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Why Coordinated Distributed 
Experiments Should Go Global
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The performance of coordinated distributed experiments designed to compare ecosystem sensitivity to global-change drivers depends on whether 
they cover a significant proportion of the global range of environmental variables. In the present article, we described the global distribution 
of climatic and soil variables and quantified main differences among continents. Then, as a test case, we assessed the representativeness of 
the International Drought Experiment (IDE) in parameter space. Considering the global environmental variability at this scale, the different 
continents harbor unique combinations of parameters. As such, coordinated experiments set up across a single continent may fail to capture the 
full extent of global variation in climate and soil parameter space. IDE with representation on all continents has the potential to address global 
scale hypotheses about ecosystem sensitivity to environmental change. Our results provide a unique vision of climate and soil variability at the 
global scale and highlight the need to design globally distributed networks.
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All terrestrial ecosystems are being affected to some  
 extent by alterations in climate, biogeochemistry, and 

disturbance regimes as a consequence of human activities 
(Vitousek et  al. 1997, IPCC 2013, Flombaum et  al. 2017). 
Indeed, the scope and pace of change occurring in ecological 
systems today—and forecasted for the future—are unprec-
edented in human history (IPCC 2013). Although there are 
many approaches ecologists may use to better understand 
how and why ecosystems respond to global changes, experi-
ments have long been recognized as critical for identifying 
mechanisms underlying ecological responses (Rustad 2008, 
Smith 2011a, Beier et  al. 2012). However, most manipula-
tive experiments are conducted with different approaches 
and methods, making it challenging to determine whether 
the variation in ecological responses is due to different 
methodologies or to differences in key ecosystem attributes 
(Smith 2011a, Borer et  al. 2014). Although syntheses and 
meta-analyses are useful tools for assessing broadscale 
drivers of change (Wu et al. 2011, Komatsu et al. 2019), the 
different methodologies used across studies can limit our 
ability to draw inferences (Gurevitch and Mengersen 2010). 
Consequently, knowledge of how and why ecosystems differ 
in their sensitivity to global changes remains poorly quanti-
fied because we lack an understanding of the mechanisms 
driven ecosystem responses. Network-level experiments 
with common research protocols and methodologies are 
increasingly being used to fill this gap (Beier et  al. 2004, 
2012, Smith 2011b, Vicca et  al. 2012, Fraser et  al. 2013, 

Borer et al. 2014, Knapp et al. 2015a). However, their ability 
to shed insight on the ecosystem sensitivity to global change 
depends on the degree to which they cover a significant 
proportion of the global range of climate, soil, and vegeta-
tion variables.

Coordinated distributed experiments
Coordinated distributed experiments (sensu the Nutrient 
Network; Borer et  al. 2014) go beyond unique, local-scale 
studies and have the potential to be important for under-
standing mechanisms underlying differential ecosystem sen-
sitivity to global change (Peñuelas et al. 2007, Smith 2011a, 
Knapp et al. 2015a, Reinsch et al. 2017). Although coordi-
nated approaches account for the fact that environmental 
parameters differ among locations, a global distribution of 
experiments may be required to encompass the full range of 
natural variability of climate and soil variables. As such, the 
success of a coordinated distributed experiment depends on 
the distribution of sites in soil–climate space. Experiments 
encompassing the full range of environmental variables have 
the possibility of testing the entire spectrum of ecosystem 
responses. In contrast, networks of experiments limited 
in parameter space may miss part of the response surface. 
Moreover, they may be severely constrained in their predic-
tive power and in their ability of addressing global change 
questions.

A global distribution of experimental sites makes sense 
only if climate and soil variables differ among continents. 
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In the present article, we aimed to assess whether any single 
continent contains sufficient variation in climatic and soil 
parameters to allow for the testing of global hypotheses in 
selected regions or whether a full multicontinent approach is 
needed. As site locations in coordinated distributed experi-
ments are generally established on the basis of voluntary 
willingness to participate, it is important to assess the real-
ized representation of each of them.

Climate and soil parameter space
When analyzing the main environmental factors, we might 
conclude that almost all possible terrestrial climate and soil 
conditions are represented within a single large region or 
that multiple regions are required to encompass existing 
global patterns. For instance, several hypotheses indicate 
that aboveground net primary production sensitivity to 
precipitation amount depends on key climatic and edaphic 
variables related to fertility and soil–water availability 
(Yahdjian et  al. 2011, Smith et  al. 2017). These variables 
include mean annual precipitation (Huxman et  al. 2004, 
Sala et  al. 2012), mean annual temperature (Epstein et  al. 
1996), seasonality, which measures the synchrony between 
wet and warm seasons based on monthly data of precipita-
tion and temperature (Sala et  al. 1997, Saha et  al. 2018), 
continentality or the temperature and monthly precipita-
tion range. Also, soil characteristics that determine water-
holding capacity, such as soil texture (Hanks and Ashcroft 
1980), soil depth and slope (Fan et  al. 2017), and soil 
organic carbon (Chapin et al. 2002) have been hypothesized 
as important variables dictating aboveground net primary 
production  response per unit of precipitation. However, 
the environmental parameter space is usually described in 
terms of mean annual temperature and mean annual pre-
cipitation only, and the inclusion of other climate variables 
or soil attributes is much less common.

To assess the global range of environmental parameter 
space, we describe the global distribution of climatic and 
soil variables and identify the main differences among con-
tinents to establish a baseline against which the representa-
tiveness of global distributed experiments can be assessed. 
To do so, we constructed 95% confidence ellipses for a suite 
of environmental variables from global databases using the 
plotGroupEllipses function in R (R core Team 2018), and 
we estimated the overlap of the standard ellipses fitted by 
maximum likelihood using the maxLikOverlap function 
(SIBER package, R core Team 2018). This procedure allowed 
comparison among ellipses from continents with differ-
ent number of data points (Jackson et  al. 2011). We then 
estimated the area of each ellipse with the siberConvexhull 
function to quantify the range of variation within each 
continent. As a case study, we compared the environmen-
tal context of the International Drought Experiment (IDE, 
http://drought-net.colostate.edu; Smith et al. 2017) with the 
global range of environmental variation that occurs across 
continents. This coordinated distributed experiment is test-
ing hypotheses about the control of ecosystem sensitivity to 

extreme drought and how they vary globally among deserts, 
grasslands, shrublands, and forests. To determine how well 
the DroughtNet sites represent global variation, we assessed 
the environmental distribution of IDE sites within the glob-
ally defined environmental space (box 1).

Climate and soil data sources
Comparable climate and soil data are needed to describe 
the global physical–environmental space. We selected nine 
climatic and soil variables and extracted them from publicly 
available global data sets that ensure consistency across the 
globe (see table 1 for a complete list of variables and data 
sources). For each global terrestrial 1-degree pixel, we identi-
fied the appropriate continental region (i.e., North America, 
Central and South America, Europe, Africa, Asia, and 
Australia). Climate data were extracted from WorldClim’s 
global climate data (version 1.4, available at www.worldclim.
org), and loaded in R with a raster package for all terrestrial 
pixels. Mean annual values of total precipitation and tem-
perature represent the long-term values (years 1960–1990) 
of terrestrial condition from WorldClim version 1.4, the 
most recent version for R (Hijmans et al. 2005).

Annual values of temperature and precipitation do 
not fully represent how environments vary seasonally. 
Therefore, water balance dynamics over seasonal time 
frames cannot be captured by climatic variables described 
at the annual scale. To address this deficiency, we calculated 
a measure of seasonality, in this case the overlap between 
wet and warm seasons, which was estimated by the Pearson 
correlation coefficient on monthly data of precipitation and 
temperature extracted from the same climate data source 
(Sala et  al. 1997). As all Pearson correlation coefficients, 
seasonality values can be negative or positive and zero 
means no correlation. Seasonality ranges from –1 to 1, and 
negative values describe Mediterranean climates with dry 
summers and rainy winters, whereas positive, values cor-
respond to sites with summer (warm season) precipitation 
(Kottek et al. 2006).

Continentality was estimated by the annual temperature 
range, which is the difference between maximum (hottest) 
and minimum (coldest) monthly temperature. Similarly, 
mean precipitation range represents the difference between 
the maximum and minimum monthly precipitation over 
the year, so large values of continentality or mean monthly 
precipitation range represent high variability in monthly 
temperature or precipitation. We also extracted and tested 
for other precipitation and temperature-related variables 
such as growing-season precipitation, precipitation of the 
warmest or wettest quarter, potential evapotranspiration, 
and the aridity index (the mean annual precipitation to 
potential evapotranspiration ratio) but discarded those 
variables because they were strongly correlated with mean 
annual precipitation or mean annual temperature (supple-
mental figure S1).

Soil texture, a categorical (unitless) variable, was extracted 
from the Hydrology Soil database (http://iridl.ldeo.columbia.
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Box 1. Empirical evaluation of a globally distributed drought experiment.

The impact of drought on ecosystems depends on the magnitude of the precipitation anomaly and the relative response rate of eco-
systems to drought (Seddon et al. 2016). Evidence showed that some ecosystems are relatively insensitive to short-term (e.g., 1 year) 
changes in precipitation, whereas others are highly sensitive and respond dramatically to similar drought events (Knapp et al. 2015). 
It is unclear if this observed differential sensitivity among ecosystems is a consequence of different ecological, climatic, and/or soil 
parameter space. A coordinated, distributed drought experiment (the “International Drought Experiment,” IDE, http://drought-net.
colostate.edu/) was established to test hypotheses about the control of ecosystem sensitivity to extreme drought through a distributed 
rainfall manipulation experiment (Smith et al. 2017, Hilton et al. 2019). In this network, comparable drought treatments among the 
broad range of terrestrial ecosystems with disparate climates were achieved by simulating dry years with the same low probability of 
occurrence (once every 100 years; Lemoine et al. 2016, Knapp et al. 2017). To test hypotheses about the drivers of drought sensitivity, 
the network had to cover a representative portion of the climatic–soil parameter space. In the present article, we assessed the realized 
representation of IDE against the background of the global patterns generated in our analysis to evaluate how well experimental IDE 
sites through voluntary participation captured soil and climate gradients at the global scale described with our approach.

The IDE sites were those registered in the network data base (www.drought-net.org) and carrying out the same rainfall manipulation 
experiments (supplemental figure S2, supplemental table S5). We identified 127 sites covering the six continental regions and encom-
passing the hyper-arid through hyper-humid gradient of bioclimatic zones (Le Houérou 1996; table S5). Climate and soil data for the 
IDE locations were extracted from the same data bases used in this study (table 1). In addition, we extracted the Global Aridity index 
(mean annual precipitation to potential evapotranspiration ratio; a high value means low aridity), from the Global Aridity database 
(www.cgiar-csi.org/data/global-aridity-and-pet-database) to classify the experimental IDE sites along the arid–humid bioclimatic 
zones (Le Houérou 1996, table S5).

The IDE sites represent an even distribution of rainfall manipulation experiments in the mean annual temperature and mean annual 
precipitation space, specifically in the mean annual precipitation range between 0 and 2500 millimeters per year and mean annual 
temperature higher than –5 degrees Celsius (figure 1), which is also the most represented on Earth (the background in figure 1). The 
effects of climate change on ecosystem functioning depend on the interactions between climate events and ecosystem sensitivity to 
predicted climate changes (Sala et al. 2015). Our results provide insights about the potential of IDE to address questions regarding 
ecosystem responses to drought. The IDE network will advance our understanding on drought sensitivity that is imperative to assess 
future ecosystem functioning and the provisioning of ecosystem services.

Figure 1. IDE coverage in global mean annual temperature as a function of mean 
annual precipitation. The background shows in a grayscale the representation 
of the global combinations of mean annual temperature and mean annual 
precipitation, where the range from white to dark grey and black depicts the 
density of pixels in the world with that combination of variables. The distribution 
of IDE sites is deployed with the same colors according to continents in figure 2.
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edu/SOURCES/.NASA/.ISLSCP/.GDSLAM/.Hydrology-
Soils/.soils), a 1-degree grid resolution Soil Map of the 
World (Zobler 1986, FAO 1988). Texture is classified accord-
ing to the relative size of soil particles, following the scheme 
proposed by Zobler (1986). Textural classes reflected the rel-
ative proportions of clay (fraction less than 2 micrometers), 
silt (2–50 micrometers), and sand (50–2000 micrometers) 
in the soil. The original FAO data used the terms coarse, 
medium, fine, or a combination of these terms on the basis of 
the relative amounts of clay, silt, and sand present in the top 
30 centimeters (cm) of soil. Zobler (1986) converted these 
data into a 1-degree grid resolution array, and then assigned 
the common names sandy loam, sandy clay loam, loam, 
and clay loam, which correlated with the USDA soil texture 
triangle (table 1).

Soil depth was extracted from the soil profile thickness 
file (Webb et al. 1993) derived from information contained 
in volumes 2–10 of the FAO and UNESCO Soil Map of 
the World (FAO 1988). The average topographical slope 
(SLOPE) for each 1-degree × 1-degree square was derived 
from data sets constructed by the Science and Applications 
Branch of the EROS Data Center in Sioux Falls, South 
Dakota (table 1). Soil organic carbon content was extracted 
from the Harmonized World Soil Database and values were 
expressed in tons of carbon per hectare (Nachtergaele et al. 
2010, Hiederer and Köchy 2011). The resolution of soil 
organic carbon data was 30 arc seconds (approximately 
1 kilometer for Ecuador), and two data sets were available, 
from 0–30 cm and 30–100 cm of soil depth. In the present 
article, we used only the 0–30 cm because it had a better 
resolution and is associated with the soil profile where plant 
roots concentrate (Jackson et al. 1996).

All climate data used for this study are available from 
WorldClim (global climate data, version 1.4, www.world-
clim.org; global aridity database, www.cgiar-csi.org/data/
global-aridity-and-pet-database; and soil data, http://iridl.
ldeo.columbia.edu/SOURCES/.NASA/.ISLSCP/.GDSLAM/.
Hydrology-Soils/.soils). To harmonize climate and soil data 

sets, we used the coarse resolution of the Worldclim, 
2.5 minutes (around 5 square kilometers).

Patterns in global environmental space
The terrestrial climate space determined by the joint com-
bination of macroclimatic parameters mean annual tem-
perature versus precipitation had a triangular shape, as was 
proposed by Whittaker (1975), resulting from the spherical 
configuration of Earth that creates a larger area and precipi-
tation–temperature combinations around the tropics than in 
polar regions (figure 2a). There was an interaction between 
mean annual precipitation and mean annual temperature 
values (figure 2a; Koenig 2002). The wettest regions in the 
warmest climates have more energy to fuel the water cycle. 
Consequently, the mean annual temperature range was 
broader in drier regions of the world (figure 2a). However, 
there were differences in mean annual temperature and pre-
cipitation among continents (figure 2a) and very low over-
lap among the six continents (ellipses in figure 2b, table 2, 
supplemental table S1).

The global seasonality of precipitation was evenly dis-
tributed on the basis of mean annual precipitation (figure 
3a). Winter and summer precipitation regimes (negative 
and positive correlations, respectively) were equally rep-
resented in the 0–3000 millimeters range of mean annual 
precipitation, but extreme seasonality was less common in 
locations with higher mean annual precipitation rate (figure 
3a). Different continents had distinct seasonality patterns 
(figure 3d, supplemental table S2). For example, South 
America had a large representation of winter precipita-
tion and low seasonality sites that were not represented in 
either North America or Europe (figure 3d). Continentality 
showed a global pattern of decreasing temperature range 
with increasing mean annual precipitation and wettest 
regions located in low continental (low temperature range) 
climates (figure 3b). In other words, sites located far from 
the oceans, and therefore with high continentality, tended to 
have lower precipitation compared with maritime regions. 

Table 1. Climate and soil variables included in this analysis, defined in a globally consistent manner.
Climatic Abbreviations Units Source References

Mean annual precipitation MAP Millimeters per year BIO12 WorldClim

Mean annual temperature MAT Degrees Celsius BIO1 http://WorldClim.org

Seasonality (correlation) SEASON Unitless –

Continentality (temperature 
range)

CONT Degree Celsius BIO7(BIO5-BIO6)

Monthly precipitation range MPR Millimeters BIO13-BIO14

Soil texture TEXT Unitless Hydrology Soils 
Data set

http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.
ISLSCP/.GDSLAM/.HydrologySoils/.soils/.data set_
documentation.html

Soil depth DEPTH Meters http://esdac.jrc.ec.europa.eu/ESDB_Archive/octop/
octop_data/

Average slope SLOPE Percentage

Soil organic carbon SOC Tons per hectare
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It is important to highlight that there were large differ-
ences in temperature ranges among continents (figure 3e, 
supplemental table S3). In the Southern Hemisphere, high 
continentality is extremely rare because of the smaller land-
masses in the middle latitudes and nearly absent of land 
at 40–60 degrees south. By contrast, North America and 
Asia in the Northern Hemisphere showed higher tempera-
ture ranges (over 30 degrees Celsius), whereas Europe and 
Australia showed intermediate values. Africa and South 
America exhibited the lowest continentality (figure 3e). The 
monthly precipitation range showed a strong correlation 
with mean annual precipitation, with monthly precipitation 
range increasing with mean annual precipitation (figure 3c). 
A clear continental pattern emerged from this climate space 
with Asia and South America showing higher monthly pre-
cipitation range than Europe and North America (figure 3f, 
supplemental table S4).

The global pattern of soil properties showed no correlation 
between mean annual precipitation and texture (figure 4a) 
or soil depth (figure 4b). All types of soil texture were spread 
along the arid–humid mean annual precipitation gradi-
ent with Australian sites showing coarser soils and South 
American sites largely represented in the loam and clay soil 
textural classes (figure 4a). Soil slope showed that globally, 
flat and low-slope soils were more represented on earth 
than slopes higher than 30% without a continental pattern 
(figure 4c). The soil organic carbon in the 0–30 cm depth 
showed a slightly positive correlation with mean annual 
precipitation and a broader soil organic carbon range in 

drier regions, with South America region more varied for 
soil organic carbon and mean annual precipitation than the 
other continents (figure 4d).

The multivariate analysis of terrestrial climate and soil 
variables highlights the global distribution of these variables 
among continents (figure 5). The plane defined by the first 
two principal components accounted for 42% of the vari-
ance. The first principal component included sites tending 
to have high mean annual temperature or mean annual 
precipitation on one end and large seasonality and continen-
tality on the other end (figure 5). The second principal com-
ponent included soil variables, and range from low to high 
slope, depth, and soil organic carbon (arrows in figure 5). 
The ellipses delineated continent patterns and clearly dem-
onstrate that no single continent covers the integrated global 
climate–soil space (figure 5). Continental patterns stress the 
necessity of a global network given that no single continent 
covers the integrated climate–soil space (table 2).

Implications
Coordinated distributed experiments provide a framework 
for both comparing ecosystem sensitivity to global-change 
drivers and for identifying the mechanisms that underlie 
those responses. However, the ability of coordinated net-
works to shed insight on fundamental drivers of ecosystem 
dynamics depends on whether the location of the experi-
ments cover a significant proportion of the global range of 
climate, soil, and vegetation variables. The pattern of macro-
climatic variables mean annual precipitation, mean annual 

Figure 2. Global mean annual temperature as a function of mean annual precipitation, with colors representing the six 
continents. (a) The dots represent a pixel of terrestrial area depicted according to each continent. (b) 95% confidence 
ellipses estimated by maximum likelihood using the maxLikOverlap function (SIBER package in R).
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Table 2. Percentage of bivariate climate variables depicted in figures 2 and 3 and of PCA in Figure 5, accounted for by 
each continent. 
Climatic MAT SEASON CONT MPR PCA
Africa 30 40 26 16 49

Asia 74 79 77 73 81

Australia 45 68 34 22 45

Europe 48 42 41 4 46

North America 48 37 34 8 48

South America 69 84 50 34 55

Note: Each variable listed was deployed against mean annual precipitation (MAP). See abbreviation and units of each climate variable in  
table 1. The last column refers to the area of the 95% confidence ellipses in principal component space depicted in figure 5. Abbreviations: 
CONT, continentality; MAT, mean annual temperature; MPR, monthly precipitation range; PCA, principal component analysis.

Figure 3. Global distribution of climatic variables as a function of mean annual precipitation in the six continental masses. (a, d) 
Seasonality index showing the overlap between wet and warm seasons, calculated as the Pearson correlation coefficient between 
monthly precipitation and temperature (unitless). (b, e) Continentality based on temperature range estimated as the difference 
between maximum (hottest) and minimum (coldest) monthly temperature. (c, f) Monthly precipitation range estimated as 
the difference between the maximum and minimum monthly precipitation over the year. Panels (d), (e), and (f) contain 95% 
confidence ellipses estimated by maximum likelihood using the maxLikOverlap function (SIBER package in R).
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temperature, and continentality that measured the tempera-
ture range, showed important distinctions among continents 
that emphasize the necessity of a global network to account 
for differences in climate. Indeed, the soil–climate integra-
tion space described by the multivariate analysis of climatic 
and soil variables showed that six continental regions of the 
world are needed to cover the full combination of different 
climate and soil variables in Earth’s terrestrial ecosystems.

Global patterns of climate were related to the spheri-
cal shape of the Earth and the uneven distribution of 
continental masses relative to water in Northern and 
Southern Hemispheres (Akin 1991, Chapin et  al. 2002). 
Soil characteristics modulate water infiltration, water stor-
age, water potential, and soil fertility, all of which affect 
plant responses to precipitation change (Smith et al. 2017). 
Soil variables represent another dimension of the physical 
space that also determines ecosystem functioning. In con-
trast with the observed differences in climate variables, no 
continental patterns emerged in soil variables. This global 
analysis confirmed previous studies of aboveground net 
primary production controls at the subcontinental scale 
showing that climate variables changed at a coarser scale 
than soil variables (Sala et al. 1988). A study of aboveground 
net primary production  of more than 900 sites in North 
America captured the climate effect when those sites were 
lumped into 100 larger units but needed to be disaggregated 
to evaluate the effect of soil texture on productivity (Sala 
et  al. 1988). Therefore, distributed experiments may need 
to encompass large-scale climate patterns as well as finer 
scale soil patterns.

Our analyses serve as a basis for the design and deploy-
ment of future coordinated distributed experiments, and 
they provide an underlying mechanism to evaluate the 
generality of conclusions from existing global experimental 
networks. As the analysis represents a spatial description 
of the terrestrial environmental parameter space, the range 
of variation of climate variables is wider than the expected 
by climate change because it covers the full extent of global 
variation. In addition, our approach identified the main 
factors that capture the global variability of the physical–
environmental space, including not only the macroclimatic 
variables mean annual precipitation and mean annual tem-
perature, but additional climate and soil variables that also 
control the functioning of ecosystems and their response 
to different global-change drivers (Flombaum et  al. 2017). 
Finally, our framework is based on a data‐driven approach 
and publicly available sources of information, so it could be 
applied to assess the representativeness of environmental 
observatory networks and complement previous assess-
ments at the national scale (Villarreal et al. 2018, Villarreal 
et al. 2019).

Most coordinated distributed experiments have a national 
or continental extent or cover a specific biome or climate 
type (Beier et al. 2004, Fraser et al. 2013, Borer et al. 2014a, 
Maestre and Eisenhauer 2019). Many of them use coarse 
grids, sample locations in some regions and often do not 

Figure 4. Global distribution of soil variables as a function 
of mean annual precipitation. (a) Soil texture, (b) soil depth, 
(c) slope, and (d) soil carbon content (tons of carbon per 
hectare). Texture classes in panel (a) are abbreviated CL, 
clay loam; L, loam; SCL, sandy clay loam; SL, sandy loam.
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span the whole north to south gradient or lack extreme envi-
ronments. Moreover, most coordinated distributed experi-
ments, including the International Drought Experiment 
(IDE), did not have an a priori design but instead were 
built on voluntary participation from around the world. 
Consequently, they are often biased toward regions with 
the highest concentrations of scientist and resources such 
as North America and Europe (Wu et al. 2011). Our analy-
sis highlighted the importance of deploying coordinated 
distributed experiments that widely represent the environ-
mental parameter space, with the understanding that differ-
ent networks may need different configurations depending 
on the type of questions that they address. Our sampling 
approach implied a spatial integration of data into grid cells, 
and therefore, the results can mask heterogeneous physical 
conditions that occur at smaller scales. The result may sug-
gest that these scale differences may be more important for 
soil variables than climate variables.

In conclusion, this study represents a step forward in 
the analysis of climate and soil parameter space that can be 
useful in the design of distributed experimental networks, 

which are increasingly being developed to address large-
scale ecological questions. Coordinated distributed experi-
ments may benefit from a design that captures as much as 
possible the full extent of global variation in climate and 
soil parameter space, which admittedly may be challenging 
to achieve in some extreme environments. The latitudinal 
changes in most environmental variables and the differ-
ent patterns in the Northern versus Southern hemisphere 
because of the land–ocean ratio stress the importance of 
widening the coverage of the parameter space. Generally, 
climate change will result in drier climates in dry regions 
and wetter climate in wetter regions. As a consequence, the 
development or expansion of existing coordinated global 
networks need to be cognizant of zones of rapidly changing 
climate or hot spots of climate change as priorities of inclu-
sion into these networks wherever possible. The expected 
changes in climate in the next 50–100 years will have huge 
implications for ecosystems and human wellbeing but will be 
small relative to the spatial gradient described in the present 
article. Nevertheless, our results provide a unique vision of 
climate and soil variability at the global scale and highlight 

Figure 5. Soil–climate space as depicted by a principal component analysis (PCA) showing continental representation 
(the colored dots). The plane defined by the first two principal components accounted for 42% of the variance. PCA axis 1 
included sites ranging from high mean annual temperature (MAT) or mean annual precipitation (MAP) on one end and 
large seasonality (SEASON) and continentality (CONT) on the other end. PCA axis 2 included soil variables and ranges 
from low to high slope, depth and soil organic carbon (SOC). Solid arrows indicate direction and weighing of vectors 
representing the relative contribution of the five climate and four soil parameters considered (table 1). The 95% confidence 
ellipses represent data clusters in the PCA by continents (Fox and Weisberg 2011). Variables are described in table 1 and 
the percent cover of the ellipses accounted for by each continent area is informed in the last column of table 2.
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the need to consider global patterns of climate and soil 
variables as much as possible when designing coordinated 
distributed experiments.
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