In the paragraph before Proposition 2 of Henzi & Ziegel (2021) it is claimed that
$$ e_T = \frac{1}{h}\sum_{k=1}^h\prod_{l \in I_k}E_{p_l,\ q_l;\lambda_l}(Y_{l+h}), \quad I_k = \{k + hs\colon s = 0, \dots \lfloor (T-k)/h\rfloor - 1\}, $$
is a nonnegative supermartingale. This is generally not true for |$h \,{>}\, 1$|⁠. As a consequence, Proposition 2 is not correct for |$h > 1$|⁠, and should be adapted as follows.
 
Proposition 2.
Let |$\tau \in \mathbb{N}$| be a stopping time. Then under the assumptions of Proposition 1,
$$ \mathbb{E}_{\mathbb{Q}}(e_{\tau + h - 1}) \leqslant 1, \quad \mathbb{Q} \in \mathcal{H}_{{\rm S}}. $$
The quantity |$p_{t_0} = \min\{1, \inf_{s = 1, \dots, t_0} 1/e_s\}$| defined in the last paragraph of § 3 is an anytime-valid |$p$|-value only for |$h = 1$|⁠, but the stopping time |$\tau_{\alpha,h}$| guarantees that |$\mathbb{Q}(\tau_{\alpha,h} < \infty) \leqslant \alpha$| for |$h > 1$|⁠, |$\alpha \in (0,1)$|⁠, and |$\mathbb{Q}\in \mathcal{H}_{{\rm S}}$|⁠, because |$\tau_{\alpha,h} < \infty$| implies |$e_{\tau_{\alpha,h} + h - 1} \geqslant 1/\alpha$|⁠. Hence all empirical results in the article remain valid. An anytime-valid |$p$|-value for |$h > 1$| is given by
$$ p_{t_0} = \min\left(1, \inf_{s = 1, \dots, t_0} \left[\max_{j = s - h + 1, \dots, s - 1} \! E_{p_{j}, q_{j}; \lambda_j}\{{\rm 1}\kern-0.24em{\rm I}(p_{j} > q_{j})\}^{-1}/e_{s}\right]\right), $$
since |$p_{t} \leqslant \alpha$| for some |$t \in \mathbb{N}$| if and only if |$\tau_{\alpha,h} < \infty$|⁠.
 
Proof of Proposition 2.
Recall that the process |$(Y_t, p_t, q_t, \lambda_t)_{t \in \mathbb{N}}$| is adapted to |$\mathfrak{F} = (\mathcal{F}_t)_{t \in \mathbb{N}}$|⁠. Let |$h > 1$|⁠. For |$k = 1, \dots, h$|⁠, define |$I_k(t) = \{k + hs\colon s = 0, \dots \lfloor (t-k)/h\rfloor - 1\}$|⁠,
$$ M^{[k]}_t = \prod_{l \in I_k(t)} E_{p_{l},q_{l};\lambda_{l}}(Y_{l+h}), \quad \mathfrak{F}^{[k]} = \left(\mathcal{F}_{\lfloor \frac{t-k}{h}\rfloor h + k}\right)_{t \in \mathbb{N}}, $$
with |$\prod_{\emptyset} := 1$| and |$\mathcal{F}_j := \{\Omega, \emptyset\}$| for |$j \leqslant 0$|⁠. Then |$e_t = \sum_{k=1}^h M^{[k]}_t/h$|⁠. For |$k = 1, \dots, h$|⁠, the process |$(M^{[k]}_t)_{t \in \mathbb{N}}$| is a nonnegative supermartingale with respect to |$\mathfrak{F}^{[k]}$| for any |$\mathbb{Q} \in \mathcal{H}_{{\rm S}}$|⁠, and therefore satisfies |$\mathbb{E}_{\mathbb{Q}}(M^{[k]}_{\tau[k]}) \leqslant 1$| for any |$\mathfrak{F}^{[k]}$|-stopping time |$\tau^{[k]}$|⁠. So
$$ \mathbb{E}_\mathbb{Q}\left(\frac{1}{h}\sum_{\ell=1}^h M^{[k]}_{\tau^{[k]}}\right) \leqslant 1. $$
for |$\mathfrak{F}^{[k]}$|-stopping times |$\tau^{[k]}$|⁠, |$k = 1,\dots,h$|⁠. If |$\tau$| is an |$\mathfrak{F}$|-stopping time, then
$$ \left(\left\lfloor\frac{\tau-k-1}{h}\right\rfloor + 1\right)h + k =: f_k(\tau) \in \{\tau, \dots, \tau + h - 1\} $$
is an |$\mathfrak{F}^{[k]}$|-stopping time. To see this, let |$t = k + hs + j$| for |$s \in \mathbb{N}_0$|⁠, |$k \in \{1, \dots, k\}$|⁠, |$j \in \{0, \dots, h-1\}$|⁠. Then |$\lfloor(t-k)/h\rfloor h+k = k + hs$|⁠, and |$f_k(\tau) \leqslant t$| if and only if |$\tau \leqslant k+hs$|⁠, so
$$ \{f_{k}(\tau) \leqslant t\} = \{\tau \leqslant k + hs\} \in \mathcal{F}_{k+hs} = \mathcal{F}_{\lfloor \frac{t-k}{h}\rfloor h + k}. $$
This implies that for any |$\mathfrak{F}$|-stopping time |$\tau$|⁠, we obtain
$$ \mathbb{E}_{\mathbb{Q}}(M_{\tau + h - 1}) = \mathbb{E}_\mathbb{Q}\left(\frac{1}{h}\sum_{k=1}^h M^{[k]}_{f_k(\tau)}\right) \leqslant 1, \quad \mathbb{Q} \in \mathcal{H}_{{\rm S}}, $$
using the fact that |$M_{t + h - 1} = \sum_{k=1}^h M^{[k]}_{f_k(t)}/h$| for |$t \in \mathbb{N}$|⁠. □
The following example demonstrates that the statement of Proposition 2 with |$\tau$| instead of |$\tau + h - 1$| is not true. Let |$h = 2$|⁠, |$\varepsilon \in (0,1)$|⁠, and |$\delta \in (0, \varepsilon)$|⁠. Define |$p_1 = \varepsilon-\delta$|⁠, |$q_1 = \varepsilon+\delta$|⁠, and |$p_t = q_t = 0.5$| for |$t > 1$|⁠. Let |$S(p,y) = (p-y)^2$|⁠. Then the one-period e-value for |$t = 1$| equals
$$ E_{p_1,q_1}^{\pi_{1,1}}(y) = \frac{\pi_{1,1}^{y}(1-\pi_{1,1})^{1-y}}{\varepsilon^y(1-\varepsilon)^{1-y}}, $$
with |$\pi_{1,1} \in (\varepsilon, 1]$|⁠, and |$E_{p_t,q_t}^{\pi_{1,t}}(y) \equiv 1$| for |$t > 1$|⁠, which gives
$$ e_t = \begin{cases} 1, & \ t = 1, 2, \\ 0.5E_{p_1,q_1}^{\pi_{1,1}}(Y_3) + 0.5, & \ t \geqslant 3. \end{cases} $$
The null hypothesis consists of all distributions |$\mathbb{Q}$| generating the sequence |$(Y_t)_{t \in \mathbb{N}}$| such that |$\mathbb{Q}(Y_3 = 1 \mid Y_1) \leqslant \varepsilon$|⁠. Define |$\mathbb{Q}$| as follows. Let |$\mathbb{Q}(Y_1 = 1)$| be arbitrary; |$Y_2$|⁠, |$Y_3$| independent of |$Y_1$| with |$Y_2 = Y_3$| almost surely and |$\mathbb{Q}(Y_2 = Y_3 = 1) = p \in (0, \varepsilon]$|⁠; and |$Y_t$| for |$t > 3$| with arbitrary distribution. Define the stopping time |$\tau = 3Y_2 + 2(1-Y_2)$|⁠. Then,
$$ e_{\tau} = \begin{cases} 1, & \ Y_2 = 0, \\ 0.5\pi_{1,1}/\varepsilon + 0.5, & \ Y_2 = 1, \end{cases} $$
so that |$\mathbb{E}_{\mathbb{Q}}(e_{\tau}) > 1$| for |$\pi_{1,1} > \varepsilon$|⁠, since |$\mathbb{Q}(Y_2 = 1) = p > 0$|⁠.

References

Henzi,
A.
&
Ziegel,
J. F.
(
2021
).
Valid sequential inference on probability forecast performance
.
Biometrika
109
,
647
63
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.