
Biometrika (2023), 110, 1, pp. 69–81 https://doi.org/10.1093/biomet/asac019
Advance Access publication 14 March 2022

On F-modelling-based empirical Bayes estimation of
variances

By YEIL KWON

Department of Mathematics, University of Central Arkansas,
201 Donaghey Avenue, Conway, Arkansas 72035, U.S.A.

ykwon1@uca.edu

AND ZHIGEN ZHAO

Department of Statistics, Operations, and Data Science, Temple University,
1801 Liacouras Walk, Philadelphia, Pennsylvania 19122, U.S.A.

zhaozhg@temple.edu

Summary

We consider the problem of empirical Bayes estimation of multiple variances when provided
with sample variances. Assuming an arbitrary prior on the variances, we derive different ver-
sions of the Bayes estimators using different loss functions. For one particular loss function, the
resulting Bayes estimator relies on the marginal cumulative distribution function of the sample
variances only. When replacing it with the empirical distribution function, we obtain an empirical
Bayes version called the F-modelling-based empirical Bayes estimator of variances. We provide
theoretical properties of this estimator, and further demonstrate its advantages through extensive
simulations and real data analysis.

Some key words: Empirical distribution function; Selective inference; Uniform convergence.

1. Introduction

The empirical Bayes approach was introduced as a compound decision procedure in Robbins
(1951) and has been widely studied thereafter (Dvoretzky et al., 1956; Robbins, 1956; Efron &
Morris, 1972, 1973, 1975; Laird & Louis, 1987; Jiang & Zhang, 2009; Koenker & Gu, 2017). This
approach plays an important role in the kinds of data analysis conducted during gene expression
experiments, which often involve a large number of parallel inference problems.

The core idea of the empirical Bayes approach is to estimate the prior distribution either
directly or indirectly using the available data, wherein the final inference is based on the posterior
distribution when using this estimated prior. Efron (2014) classified empirical Bayes approaches
as pursuing one of two strategies: (i) f -modelling, which is modelling on the data scale; and
(ii) g-modelling, which is modelling on the parameter scale. Under f -modelling, the resulting
empirical Bayes rule usually depends on the prior indirectly via the marginal probability density
function; under g-modelling, the prior distribution is estimated and then plugged into the posterior
calculation. It is further commented in that paper that the g-modelling approach has been widely
used in theoretical investigations (Morris, 1983; Laird & Louis, 1987; Jiang & Zhang, 2009),
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70 Y. Kwon and Z. Zhao

whereas the f -modelling approaches are more prevalent in applications (Robbins, 1956; Brown
& Greenshtein, 2009; Efron, 2011).

The simultaneous estimation of variances and the covariance matrix have a long history,
dating back to James & Stein (1961). Haff (1980) provided a parametric empirical Bayes
estimator of the covariance matrix by assuming an inv-Wishart prior distribution on the covari-
ance matrix. Efron & Morris (1976) proposed an estimator to dominate the sample covariance.
Wild (1980) considered simultaneous estimation of the variances under different loss functions.
Robbins (1982) discussed a parametric empirical Bayes method for the scale mixture of
Gaussians. Champion (2003) considered the shrinkage estimator of variances based on the
Kullback–Leibler distance.

Heteroskedasticity is prevalent in many applications, such as microarray experiments,
rendering the simultaneous estimation of variances even more important. There have been
many attempts to estimate these parameters with different approaches (Tusher et al., 2001;
Lönnstedt & Speed, 2002; Lin et al., 2003; Storey & Tibshirani, 2003; Tong & Wang, 2007;
Koenker & Gu, 2017). Among these, there are a few parametric empirical Bayes estimators
that are widely used. When assuming an inverse gamma prior, Smyth (2004) developed a
parametric empirical Bayes estimator of the variances. Cui et al. (2005) approximated both
the chi-square distribution and the inverse gamma prior by log-normal random variables and
derived the exponential Lindley–James–Stein estimator. Lu & Stephens (2016) assumed that
the prior of the variances follows a mixture of inverse gamma distributions to derive a flex-
ible empirical Bayes estimator. These parametric empirical Bayes methods have the advan-
tage of providing the full posterior distribution of the variances for further inference such
as constructing credible intervals and performing hypothesis testing. Koenker & Gu (2017)
took the g-modelling approach by estimating the probability density function of the prior dis-
tribution using a nonparametric maximum likelihood estimator (Kiefer & Wolfowitz, 1956;
Koenker & Mizera, 2014).

In this work, we assume an arbitrary prior distribution g(σ 2) for the variances to produce
a nonparametric empirical Bayes estimator. When assuming some commonly used loss func-
tions, we derive empirical Bayes estimators for the variances by modelling on the data scale.
For a particular loss function, the resulting Bayes estimator depends only on the marginal cumu-
lative distribution function of the sample variances, F(s2). To the best of our knowledge, this
is the first estimator for the variances that relies on the marginal cumulative distribution func-
tion rather than the marginal probability density function. To differentiate our method from
the terminology used in Efron (2014), we call this estimator an F-modelling-based estimator.
The advantage of the F-modelling-based estimator is that one can simply replace the marginal
cumulative distribution function with the empirical distribution function to obtain the proposed
empirical Bayes version, which we call the F-modelling-based empirical Bayes estimator for
the variances. The computation of the proposed method is instantaneous without any tuning
parameters.

It is known that the empirical distribution function converges to the true distribution function
uniformly (Dvoretzky et al., 1956). As shown in § 3, the proposed empirical Bayes estimator
converges to the Bayes version uniformly over a set Dδ = (0, Dδ), where Dδ is a large value and
tends to infinity when δ goes to zero. We impose this condition for technical reasons, so as to
prevent the denominator of the Bayes estimator being arbitrarily small. It causes little practical
concern because most often one would be interested in parameters corresponding to the small and
moderate sample variances that fall in Dδ . We have also derived the estimator of the variances
for postselection inference and finite Bayes inference (Efron, 2019).
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Empirical Bayes estimation of variances 71

2. Empirical Bayes estimator for variances

Let σ 2[1:N ] = (σ 2
1 , σ 2

2 , . . . , σ 2
N ) be the parameters of interest and s2[1:N ] = (s2

1, s2
2, . . . , s2

N ) be the
corresponding sample variances. In this paper, we consider the following model:

s2
i | σ 2

i
iid∼ p(s2

i | σ 2
i ) ∼ σ 2

i
χ2

k

k
,

σ 2
i

iid∼ g(σ 2
i ).

(1)

Here, χ2
k denotes the random variable that follows a chi-squared distribution with k degrees of

freedom. We assume an arbitrary prior g(σ 2
i ) on the variances. When integrating the variance

out, the marginal probability density function of the sample variances is f (s2
i ) = ∫ ∞

0 p(s2
i |

σ 2
i )g(σ 2

i )dσ 2
i . Let

F(s2
i ) =

∫ s2
i

0
f (s2)ds2

be the corresponding marginal cumulative distribution function of s2
i .

To derive the Bayes rule σ̂ 2[1:N ] = (σ̂ 2
1 , σ̂ 2

2 , . . . , σ̂ 2
N ), a loss function must be specified. In their

1985 University of Pittsburgh technical report, B. K. Sinha and M. Ghosh summarized many
commonly used loss functions as follows:

L0(σ
2[1:N ], σ̂ 2[1:N ]) =

N∑
i=1

(σ 2
i − σ̂ 2

i )2,

L1(σ
2[1:N ], σ̂ 2[1:N ]) =

N∑
i=1

(
σ 2

i

σ̂ 2
i

− 1
)2

,

L′
1(σ

2[1:N ], σ̂ 2[1:N ]) =
N∑

i=1

(
σ̂ 2

i

σ 2
i

− 1
)2

,

L2(σ
2[1:N ], σ̂ 2[1:N ]) =

N∑
i=1

(
σ̂ 2

i

σ 2
i

− ln
σ̂ 2

i

σ 2
i

− 1
)

.

The squared error loss function, L0(·), is not scale invariant. The other three loss functions are
scale invariant. The loss function L′

1(·) is used in the 1964 Stanford University PhD thesis by
J. B. Selliah and Ghosh & Sinha (1987). The loss function L′

1(·) is equivalent to using L1(·) for
estimating the precision parameters (Ghosh & Sinha, 1987). The loss function L′

1(·) by nature
favours underestimation because ‘underestimation has only a finite penalty, while overestimation
has an infinite penalty’(Casella & Berger, 2002). This could lead to an estimator that works
extremely poorly when focusing on the parameter with the smallest sample variance. On the
contrary, both the loss function L1(·) and Stein’s loss function L2(·) have an infinite penalty for
the underestimation. In addition, the loss function L2(·) is tied to the Kullback–Leibler divergence
and the entropy loss (Haff, 1977, 1980; Wild, 1980; Ghosh & Sinha, 1987). A potential drawback
of the loss function L1(·) is that it imposes a finite penalty on the overestimation.
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In this article, we derive empirical Bayes estimators with respect to the scale-invariant loss
functions L′

1(·), L1(·) and L2(·) by modelling on the data scale. We start with the loss function
L′

1(·), where σ̂
′2
B,[1:N ] = (σ̂

′2
1,B, σ̂

′2
2,B, . . . , σ̂

′2
N ,B) is the corresponding Bayes rule.

Theorem 1. Assume that (1) holds, and consider the loss function L′
1(·). Then

σ̂
′2
i,B = k(k − 2)s2

i f (s2
i ) − 2ks4

i f ′(s2
i )

4s4
i f ′′(s2

i ) − 4(k − 2)s2
i f ′(s2

i ) + k(k − 2)f (s2
i )

. (2)

Equation (2) could be viewed as generalizing Tweedie’s formula (Efron, 2011) to the simul-
taneous estimation of variances. The estimator σ̂

′2
i,B depends on the marginal probability density

function f (s2
i ), and its first and second derivatives. We can get an empirical Bayes version by

replacing f (s2
i ) and its derivatives with the corresponding estimators using the kernel density

estimator (Brown & Greenshtein, 2009), or Lindsey’s method (Efron, 2010, 2019). We call this
method the f -modelling-based empirical Bayes estimator for variances:

σ̂
′2
i,f-EBV = k(k − 2)s2

i
ˆf (s2

i ) − 2ks4
i

ˆf ′(s2
i )

4s4
i

ˆf ′′(s2
i ) − 4(k − 2)s2

i
ˆf ′(s2

i ) + k(k − 2) ˆf (s2
i )

. (3)

Next, consider Stein’s loss L2(·) and let σ̂ 2
Stein,[1:N ] = (σ̂ 2

1,Stein, σ̂ 2
2,Stein, . . . , σ̂ 2

N ,Stein) be the
corresponding Bayes rule. Then we have the following theorem.

Theorem 2. Assume that (1) holds, and consider Stein’s loss function L2(·). Then

σ̂ 2
i,Stein =

{
k − 2

ks2
i

− 2

k

f ′(s2
i )

f (s2
i )

}−1

.

When replacing f (s2) and f ′(s2) with the corresponding estimators, we have the following
f -modelling-based empirical Bayes estimator of the variances when assuming Stein’s loss:

σ̂ 2
i,f-EBVS =

{
k − 2

ks2
i

− 2

k

ˆf ′(s2
i )

ˆf (s2
i )

}−1

. (4)

When assuming Stein’s loss, the empirical Bayes estimator does not require the estimation of
the second derivative of the marginal probability density function. However, it still relies on
the marginal density function and its first-order derivative. The nonparametric estimation of the
density function and its derivatives is a challenging problem, not to mention that the estimation
accuracy on the tail becomes even worse. Additionally, the commonly used approaches such as
kernel density estimation relies on the choice of tuning parameters, which are difficult to choose
in practice.

Next, we consider the loss function L1(·) and the corresponding Bayes decision rule σ̂ 2
B,[1:N ] =

(σ̂ 2
1,B, σ̂ 2

2,B, . . . , σ̂ 2
N ,B). We have the following theorem.

Theorem 3. Assume that (1) holds, and consider the loss function L1(·). If∫ ∞

0
(s2)−(k/2−2) dF(s2) < ∞ and

∫ ∞

0
(s2)−(k/2−1) dF(s2) < ∞,
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Empirical Bayes estimation of variances 73

then

σ̂ 2
i,B = k

2

{∫ ∞
s2
i

(s2)−(k/2−2) dF(s2)∫ ∞
s2
i

(s2)−(k/2−1) dF(s2)
− s2

i

}
.

According to model (1), we know that

∫ ∞

0
(s2)−(k/2−j) dF(s2)

=
∫ ∞

0

∫ ∞

0
Ck

(s2)j−1

(σ 2)k/2
exp

(
− ks2

2σ 2

)
g(σ 2) dσ 2 ds2, j = 1, 2,

where Ck = kk/2/{�(k/2)2k/2}. When assuming an inverse gamma prior (Smyth, 2004) and a
mixture of inverse gamma priors (Lu & Stephens, 2016), basic arithmetic calculations show that
the conditions in the theorem hold.

Our F-modelling approach constructs a Bayes estimator of the variances that relies on F(s2),
the cumulative distribution function of the sample variances. The advantage of using an F-
modelling-based estimator is that one can avoid the daunting task of estimating the marginal
probability density function and its derivatives, which usually requires some kind of assumptions.
Instead, to obtain an empirical Bayes version of the Bayes rule, we simply replace F(s2) with the
empirical distribution function FN (s2) = (1/N )

∑
i I (s2

i � s2). After the substitution, we have
the following proposed empirical Bayes estimator, which we refer to as the F-modelling-based
empirical Bayes estimator of the variances:

σ̂ 2
i,F-EBV =

⎧⎪⎪⎨
⎪⎪⎩

s2
i if s2

i = max1�j�N s2
j ,

k

2

⎧⎨
⎩

∑
s2
j �s2

i
(s2

j )
−(k/2−2)∑

s2
j �s2

i
(s2

j )
−(k/2−1)

− s2
i

⎫⎬
⎭ otherwise.

(5)

The proposed estimator is calculated instantaneously and does not involve any tuning parameters.
We now return to (1) with g(σ 2) being arbitrary. Assume that one additional sample variance

s2
0 that is independent of s2[1:N ] has been observed. Let σ 2

0 be the corresponding variance that is
assumed to be generated from g(σ 2) and s2

0 ∼ σ 2
0 χ2

k /k . The goal is to estimate σ 2
0 based on the

posterior distribution σ 2
0 | s2

0. When N goes to infinity, the prior distribution g(σ 2) could be fully
recovered and this reduces to the standard Bayes approach. For a finite N , this problem is called
the finite Bayes inference (Efron, 2019). Assume the loss function

LFB
1 (σ̂ 2

0 , σ 2
0 ) =

(
σ 2

0

σ̂ 2
0

− 1
)2

. (6)

Based on the proof of Theorem 3, we know that the Bayes rule is

σ̂ 2
0,B = k

2

{∫ ∞
s2
0

(s2)−(k/2−2) dF(s2)∫ ∞
s2
0

(s2)−(k/2−1) dF(s2)
− s2

0

}
.
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Consequently, we propose to estimate σ 2
0 by

σ̂ 2
0,F-EBV =

⎧⎪⎪⎨
⎪⎪⎩

s2
0 if s2

0 � max1�j�N s2
j ,

k

2

⎧⎨
⎩

∑
s2
j �s2

0
(s2

j )
−(k/2−2)∑

s2
j �s2

0
(s2

j )
−(k/2−1)

− s2
0

⎫⎬
⎭ otherwise.

Similarly, we estimate σ 2
0 based on f -modelling methods by

σ̂
′2
0,f-EBV = k(k − 2)s2

0
ˆf (s2

0) − 2ks4
0

ˆf ′(s2
0)

4s4
0

ˆf ′′(s2
0) − 4(k − 2)s2

0
ˆf ′(s2

0) + k(k − 2) ˆf (s2
0)

and

σ̂
′2
0,f-EBVS =

(
k − 2

ks2
0

− 2

k

ˆf ′(s2
0)

ˆf (s2
0)

)−1

.

We can similarly construct estimators for variances relating to a set of indices, even if the
indices have been chosen using the data. Given the data s2[1:N ] = (s2

1, s2
2, . . . , s2

N ), let C be the set
of indices selected using a certain procedure. Our target is to estimate σ 2

i for all i ∈ C under the
loss function

LPS
1 (σ̂ 2, σ 2) =

∑
i∈C

(
σ 2

i

σ̂ 2
i

− 1
)2

. (7)

As an example, we might be interested in the variances corresponding to the K smallest sample
variances. In other words, order the sample variances s2

i increasingly as s2
(1) � s2

(2) � · · · � s2
(N ).

Let σ 2
(i) be the parameter corresponding to s2

(i). Set C = {i : s2
i � s2

(K)}.
For any i ∈ C,

π(σ 2
i | s2[1:N ], i ∈ C) = π(σ 2

i | s2[1:N ]).

This implies that the posterior distribution of σ 2
i when conditioning on both the data and the

selection set is the same as the posterior distribution of σ 2 conditioning on the data. Consequently,
the Bayes rule based on the selection remains the same and it is immune to the selection (Dawid,
1994). We therefore propose to estimate σ 2

i , i ∈ C, according to (5) without adjustment. This
argument is true because the full dataset is available for the postselection inference. Otherwise,
the Bayes rule might be affected by the selection. For instance, if only the data post the selection
are available for further inference, then the Bayes rule needs to be corrected for such a selection
rule. See Yekutieli (2012) for a full discussion on this issue.

3. Theoretical properties

In this section, we study the theoretical properties of the proposed method. To ease our notation,
we define two functions l1(s2, u) = (s2)−(k/2−2)

I(s2 � u) and l2(s2, u) = (s2)−(k/2−1)
I(s2 � u),
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where I(·) is an indicator function. Then the Bayes decision rule and the proposed method can
be respectively written as

σ̂ 2
i,B = k

2

{∫ ∞
0 l1(s2, s2

i ) dF(s2)∫ ∞
0 l2(s2, s2

i ) dF(s2)
− s2

i

}
and σ̂ 2

i,F-EBV = k

2

{∫ ∞
0 l1(s2, s2

i ) dFN (s2)∫ ∞
0 l2(s2, s2

i ) dFN (s2)
− s2

i

}
.

First, we study the numerator and denominator separately.

Theorem 4. Assume that the same conditions as inTheorem 3 hold and that F(s2) is continuous
with the support of (0, ∞). Then

sup
u

∣∣∣∣
∫ ∞

0
l1(s

2, u) dFN (s2) −
∫ ∞

0
l1(s

2, u) dF(s2)

∣∣∣∣ → 0 almost surely

and

sup
u

∣∣∣∣
∫ ∞

0
l2(s

2, u) dFN (s2) −
∫ ∞

0
l2(s

2, u) dF(s2)

∣∣∣∣ → 0 almost surely.

This theorem implies that both the numerator and the denominator of the proposed empirical
Bayes estimator converge to those of the Bayes rule uniformly. However, it does not guarantee that
the ratio converges uniformly. The reason is that the denominator

∫ ∞
0 l2(s2, u) dF(s2) converges

to zero when u goes to ∞. To prove that the proposed method converges to the Bayes estimator
uniformly, we consider the set such that the denominator of the Bayes rule is greater than some
positive number. Namely, for a number δ > 0, let Dδ be a set defined as

Dδ ≡
{

u

∣∣∣∣
∫ ∞

u
(s2)−(k/2−1) dF(s2) > δ

}
.

Since
∫ ∞

0 (s2)−(k/2−1) dF(s2) < ∞, then Dδ = (0, Dδ) for some positive number Dδ . We then
have the following theorem.

Theorem 5. Assume that the same conditions as in Theorem 4 hold. Then

sup
s2
i ∈Dδ

|σ̂ 2
i,F-EBV − σ̂ 2

i,B| → 0 almost surely.

The constant Dδ is a quantity that depends on the marginal distribution function of the sample
variances only and Dδ tends to infinity when δ tends to 0. For any 0 < τ < 1, let s2[1:N ] be a
random sample consisting of N sample variances. Let s2

τ be the τ th sample quantile. We can
always choose sufficiently small δ such that {s2

i , s2
i � s2

τ } ∈ Dδ with large probability. For a
sample variance that does not fall in Dδ , one could estimate the corresponding parameter with
these sample variances. Namely, we could modify the proposed estimator to

σ̂ 2
i,mF-EBV =

⎧⎪⎪⎨
⎪⎪⎩

s2
i if s2

i � s2
(�Nτ	),

k

2

⎧⎨
⎩

∑
s2
j �s2

i
(s2

j )
−(k/2−2)∑

s2
j �s2

i
(s2

j )
−(k/2−1)

− s2
i

⎫⎬
⎭ otherwise.
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In practice, especially when focusing on parameters with small sample variances, this modifica-
tion does not make much difference.

We can extend the result to the postselection inference and finite Bayes inference.

Corollary 1. Assume that the same conditions as in Theorem 4 hold. Then

sup
s2
i ∈Dδ ,i∈C

|σ̂ 2
i,F-EBV − σ̂ 2

i,B| → 0 almost surely.

As commented in § 2, the Bayes estimator is immune to the selection rule C, and the empirical
Bayes estimator could be a good approximation of the Bayes estimator. However, the discrepancy
between these two widens when focusing on the selected case (Pan et al., 2017), and some
correction is needed (Hwang & Zhao, 2013). On the other hand, Corollary 1 indicates that the
proposed F-modelling-based empirical Bayes estimator converges to the corresponding Bayes
version if s2

i ∈ Dδ , i ∈ C. In other words, we do not need to make further corrections for the
selection.

Similarly, when considering the finite Bayes inference, the uniform convergence of the
proposed estimator guarantees a good estimation as long as s2

0 ∈ Dδ .

Corollary 2. Assume that the same conditions as in Theorem 4 hold. Then

sup
s02∈Dδ

|σ̂ 2
0,F-EBV − σ̂ 2

0,B| → 0 almost surely.

4. Numerical studies

In this section, we compare the numerical performances of the proposed methods with existing
methods, including the sample variance (s2), the exponential Lindley–James–Stein, ELJS, esti-
mator (Cui et al., 2005), the method of Tong & Wang (2007), TW, the method of Smyth (2004),
the variance adaptive shrinkage, vash method (Lu & Stephens, 2016) and the REBayes method
(Koenker & Gu, 2017). As suggested by a referee, we consider two more estimators based on the
Smyth method and variance adaptive shrinkage method by considering the loss function L1(·).
Assume that the prior distribution g(σ 2

i ) in (1) is inverse gamma (a0, b0). Then the posterior
distribution of σ 2

i is inverse gamma (a1, b1), where a1 = a0 + k/2, b1 = b0 + ks2
i /2. The

hyperparameters a0 and b0 are estimated by using the method of moments (Smyth, 2004). The
Smyth method, which minimizes EL′

1(·), is given as b1/a1. The modified Smyth method, which
minimizes EL1(·), is given as

σ 2
i,mSmyth = E(σ 4

i | s2
i )

E(σ 2
i | s2

i )
= b1

a1 − 2
.

Similarly, we include two versions of variance adaptive shrinkage estimators: the original version,
vash, and the modified version, mvash, in our simulation studies.

Let (σ 2
i , s2

i ), i = 1, 2, . . . , N be the parameters, and let the sample variances be generated
according to (1), where the degree of freedom k is chosen as 5 and the prior g(σ 2) is chosen from
the following settings.

Setting I. Let σ 2
i ∼ inverse gamma distribution: ig(a, 1) with a = 10 and 6.
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Empirical Bayes estimation of variances 77

Table 1. The log10(risk) associated with the loss function (7) of the different estimators for
the variances under different simulation settings. For each setting, we consider three selection
rules: (i) the parameters corresponding to the 1% smallest sample variances, (ii) the parameters

corresponding to the 5% smallest sample variances and (iii) all the parameters
Setting a Selection rule s2 ELJS TW Smyth mSmyth vash mvash REBayes Proposed

1% 2.60 −0.48 −0.72 −0.90 −1.06 −0.87 −1.06 −0.65 −1.06
I 10 5% 2.00 −0.70 −0.87 −0.89 −1.05 −0.88 −1.05 −0.92 −1.05

All 0.77 −0.94 −0.98 −0.91 −1.05 −0.92 −1.05 −0.97 −1.03

1% 2.34 1.05 0.45 −0.14 −0.21 0.87 −0.10 −0.05 −0.22
II 10 5% 1.79 0.62 0.17 −0.10 −0.20 0.74 −0.11 −0.06 −0.22

All 0.75 0.01 0.00 0.14 −0.43 0.26 −0.48 −0.38 −0.52

1% 2.22 1.15 0.88 −0.28 −0.48 −0.26 −0.49 −0.50 −0.60
III 4 5% 1.72 0.74 0.53 −0.06 −0.36 −0.05 −0.37 −0.22 −0.39

All 0.69 0.10 0.16 0.26 −0.35 0.27 −0.35 −0.32 −0.58

1% 2.28 1.26 0.97 −0.08 −0.28 −0.06 −0.28 −0.13 −0.28
IV 4 5% 1.73 0.77 0.53 −0.13 −0.28 −0.11 −0.29 −0.22 −0.32

All 0.72 0.14 0.20 0.29 −0.34 0.30 −0.34 −0.30 −0.56

Setting II. Let σ 2
i ∼ mixture of inverse gamma distributions: 0.2ig(a, 1) + 0.4ig(8, 6) +

0.4ig(9, 19), where a = 10 and 6.

Setting III. Let σ 2
i = a with 0.4 probability and 1/a with 0.6 probability, where a = 3 and 4.

Setting IV. Let σ 2
i ∼ mixture of inverse Gaussian distributions: 0.4InvGauss(1/a, 1) +

0.6InvGauss(a, a4), where a = 3 and 4.

For all simulations, we set N = 1000 and the number of replications as 500. For each replica-
tion, we generate the data (σ 2

i , s2
i ) and order them according to the sample variances increasing.

We consider three different selection rules: (i) the parameters corresponding to the 1% smallest
sample variances, (ii) the parameters corresponding to the 5% smallest sample variances and
(iii) all the parameters. We calculate the estimated values based on the aforementioned methods.
The risks associated with the loss function (7) are calculated and reported in Table 1 and the
Supplementary Material. In our numerical studies, it is shown that the two f -modelling esti-
mators defined in (3) and (4) perform poorly, and the results are not reported in the tables.
The proposed F-modelling-based empirical Bayes estimator performs the best among all the
estimators considered. The modified Smyth method and modified variance adaptive shrinkage
method perform similarly under these settings. Under Setting I, when the prior of the variance
is an inverse gamma distribution, the proposed method, the modified Smyth method and mod-
ified variance adaptive shrinkage method are essentially the same. However, for Settings II to
IV, when the prior distribution is not an inverse gamma distribution, the proposed method out-
performs all other competing methods, including the modified Smyth method and the modified
variance adaptive shrinkage method.

Next, we consider the finite Bayes inference problem. Namely, for each generated dataset
s2[1:N ] and a new observation s2

0, we calculate the estimated values based on different approaches
and calculate the risk according to the loss function (6). The risks are reported in Table 2 and
the Supplementary Material. Overall, the proposed F-modelling-based empirical Bayes estimator
performs the best among all the estimators considered. The modified Smyth method and modified
variance adaptive shrinkage method are essentially the same. Under Setting I, when the prior of
the variance is an inverse gamma distribution, the proposed method, the modified Smyth method
and modified variance adaptive shrinkage method perform similarly with negligible differences.
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Table 2.The log10(risk) associated with the loss function (6) of the different estimators for the
finite Bayes inference problem

Setting (a) s2 ELJS TW Smyth mSmyth vash mvash REBayes Proposed

I 10 0.38 0.16 −1.05 −0.96 −1.06 −0.96 −1.07 −1.02 −1.03
II 10 0.36 0.14 −0.11 0.01 −0.48 −0.02 −0.50 −0.51 −0.55
III 4 0.92 0.72 0.23 0.23 −0.36 0.25 −0.36 −0.31 −0.47
IV 4 0.70 0.49 0.25 0.37 −0.30 0.38 −0.29 −0.10 −0.51

However, for Settings II to IV, when the prior distribution is not an inverse gamma distribution,
the proposed method outperforms all other competing methods.

5. Real data analysis

In this section, we apply different variance estimators to two microarray datasets: colon cancer
(Alon et al., 1999) and leukemia data (Golub et al., 1999). The colon cancer data include the
expressions of genes (N = 2000) for 22 patients and 40 healthy people. The leukemia data
include the expressions of genes (N = 7128) extracted from 72 patients with two types of
leukemia: acute lymphoblastic leukemia (47 patients) and acute myeloid leukemia (25 patients).
For the leukemia dataset, we first randomly split the subjects into two subgroups, such that both
subgroups contain similar numbers of subjects from the acute lymphoblastic leukemia patients
and acute myeloid leukemia patients. For each subgroup, we then constructed 1 − γ (γ = 0.05)
confidence intervals for θi, the mean parameter of the ith gene, following the work of Hwang
et al. (2009) by considering

CIi = θ̂i ± √
M̂iσ̂

2
i · √

z2
γ /2 − log M̂i, θ̂i = M̂iXi + (1 − M̂i)X̄ , M̂i = τ̂ 2

σ̂ 2
i + τ̂ 2

,

and

τ̂ 2 = max

{
1

N

N∑
i=1

(Xi − μ̂)2 − 1

N

N∑
i=1

σ 2
i , τ 2

0

}
.

We declare the ith gene, where i = 1, 2, . . . , N , to be significant if the corresponding interval
does not enclose zero. We do the same for the other subgroup. We call the decision of the ith
gene discordant if the interval based on the first subgroup does (does not) enclose zero while the
interval based on the second subgroup does not (does) enclose zero. If a decision is discordant,
this implies that a significant conclusion based on one subgroup cannot be replicated by the other.
We repeat these steps 500 times to calculate the average proportions of discordant decisions. We
perform the same calculation for the colon cancer data by splitting the data into the patient group
and healthy group.

In Fig. 1, we plot the box plots of the rate of discordant decisions. The average percentage of dis-
cordant decisions are reported in Table 3. It is seen that the proposed method, the modified Smyth
and modified variance adaptive shrinkage estimator produce a similar number of discordance
decisions. This number is substantially smaller than all the other competing methods.

To further investigate why these three methods perform similarly, we test the hypothesis that
the distribution of the sample variances is the convolution of a scaled chi-square distribution and
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Fig. 1. Box plots of the percentage of discordant decisions for (a) colon cancer data and (b) leukemia data based
on 500 replications.

Table 3. The average percentages of discordant decisions of different intervals when applied to
the colon cancer data and leukemia data based on 500 replications

Data s2 ELJS TW Smyth mSmyth vash mvash REBayes Proposed
Colon 0.27 0.20 0.20 0.20 0.17 0.20 0.17 0.19 0.17

Lukemia 0.23 0.15 0.15 0.15 0.13 0.16 0.13 0.14 0.13

an inverse gamma distribution. The Kolmogorov–Smirnov test statistics for the colon dataset and
leukemia dataset are 0.014 and 0.017, respectively. The resulting p-values are 0.80 and 0.031,
respectively. In other words, there is no evidence to reject the null hypothesis that states that the
prior is an inverse gamma distribution for the colon data, and there is only moderate evidence to
reject the null hypothesis for the leukemia data. We expect to see similar performances for these
three methods.

The code for the simulations and real data analysis is available on github:
https://github.com/zhaozhg81/FEBV.

6. Conclusion

The proposed method is developed under (1), assuming a scaled chi-square distribution with
equal degrees of freedom. The Bayes estimator in Theorem 4 still applies when the degrees of
freedom are different. However, the estimation of the cumulative distribution function requires
that the sample variances are identically distributed. Therefore, the proposed method could not
be directly applied to cases with unequal degrees of freedom. In practice, we take a slightly
conservative approach by considering the smallest degrees of freedom as the common one. Many
parametric empirical Bayesian approaches based on g-modelling estimate the prior distribution
explicitly and can handle unequal degrees of freedom.

In the real data analysis, we use the estimator of the variances as a plug-in estimator for
inferring the mean parameters. One natural follow-up challenge to address is how to obtain a
nonparametric empirical Bayes estimator of the means, assuming arbitrary priors for both the
means and the variances. Given the observed advantages of the F-modelling-based approach,
we would like to further extend this framework to broader settings in future research. We will
further study the properties of the F-modelling-based approach under the decision theoretical
framework.
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