformal prediction, and shows the achieved coverage, percentage of samples with infinite pre-
diction interval and the average length of the finite prediction interval. Table 2 compares localized
conformal prediction from using different h. Figure 2 provides visual demonstrations for confor-
mal prediction and localized conformal prediction using h1, the smallest h with less than 5% of
infinite prediction interval for localized conformal prediction; h2, the largest h considered; and
h3, the autotuned h. The choice of h1 results in a highly localized conformal prediction with the
prediction interval better capturing the underlying heterogeneity, but potentially less stable and
containing the infinite prediction interval with higher probability, while the choice of h2 results
in a prediction interval with almost no localization and almost identical to conformal prediction.

We do not observe an increased average prediction interval length on samples well represented
by the calibration set as we decrease h in a wide range. A smaller h makes the procedure more
alert by producing infinite prediction intervals for under-represented new observations. Is this a
bad thing? We believe that the answer to this question is subjective and depends on the specific
task at hand.

Example 2 (Comparisons of different procedures; synthetic data). We now compare eight
procedures by applying conformal prediction and autotuned localized conformal prediction to
four different conformal scores regarding their coverage and prediction interval lengths at a
targeted level α = 0.95. We consider the same simulation set-up as in Example 1 except with
X ∼ Un(−2, 2). In this example, the test observations are reasonably well represented by the
calibration samples, with high probability. We do not observe samples with infinite prediction
intervals using autotuned localized conformal prediction. Tables 3 and 4 show the results of the
average coverage and average length of the prediction interval in the four simulation settings.

Example 3 (Performance comparison using four datasets). We investigate the performances
of eight procedures using conformal prediction and autotuned localized conformal prediction
on four UCI datasets (Dua & Graff, 2019): CASP (Yeh, 1998), Concrete (Yeh, 1998), Facebook
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Table 2. (Example 1) Comparisons of the coverage, percentage of infinite prediction inter-
val, ave.PI and ave.PI0 for different tuning parameters h, where ave.PI is the average length
for finite prediction intervals at the given h, and ave.PI0 is the average length for finite pre-
diction intervals across all h considered. We underline all ave.PI0 for h no greater than the

autotuned ĥ in each setting
Setting (A)
h 0.05 0.07 0.09 0.13 0.17 0.22 0.29 0.39 0.52 0.69 0.91 1.21 1.61 2.14 2.84 3.78 5.01 6.66 8.84 11.74
Coverage 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Infinite PI% 0.23 0.15 0.07 0.04 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ave.PI 2.22 2.27 2.27 2.28 2.29 2.32 2.32 2.32 2.32 2.29 2.27 2.36 2.43 2.51 2.57 2.61 2.67 2.70 2.71 2.74
ave.PI0 2.22 2.21 2.20 2.18 2.19 2.23 2.24 2.26 2.25 2.22 2.22 2.32 2.40 2.49 2.55 2.61 2.66 2.69 2.70 2.73

Setting (B)
h 0.08 0.1 0.13 0.18 0.24 0.32 0.43 0.57 0.76 1.02 1.36 1.81 2.42 3.24 4.32 5.77 7.7 10.28 13.73 18.33
Coverage 0.94 0.95 0.95 0.94 0.94 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Infinite PI% 0.17 0.09 0.07 0.05 0.04 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ave.PI 2.81 2.68 2.67 2.63 2.65 2.65 2.66 2.73 2.82 2.87 2.98 3.01 3.03 3.07 3.08 3.11 3.12 3.13 3.13 3.13
ave.PI0 2.81 2.81 2.84 2.81 2.83 2.83 2.84 2.89 2.96 2.98 3.06 3.07 3.07 3.10 3.11 3.13 3.13 3.14 3.13 3.14

Setting (C)
h 0.04 0.06 0.09 0.12 0.17 0.24 0.33 0.46 0.65 0.91 1.27 1.78 2.49 3.48 4.87 6.83 9.56 13.38 18.74 26.23
Coverage 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Infinite PI% 0.29 0.22 0.14 0.09 0.07 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ave.PI 1.88 2.12 2.42 2.68 2.81 2.87 3.02 3.08 3.15 3.24 3.34 3.48 3.62 3.80 3.94 4.01 4.10 4.16 4.19 4.21
ave.PI0 1.88 1.88 1.87 1.91 1.91 1.93 1.99 2.06 2.20 2.44 2.65 2.97 3.25 3.57 3.80 3.90 4.03 4.12 4.16 4.19

Setting (D)
h 0.08 0.11 0.15 0.2 0.28 0.38 0.53 0.73 1.00 1.38 1.9 2.61 3.6 4.95 6.82 9.4 12.94 17.82 24.54 33.8
Coverage 0.94 0.95 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
Infinite PI% 0.14 0.10 0.05 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ave.PI 3.79 3.85 3.92 3.92 3.92 3.90 3.89 3.92 3.89 3.89 3.89 3.87 3.86 3.86 3.88 3.87 3.87 3.86 3.85 3.85
ave.PI0 3.79 3.80 3.80 3.78 3.82 3.82 3.82 3.86 3.84 3.85 3.86 3.85 3.84 3.86 3.87 3.87 3.86 3.86 3.85 3.84

variant 1, denoted as facebook1, and Facebook variant 2, denoted as facebook2 (Singh, 2015;
Singh et al., 2015). The sizes of samples and features are (45 730, 9), (1030, 8), (40 949, 53),
(81 312, 53) for the four datasets, respectively.

We subsample 5000 training/calibration samples without replacement from CASP, facebook1
and facebook2, and 400 training/calibration samples from the Concrete dataset. We construct
prediction intervals using the remaining samples for each dataset and repeat it 20 times. Tables 5–
6 show the results of the average coverage and average length of the finite prediction interval
for the four datasets. The percentage of infinite prediction intervals ranges from 0% to 3% for
different localized conformal prediction procedures. The samples with infinite prediction interval
using localized conformal prediction on the Facebook datasets tend to have wider prediction
intervals; hence, we also show the average prediction interval length using only samples with
finite prediction interval from all procedures for a fair comparison.

The conformal quantile regression procedure has been shown as a top performer in Romano
et al. (2019) and Sesia & Candès (2020). Our numerical experiments also confirm that it has an
overall better performance than the conformal prediction with locally weighted regression score.
Not only is localized conformal prediction conceptually novel, but it also uses the estimated
spread ρ̂(X ) in a more robust way. When combined with V R and V R-local, the average prediction
interval lengths are smaller for three out of the four real datasets compared with the conformal
prediction with locally weighted regression score procedure. In particular, localized conformal
regression and localized conformal prediction with the locally weighted regression score are even
noticeably better than conformal quantile regression in the two Facebook examples.
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Fig. 2. (Example 1.) Confidence bands constructed using conformal prediction (CR) and localized conformal predic-
tion (LCR) with different tuning parameter values for h at the targeted level α = 0.95. In each subplot, we show
the test data points with dots, and the true confidence bands and estimated confidence intervals across different Xn+1
are represented by different colors as described in the legends. We sometimes encounter infinite prediction intervals

using localized conformal prediction and represent these by widths larger than the grey horizontal lines.

5. Local behaviour of localized conformal prediction

In this section, we consider asymptotic and approximate conditional coverage properties for
localized conformal prediction and a simplified version fixing α̃ = α. We have shown in Propo-
sition 2 that this simplified localized conformal prediction does not yield a distribution-free
coverage guarantee. Our results here indicate that it could lead to asymptotic or approximate
conditional coverage, under certain assumptions.

For simplicity, we restrict attention to the localizer H (x1, x2) = exp{−d(x1, x2)/hn}, where hn
is an n-dependent bandwidth parameter, and d(x1, x2) � 0 is a measure of dissimilarity satisfying
d(x1, x1) = 0.
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Table 3. (Example 2) Empirical coverage for different procedures across different simulation
settings, with a targeted level at α = 0.95

CR LCR CLR LCLR CQR LCQR CLQR LCLQR

Setting (A) 0.952 0.955 0.953 0.954 0.953 0.955 0.953 0.954
Setting (B) 0.951 0.953 0.950 0.954 0.953 0.953 0.953 0.954
Setting (C) 0.948 0.950 0.949 0.950 0.950 0.951 0.951 0.952
Setting (D) 0.948 0.948 0.948 0.949 0.948 0.948 0.947 0.948

CR, conformal prediction; LCR, localized conformal prediction; CLR, conformal prediction with locally weighted
regression score; LCLR, localized conformal prediction with locally weighted regression score; CQR, conformal
prediction with quantile regression score; LCQR, localized conformal prediction with quantile regression score;
CLQR, conformal prediction with locally weighted quantile regression score; LCLQR, localized conformal prediction
with locally weighted quantile regression score.

Table 4. (Example 2) Average lengths of prediction intervals for different procedures across four
different simulation settings. We underline the smallest average prediction interval length and

those within 0.05 from it in each setting
CR LCR CLR LCLR CQR LCQR CLQR LCLQR

Setting (A) 3.27 2.84 3.05 2.81 2.87 2.87 2.88 2.87
Setting (B) 2.86 2.19 2.54 2.20 2.26 2.27 2.27 2.27
Setting (C) 4.95 3.91 4.42 3.90 3.94 3.95 4.03 4.02
Setting (D) 3.88 3.90 3.89 3.90 3.92 3.93 3.92 3.93

See Table 3 for abbreviations.

Table 5. (Example 3) Empirical coverage for different procedures, with α = 0.95
CR LCR CLR LCLR CQR LCQR CLQR LCLQR

CASP 0.949 0.950 0.950 0.950 0.950 0.950 0.950 0.950
Concrete 0.947 0.949 0.943 0.947 0.951 0.953 0.952 0.954
facebook1 0.949 0.950 0.949 0.949 0.950 0.951 0.950 0.951
facebook2 0.951 0.951 0.951 0.951 0.953 0.952 0.953 0.952

See Table 3 for abbreviations.

First, we consider the asymptotic conditional coverage. Nontrivial finite sample and
distribution-free conditional coverage is impossible for continuous distributions (Vovk, 2013;
Lei & Wasserman, 2014). Thus, it is common to consider asymptotic conditional coverage under
proper assumptions on PXY . Different conformal score constructions with such asymptotic con-
ditional coverage are studied in the literature. For instance, Izbicki et al. (2019) considered using
the estimated conditional density as the conformal score, and Romano et al. (2019) used the con-
formal score based on estimated quantile functions. Here, we consider the asymptotic behaviour
of localized conformal prediction.

Assumption 1. It holds that X has continuous distribution on [0, 1]p, and V (Z) has continuous
distribution conditional on X = x. Furthermore, there exist constants L > 0 and β � 0 such that
the density of X satisfies pX (x) � 1/L for all x ∈ [0, 1]p, and
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Table 6. (Example 3) The upper half shows the average length using samples with finite
prediction intervals for the given procedure. The lower half shows the average prediction
interval length on the common set of samples with finite prediction interval for all pro-
cedures.We underline the smallest average prediction interval length and those within 0.05 from

it in each setting
Procedure-specific samples

CR LCR CLR LCLR CQR LCQR CQLR LCQLR

CASP 3.03 2.82 2.88 2.81 2.65 2.64 2.65 2.64
Concrete 1.52 1.48 1.45 1.46 1.58 1.59 1.58 1.57
facebook1 1.12 0.67 > 100 0.69 0.92 0.92 0.92 0.92
facebook2 1.05 0.65 > 100 0.65 0.92 0.92 0.93 0.92

Common samples
CR LCR CLR LCLR CQR LCQR CQLR LCQLR

CASP 3.03 2.82 2.88 2.81 2.65 2.64 2.65 2.64
Concrete 1.52 1.47 1.43 1.45 1.56 1.56 1.56 1.55
facebook1 1.12 0.66 0.95 0.66 0.74 0.74 0.74 0.74
facebook2 1.05 0.62 0.87 0.63 0.74 0.74 0.74 0.74

See Table 3 for abbreviations.

(i) for all x, x′ ∈ [0, 1]p, the conditional distribution of V given X satisfies

max
v∈R |PV |x(v)− PV |x′(v)| � Ld(x, x′),

where PV |x(v) is the probability of V (Z) � v conditional on X = x;
(ii) P[X ∈ {x : d(x0, x) � ε}] � εβ/L for all ε � hn and all x0 ∈ [0, 1]p;

(iii) hn is chosen such that hn → 0 and nhβ
n / ln n→∞ as n→∞.

Under this assumption, statement (8) of the following theorem guarantees that localized con-
formal prediction with α̃(v) chosen as in Lemma 1 achieves asymptotic conditional coverage at
the target level α. Furthermore, statements (9) and (10) below show that α̃(v) converges to α

asymptotically, and asymptotic conditional coverage also holds for the simplified version.

Theorem 3. Define α̃(v) and CV (Xn+1) as in Lemma 1. Under Assumption 1, for any x0 ∈
[0, 1]p, we have

lim
n→∞P{Vn+1 ∈ CV (Xn+1) | Xn+1 = x0} = α, (8)

lim
n→∞P{Vn+1 � Q(α; F̂) | Xn+1 = x0} = α, (9)

lim
n→∞P

{
max

v
|α̃(v)− α| < ε

∣∣∣ Xn+1 = x0

}
= 1 for all ε > 0. (10)

In Assumption 1, the measure d(x, x′) can be defined to capture the directions where the
conditional distribution of V given X is more likely to change as we vary X . Assumption 1(i)
allows more variability in some directions and less in others based on how the data are generated,
and scales better with the dimension compared to a symmetric distance such as the Euclidean
distance. Assumption 1(ii) assumes that d(x0, x) has enough concentration around 0, and it holds
for a typical dissimilarity measure in low dimensions. In high dimensions, this assumption holds
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if d(·, ·) emphasizes a few directions instead of treating all directions equally. For example, if
d(x0, x) = |xj − x0,j| depends only on feature j then P{X : d(x0, X ) � ε} � ε/L for some
large constant L. Assumption 1(iii) requires hn to decay to 0 at a sufficiently slow rate. This
is so that, combined with Assumption 1(ii), we may ensure that

∑n
i=1 H (Xj, Xi) → ∞ for all

j = 1, . . . , n+ 1, with high probability. In particular, a setting such as described in Proposition 1
cannot occur.

Next, we consider the approximate conditional coverage. Vovk (2013) and Lei & Wasserman
(2014) partitioned the feature space into K finite subsets and applied conformal inference to
each of the subsets: this guarantees that P{Yn+1 ∈ Ĉ(Xn+1) | Xn+1 ∈ Xk} � α for all k =
1, 2, . . . , K and some fixed partition

⋃K
k=1 Xk = R

p. Barber et al. (2020b) considered a potentially
stronger version where different regions Xk may overlap. Barber et al. (2020a) introduced a
different notion of approximate conditional coverage, where instead of finding C(x0) that achieves
conditional coverage of Yn+1 given Xn+1 = x0, the authors considered C(x0) that covers Ỹ
whose feature value X̃ is distributed according to some locally weighted distribution around x0,
as described in equations (18)–(19) of Barber et al. (2020a). When this weighted distribution
becomes increasingly concentrated around x0, the distribution of Ỹ intuitively approaches the
conditional distribution of Yn+1, so this serves as an approximation to conditional coverage.
Here, we show that, for a local weighting given by H (x0, x) = exp{−d(x0, x)/hn}, an adjusted
localized conformal prediction procedure with the aforementioned H (·, ·) as its localizer, α̃ = α,
and an additional slacking term, can achieve this guarantee for every fixed x0.

Theorem 4. Define the weighted distribution dP̃x0
X (x)/dx ∝ H (x0, x) dPX (x)/dx. Condi-

tional on Xn+1 = x0, let Z̃ = (X̃ , Ỹ ) ∼ P̃x0
X × PY |X . Define

ε(Xn+1) = max
x : d(Xn+1,x)<∞

max
y
|V (Xn+1, y)− V (x, y)|,

C̃(Xn+1) = {y : V (Xn+1, y) � Q(α; F̂)+ ε(Xn+1)},
where d(·, ·) is the dissimilarity measure that defines H (·, ·). Then

P{V (Z̃) � Q(α; F̂) | Xn+1 = x0} � α, P{Ỹ ∈ C̃(Xn+1) | Xn+1 = x0} � α.

The interval C̃(Xn+1) above remains a prediction interval at Xn+1, and does depend on X̃ in its
construction. The slack term ε(Xn+1) in the adjusted localized conformal prediction is introduced
to bound the discrepancy in the score function as we vary x in a defined neighbourhood around
Xn+1 = x0 with d(x0, x) < ∞. The value of ε(Xn+1) depends only on the score function V (·)
and our definition of d(·, ·), not the data distribution PXY . For example, we can choose d(·, ·) to
exclude samples that are far from each other by setting d(x0, x) = 0 when ‖x0 − x‖2 � h and
d(x0, x) = ∞ otherwise. In this case, when V (Z) = |μ(X )− Y | is the regression score, we have
ε(Xn+1) � max‖Xn+1−x‖2�h |μ(Xn+1)− μ(x)| by the triangle inequality.

6. Discussion

We propose localized conformal prediction that extends the conventional conformal prediction
framework to consider a weighted empirical distribution around the test sample. It could improve
over conformal prediction when the score function is heterogeneous over the feature space,
and the localizer captures the relevant directions of such heterogeneity. Otherwise, autotuned
localized conformal prediction provides similar prediction intervals as conformal prediction,
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given the same conformal score function. Thus, ignoring the computational cost, there is little
loss in replacing conformal prediction with localized conformal prediction.

One downside of localized conformal prediction is its computational cost compared to con-
formal prediction. The bulk of the additional computation lies in calculating and sorting the
weights for the empirical distributions. One future direction of research is to reduce this cost for
a huge calibration set. For example, we may combine localized conformal prediction with proper
clustering methods, or estimate an approximated cumulative probability matrix using machine
learning methods.

Conformal prediction has been used in classification problems for outlier detection
(Hechtlinger et al., 2019; Guan & Tibshirani, 2022). Localized conformal prediction may also be
a useful framework for making predictions in the presence of outliers. When choosing a suitably
small h, it becomes sensitive to outliers, while not increasing much the length of a prediction
interval for test samples well represented by calibration data.

In this paper, we considered the one-dimensional regression response. Conformal prediction
has been applied to other data types, including survival data and data with multi-dimensional
responses (Izbicki et al., 2019; Feldman et al., 2021; Candès et al., 2022). For multi-dimensional
responses, a rectangular region formed by outer products of prediction intervals of individual
responses does not capture potential relationships between different responses. Various authors
have worked on constructions of prediction intervals to address this issue (Paindaveine & Šiman,
2011; Kong & Mizera, 2012) and Feldman et al. (2021) has recently incorporated such construc-
tions into conformal prediction. Another direction for future work is to apply the idea of localized
conformal prediction to similar contexts.
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Supplementary material

The Supplementary Material includes all proofs and algorithmic details of tuning the localizer.
An R package for localized conformal prediction is available at https://github.com/
LeyingGuan/LCP, and codes for reproducing empirical results in this paper are available at
https://github.com/LeyingGuan/LCPexperiments.
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