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SUMMARY

Statistical heterogeneity and small-study effects are 2 major issues affecting the validity of meta-analysis.
In this article, we introduce the concept of a limit meta-analysis, which leads to shrunken, empirical Bayes
estimates of study effects after allowing for small-study effects. This in turn leads to 3 model-based ad-
justed pooled treatment-effect estimators and associated confidence intervals. We show how visualizing
our estimators using the radial plot indicates how they can be calculated using existing software. The
concept of limit meta-analysis also gives rise to a new measure of heterogeneity, termedG2, for hetero-
geneity that remains after small-study effects are accounted for. In a simulation study with binary data and
small-study effects, we compared our proposed estimators with those currently used together with a recent
proposal by Morenoand others. Our criteria were bias, mean squared error (MSE), variance, and coverage
of 95% confidence intervals. Only the estimators arising from the limit meta-analysis produced approx-
imately unbiased treatment-effect estimates in the presence of small-study effects, while the MSE was
acceptably small, provided that the number of studies in the meta-analysis was not less than 10. These
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limit meta-analysis estimators were also relatively robust against heterogeneity and one of them had a
relatively small coverage error.

Keywords: Empirical Bayes; Heterogeneity;I 2; Meta-analysis; Publication bias; Radial plot; Small-study effects.

1. INTRODUCTION

Systematic reviews and meta-analysis are invaluable tools of collating and synthesizing evidence in the
life sciences. However, 2 main threats exist to the validity of meta-analysis, heterogeneity, and small-study
effects. Heterogeneity may have different sources. One is “clinical heterogeneity” between patients from
different studies, measured, for example, in patient baseline characteristics and not necessarily reflected in
the outcome measure. There may also be “heterogeneity related to study design” or other study-level char-
acteristics. In this article, we are interested in “statistical heterogeneity,” quantified on the effect measure-
ment scale. That is, we look at the extent of treatment-by-study interaction (Senn, 2000). Heterogeneity
on this scale essentially measures remaining between-study variation, the clinical implications of which
are often context specific.

There is a substantial literature on statistical heterogeneity in meta-analysis, see, for example,
DerSimonian and Laird(1986), Hardy and Thompson(1998), Thompson and Sharp(1999), Senn(2000),
Engelsand others(2000), Higgins and Thompson(2002), Sidik and Jonkman(2005), Knappand others
(2006), Mittlb öck and Heinzl(2006), Jackson(2006), Viechtbauer(2007) andRückerand others(2008b).

“Small-study effects” is a generic term for a phenomenon sometimes observed in meta-analysis that
small studies have systematically different (often stronger) treatment effects compared to large ones
(Sterneand others, 2000). Reasons for this may be publication bias, heterogeneity, selective outcome re-
porting bias, a mathematical artifact (Schwarzerand others, 2002), or genuine random variation (Rothstein
and others, 2005). There is a vast range of tests for small-study effects, most of them based on funnel
plots (Begg and Mazumdar, 1994; Eggerand others, 1997; Harbordand others, 2006; Petersand others,
2006; Schwarzerand others, 2007; Rückerand others, 2008a). Copas and Malley(2008), building on
radial plots, developed robustP-values adjusting for small-study effects.Stanley(2008) was probably the
first who proposed a regression-based treatment-effect estimate adjusting for small-study effects.Moreno
and others(2009a) systematically evaluated adjusted estimates of a similar type in a comprehensive sim-
ulation study, including estimates derived from various linear regression tests and the trim-and-fill method
introduced byDuval and Tweedie(2000).

The starting point of the present work is that small-study effects cannot easily be separated from
heterogeneity. Rather, they can be seen as a particular case of heterogeneity. Consequently, this article
has 2 objectives. First, we develop a new model-based method of calculating adjusted treatment-effect
estimates for a meta-analysis potentially affected by heterogeneity, including small-study effects. This is
done via a so-called limit meta-analysis, a concept developed in Section2. Second, we use this concept
of limit meta-analysis to introduce a new measure of heterogeneity, calledG2, which measures only
systematic heterogeneity that is not accounted for by small-study effects.

The article is organized as follows. In Section2, we introduce the limit meta-analysis model. In Section
3, we derive the limit meta-analysis using an empirical Bayes argument. In Section4, maximum likelihood
(ML) estimates of the model parameters are derived. In Section5, we describe how the model can be
interpreted using radial plots. In Section6, we report results of a simulation study, comparing 3 estimates,
based on the limit meta-analysis, with established methods. In Section7, we build on the limit meta-
analysis to derive the new measure,G2. Its properties are explored with real data examples. We conclude
with a discussion in Section8.
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124 G. R̈UCKER AND OTHERS

2. LIMIT META -ANALYSIS

The concept of limit meta-analysis is based on increasing the precision of a given meta-analysis using
a random-effects model that allows for small-study effects. Letk be the number of studies in a meta-
analysis, and letxi be the within-study treatment-effect estimate (e.g. a log-odds ratio),σ 2

i the (true)
within-study variance ofxi (estimated bys2

i ), andwi = 1/s2
i the estimated inverse variance (also called

precision) used as the weight of studyi (i = 1, . . . , k) in the usual fixed-effect model.
We start from the random-effects model in meta-analysis. It assumes that the true treatment effects in

thek trials vary around a global mean treatment effectμR with an underlying between-study varianceτ2,
representing heterogeneity:

xi = μR +
√

σ 2
i + τ2εi , εi

i.i.d.
∼ N(0, 1). (2.1)

The fixed-effect model is the special case ofτ2 = 0. In the next step, we extend the random-effects model
to take account of possible small-study effects by allowing the effect to depend systematically on the
standard error:

xi = βR +
√

σ 2
i + τ2(αR + εi ), εi

i.i.d.
∼ N(0, 1). (2.2)

Here,βR corresponds to the treatment effect (adjusted for small-study effects and therefore usually dif-
ferent fromμR) andαR represents a potential small-study effect. This model is motivated by the test by
Eggerand others(1997) which assumes an additive effect (intercept)αR representing “publication bias.”
We call it the “extended random-effects model” and will come back to this in Section5. We now follow
an idea used earlier (Rückerand others, 2008b) and consider a setting where each study has anM-fold
increased precision:

xM,i = βR +
√

σ 2
i /M + τ2(αR + εi ), εi

i.i.d.
∼ N(0, 1).

Under this setting, all studies are assumed to be more precise (“larger”), but each within-study standard
error is still proportional toσi . Letting M → ∞, we obtain

x∞,i = βR + τ(αR + εi ), εi
i.i.d.
∼ N(0, 1). (2.3)

In this model, the random variation within the studies has been removed, but there is still variation between
study means. Note that

E(x∞,i ) = βR + ταR = β0, say, (2.4)

and Var(x∞,i ) = τ2. We termβ0 the limit meta-analysis expectation.
Based on this model, we construct a “limit meta-analysis” derived from the original meta-analysis. To

this end, first write the random errors of the studies in the extended random-effects model (2.2) as

εi =
xi − βR√
σ 2

i + τ2
− αR. (2.5)

We assumeεi is fixed for studyi and substitute it into (2.3). Then theαR terms cancel out and we get

x∞,i = βR +

√
τ2

σ 2
i + τ2

(xi − βR).
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By plugging in the study-specific standard errorssi for σi and β̂R, τ̂2 from fitting (2.2), we define the
“limit meta-analysis” with study-specific treatment-effect estimates

yi = β̂R +

√
τ̂2

s2
i + τ̂2

(xi − β̂R) (2.6)

and standard errorssi . The yi are interpreted as new study means, adjusted for small-study effects and
shrunken toward a new common mean. In the next paragraph, we use an empirical Bayes argument to
interpret theyi .

3. RELATIONSHIP BETWEEN LIMIT META-ANALYSIS AND STANDARD

EMPIRICAL BAYES ESTIMATES

We apply the idea of the empirical Bayes estimate, equivalently the best linear unbiased predictor, given,
for example, inHiggins and others(2009), Raudenbush and Bryk(1985), Stijnen and Houwelingen
(1990), Greenland and O’Rourke(2001), Verbeke and Molenberghs(2000, page 81), andRabe-Hesketh
and Skrondal(2005, page 22) to the setting of our extended random-effects model (2.2). Let ui be the
trial-specific heterogeneity residual for triali , including a potential small-study effect. By (2.2), we have

ui =
√

σ 2
i + τ2(αR + εi )

with E(ui ) = αR

√
σ 2

i + τ2 and Var(ui ) = σ 2
i + τ2. Thus, we can split upxi into

xi = βR + ui = βR + βi + δi ,

whereβR is the treatment-effect parameter,βi is a random variable followingN(0, τ2), representing
the heterogeneity of the “true” study means as in the usual random-effects model, andδi is a “biased”

random error variable with expectation E(δi ) = αR

√
σ 2

i + τ2 and variance Var(δi ) = σ 2
i , with E(δi ) = 0

only whenαR = 0. The empirical Bayes method estimates the trial-specific heterogeneity residualβi by

its posterior mean E(βi ), given the observedxi , the prior distributionβi
i.i.d.
∼ N(0, τ2), with estimates

substituted forτ2, σ 2, βR, andαR. Using Bayes formula, we obtain forβi a normal posterior distribution
with expectation

Ê(βi ) =
τ̂2

τ̂2 + s2
i

(
xi − β̂R − α̂R

√
s2
i + τ̂2

)
(3.1)

and variance

V̂ar(βi ) =
τ̂2s2

i

τ̂2 + s2
i

.

Estimatingβi by β̂i = Ê(βi ), interpreting the square root of the variance as its standard errorŜEβ̂i
, and

furthermore using (2.4), we see that the limit meta-analysis (2.6) can be written as

yi = β̂R + τ̂ α̂R + si ẑi = β̂0 + si ẑi ,

where ẑi = β̂i /ŜEβ̂i
. This justifies our choice ofsi as standard errors ofyi . We can viewẑi as the

“specific z-score” or “specific standardized residual” for triali . One can think of setting up a new fixed-
effects model, where the population mean isβ̂0 and the (usually unknown) measurement error is now a
shrunken estimate of its typical magnitude (ẑi ) scaled by the trial-specific standard errorsi . This gives us
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126 G. R̈UCKER AND OTHERS

yi , which can be viewed as an estimate of the effect from triali that is more robust with respect to random
as well as systematic error. We can then use the(yi , si ), i ∈ 1, . . . , k to estimate the treatment effect
(fixed or random-effects model), adjusted for small-study effects, and assess and investigate heterogeneity.
Compared to standard empirical Bayes estimation, the limit meta-analysis (2.6) has a shrinkage factor of√

τ̂2/(s2
i + τ̂2), means less shrinkage than with empirical Bayes(τ̂2/(s2

i + τ̂2)) (3.1).

4. MODEL FITTING USING ML

In this section, we simultaneously estimate the parameters of model (2.2), the treatment-effectβR and
the small-study effectαR, given an estimate of the underlying between-study variance,τ̂2, representing
heterogeneity. As usual in meta-analysis, the observed data are the within-study meansxi and their within-

study variance estimatess2
i = σ̂ 2

i (i = 1, . . . , k). Using the expectation E(xi ) = βR + αR

√
σ 2

i + τ2 and

variance Var(xi ) = σ 2
i + τ2 of xi and inserting method-of-moment estimatess2

i andτ̂2 for σ 2
i andτ2, we

obtain the log-likelihood contribution of studyi (omitting summands not depending onαR or βR)

l (αR, βR|xi ) = −
1

2(s2
i + τ̂2)

(
xi − βR − αR

√
s2
i + τ̂2

)2

. (4.1)

Writing wi = 1/(s2
i + τ̂2), summing up over all studies and setting the partial derivatives to zero yields

the estimates

β̂R =

∑k
i =1 wi xi − 1

k

∑k
i =1

√
wi
∑k

i =1
√

wi xi
∑k

i =1 wi − 1
k

(∑k
i =1

√
wi
)2 , (4.2)

α̂R =
1

k

k∑

i =1

√
wi (xi − β̂R). (4.3)

As we will see in Section5, β̂R (the treatment-effect estimate) andα̂R (the small-study effect estimate)
can be interpreted as slope and intercept in linear regression on so-called generalized radial plots.

Variance estimators are derived from the expected Fisher information (McCullagh and Nelder, 1989,
p. 472)

I =

(
k

∑√
wi

∑√
wi

∑
wi

)

with inverse

I −1 =
1

k
∑

wi −
(∑√

wi
)2

( ∑
wi −

∑√
wi

−
∑√

wi k

)

,

leading to the variance estimates:

V̂ar(β̂R) =
1

∑
wi − 1

k

(∑√
wi
)2 , (4.4)

V̂ar(α̂R) =
1
k

∑
wi

∑
wi − 1

k

(∑√
wi
)2 . (4.5)

Both variance estimates are inversely proportional to the sampling variance of the observed study preci-
sions 1/si . This means that estimation is the more precise, the more study precision varies. By contrast,
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when standard errors are similar or even equal for all studies (si = s), the limit meta-analysis is degen-
erate since regression ofyi /s on a constant 1/s is infeasible, independently of whether heterogeneity or
small-study effects may or may not be present. This restriction is a common feature of all funnel plot
methods (Higgins and Green, 2009).

5. MODEL FITTING AND INTERPRETATION USING RADIAL PLOTS

In this section, we show how to fit and interpret the extended random-effects model (2.2) in practice. The
idea underlying the extended model (2.2) is best motivated by looking at radial and generalized radial
plots, seeGalbraith(1988), Copas and Malley(2008), andCopas and Lozada-Can(2009).

5.1 Radial plot

A radial plot is a scatterplot, using
√

wi = 1/si asx-coordinates and
√

wi xi = xi /si asy-coordinates.
As easily seen (and well known), (i) the slope of the regression line through the origin is the treatment-
effect estimate of the fixed-effect model, denotedμ̂F and (ii) the sum of squared residuals with respect to
this line isQ, which measures the weighted squared deviation of study treatment effects from the overall
fixed-effect estimate:

Q =
k∑

i =1

wi

(
xi −

∑
w j x j∑
w j

)2

.

Under the null hypothesis of no between-study heterogeneity,Q follows a χ2 distribution withk − 1
degrees of freedom (Cochran, 1954). Figure1 (bottom left panel) shows the radial plot for an example, a
meta-analysis on thrombolytic therapy in acute myocardial infarction (Olkin, 1995). The line through the
origin is dashed.

Now we look at the best fitting line (not necessarily through the origin, solid line in bottom left
panel of Figure1). The test for small-study effects byEggerand others(1997) uses this line, testing
the null-hypothesis that its intercept is zero. The interceptα̂F represents small-study effects. In general,
the intercept differs from zero and thus the slope of the line, denotedβ̂F, differs from the fixed treatment-
effect estimate. FollowingCopas and Malley(2008), we can interpret this slope as a fixed treatment-effect
estimate, when allowing for small-study effects. This adjustment often results in smaller estimates of the
overall treatment effect (Stanley, 2008; Morenoand others, 2009a). Estimates of slope and intercept are
identical to the ML estimates (4.2) and (4.3). In analogy toQ, we can define a measureQ′ of heterogeneity
with respect to the best fitting line:

Q′ =
k∑

i =1

wi

(
xi − β̂F −

α̂F
√

wi

)2

, (5.1)

where thewi = 1/s2
i denote the fixed-effect model weights, as above. We have

Q′ 6 Q

since the best fitting line minimizes the residual sum of squares. Again, followingCochran(1954), it can
be shown that under the null hypothesis of no between-study heterogeneity and normal assumption,Q′

follows aχ2 distribution withk − 2 degrees of freedom.
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128 G. R̈UCKER AND OTHERS

Fig. 1. Thrombolytic therapy data example (Olkin, 1995): radial plot (bottom left panel), generalized radial plot
(bottom right panel), and limit radial plot (top panel). Dashed: line through the origin. Solid: best fitting line. Details
in text.

5.2 Generalized radial plot

Following Copas and Malley(2008), the radial plot can be generalized to incorporate between-study

heterogeneity, taking now the values
√

wi = 1/
√

s2
i + τ̂2 asx-coordinates and

√
wi xi = xi /

√
s2
i + τ̂2

asy-coordinates (Figure1, bottom right panel). We do not use different notation for fixed and random-
effects weights. This generalized radial plot represents the random-effects model since the slopeμ̂R of the
line through the origin in the generalized radial plot is the random-effects model (2.1) estimate (dashed
line). We propose to complement the plot by a regression line that allows for an intercept (bottom right
panel of Figure1, solid line). Its slopeβ̂R is the treatment-effect estimate of the extended model (2.2),
allowing for small-study effects. The intercept corresponds toα̂R, the bias introduced by small-study
effects, interpreted as the expected shift in the standardized treatment-effect estimate for a hypothetical
“small” study with zero precision.

The generalized radial plot provides an interpretation forβ0 = βR+ταR, (2.4). This can be interpreted
as the expected adjusted treatment effect of a hypothetical study with infinite precision (s = 0) and
coordinates 1/τ andβ0/τ since inserting 1/τ in the regression equation providesβ0/τ = βR/τ + αR.
This regression problem is essentially equivalent to model (1c) byMorenoand others(2009a), see also
Stanley(2008).
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5.3 Limit radial plot

For M → ∞, the radial plots (representing the fixed-effect model) approach a stable limit withx-
coordinates 1/si andy-coordinatesyi /si (Figure1, top panel). This is equivalent to shrinking the points
of the funnel plot toward a “new” mean, see Section3. In our data example, both lines become very
similar. One may add a generalized limit radial plot, representing the random-effects model for the limit
meta-analysis (not shown). As heterogeneity is much reduced by the shrinkage process, this is mostly very
similar to the limit radial plot.

5.4 Adjusted treatment-effect estimates

The basis of estimation is either a meta-analysis with raw data(xi , si ) or the corresponding limit meta-
analysis(yi , si ), calculated using (2.6). We use the convention that treatment-effect parameters denoted
by the letterβ indicate models including an intercept, while parameters denoted byμ indicate models
without an intercept. We consider the treatment-effect estimatesμ̂F (fixed-effect model),μ̂R (random-
effects model), and̂μlim (limit meta-analysis, fixed-effect model) from a line through the origin, and
β̂R, β̂F, β̂lim, andβ̂0 from a best fitting line for the respective models. Our consideration in terms of radial
plots shows that all parameters can be estimated using standard meta-analysis software as follows:

1. Givenxi andsi for each trial, calculatêμF, μ̂R, and an estimate for̂τ2, for example, the method-of-
moments estimate (DerSimonian and Laird, 1986).

2. Using the radial plot, determine the slopeβ̂F.
3. Usingτ̂2, construct the generalized radial plot and determine the slopeβ̂R and the intercept̂αR.
4. Computeβ̂0 = β̂R + τ̂ α̂R.
5. Use (2.6) for calculating the limit meta-analysis treatment-effect estimatesyi , construct the limit

radial plot and compute the slopesμ̂lim of the line through the origin and̂βlim, allowing for an
intercept.

Suppose a radial plot (that can also be a generalized radial plot) hasx-coordinates
√

wi andy-coordinates√
wi xi , where the weightswi correspond to the chosen model. The slope of the line through the origin is

μ̂ =

∑k
i wi xi
∑k

i wi
.

The slope of the best fitting line is given as in (4.2), its intercept by (4.3). Analogous equations hold
for μ̂lim and β̂lim, with xi replaced withyi . Standard errors and confidence intervals are calculated in
2 different ways, both based on the study weightswi . For models without an intercept, the usual meta-
analytic approach is used, which takes 1/

√∑
wi as standard error of the pooled estimate. For models

including an intercept, the standard errors are derived from the variances given in (4.4) and (4.5). The
same standard errors are used forμ̂lim (version without an intercept) and̂β0 andβ̂lim (including intercept).
Notice that this approach, in line with the usual random-effects model, treatsτ2 as fixed.

6. SIMULATION STUDY

In this section, we report results of a simulation study. We computed estimates ofμF (usual fixed-effect
model),μR (random-effects model),βF (fixed-effect model, allowing for an intercept),βR (random-effects
model, allowing for an intercept),μlim (fixed-effect model for the limit meta-analysis, no intercept),βlim
(fixed-effect model for the limit meta-analysis, allowing for an intercept), andβ0 = βR + ταR. These
estimates were compared to the Mantel–Haenszel and the Peto estimate (Greenland and Robins, 1985;
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130 G. R̈UCKER AND OTHERS

Yusuf and others, 1985). Moreover, we included one of the most successful adjusting methods identified
by the recent study ofMorenoand others(2009a), the so-called Peters method, see alsoPetersand others
(2006). Criteria were (i) the absolute bias of the treatment-effect estimate, (ii) the MSE, (iii) the observed
variance between treatment-effect estimates of the same scenario, and (iv) the coverage of 95% confidence
intervals. In particular, we were interested to know to what extent the methods were able to reduce bias in
the treatment-effect estimates in the presence of small-study effects.

6.1 Design

We evaluated a number of scenarios, all based on binary response data, with varying number of trials in
the meta-analysis (5, 10, 20), control group event probability (0.05, 0.10, 0.20, 0.30), true odds ratio (0.5,
0.667, 0.75, 1), and heterogeneity variance (τ2 = 0, 0.05, 0.10, 0.20). Small-study effects were simulated
on the basis of the Copas selection model, seeCopas and Shi(2000a, 2001). This procedure is extensively
described inRückerand others(2008a). The selection parameter of the model,ρ2, was varied from 0 (no
selection), 0.36 (low selection), 0.64 (moderate selection), to 1 (strong selection). Trial sizes were drawn
from a log-normal distribution that was fitted to the sample sizes of the rosiglitazone meta-analysis (Nissen
and Wolski, 2007). The parameters were 6.056 (mean) and 0.69 (variance); quartiles were 244 (25%), 427
(50%), and 747 (75%). Each of 768 scenarios was repeated 1000 times to provide Monte–Carlo estimates
of bias and coverage probabilities.

6.2 Results

Results for bias and MSE are shown in Figures2 and3 for moderate number of studies (k = 10, fixed) and
substantial heterogeneity (τ2 = 0.1), which we believe are representative for many real meta-analyses.
Results were similar for the “classical” methods (fixed/random-effects model, Mantel–Haenszel method,
and Peto method) with respect to all criteria. Of these, the Peto method had both the least absolute bias
and the least MSE. Therefore, only the Peto method was chosen to represent the classical methods on
the plots. Not unexpectedly, in general, the absolute bias was larger for smaller number of trials, larger
heterogeneity, higher selection (small-study effects), and smaller event rates in the control group. The
influence of the true odds ratio was weak. All (unadjusted) classical methods produced estimates biased
downward (that is, odds ratios more distant from one) if there were small-study effects, and the MSE
increased. The fixed-effect model allowing for an intercept (βF) tended to a small positive bias (that is,
an odds ratio nearer to one) and large MSE and variance. For the random-effects model allowing for an
intercept (βR), we often found markedly biased estimates, for which reason it is not shown.

By contrast, the estimates based on the limit meta-analysis,β̂lim, μ̂lim andβ̂0 were nearly unbiased if
there were small-study effects.β̂lim had the smallest bias, but a larger variance of estimates between runs
of the same scenario than̂μlim andβ̂0. Thus,μ̂lim andβ̂0 had the smallest MSE, together with the Peto
method. The Peto method had the smallest variance, but tended to bias if there was selection, particularly
for small event proportions. For meta-analyses with a very small number of trials (k = 5) or without any
selection, however, the new methods were markedly inferior to the classical methods (results not shown).
This is no surprise, as it is well known that for small meta-analyses, all funnel plot methods work poorly
with respect to both size and power. We thus recommend not to use adjusting methods if the number of
trials is less than 10. Moreover, the extended model has an additional parameter which must be estimated.
Bias and MSE of the Peters method were small, often ranging between that of the unadjusted methods
and those based on the limit meta-analysis.

Coverage was generally poor, if there was heterogeneity, see Figure4. This is particularly true for
large heterogeneity (τ2 = 0.2, results not shown) or strong selection. Naturally, the random-effects model
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Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis 131

Fig. 2. Bias of treatment-effect estimate on log-odds ratio scale (logÔR− log OR) forτ2 = 0.1 and 10 studies per
meta-analysis, 6 models. Various scenarios.

was best within the classical models. The larger the small-study effect, the greater was the superiority of
the new methods over the random-effects model. The limit meta-analysis expectationβ̂0 and the Peters
method had best coverage within all adjusted models. There was almost no dependence on the true odds
ratio but a strong dependence on the control event rate, with an interaction between this and the model
used: If there was selection, coverage increased with increasing control event rate for the classical models,
while it always decreased for both the new methods and the Peters method. The poor coverage ofμ̂lim
seems to be due to underestimation of its standard error.

7. A NEW MEASURE OF HETEROGENEITY

The promising results for adjusted treatment-effect estimates based on the limit meta-analysis motivated
us to derive a new measure for heterogeneity, calledG2. It is determined on a percentage scale, following
the established measureI 2 introduced byHiggins and Thompson(2002). G2 assesses the proportion
of the variance that is unexplained after we have allowed for possible small-study effects in the limit
meta-analysis.
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Fig. 3. MSE of treatment-effect estimate on log-odds ratio scale forτ2 = 0.1 and 10 studies per meta-analysis,
6 models. Various scenarios.

We note first that in a regression model there is a natural measure of the proportion of the unexplained
variance:

1 − R2
reg =

Residual Sum ofSquares

Total Sum of Squares
,

whereR2
reg is consistently estimated by the squared Pearson correlation coefficient. In analogy to this,G2

is defined with respect to the fixed-effect model fitted to the limit meta-analysis and allowing for small-
study effects (corresponding to parameterβlim). Specifically,G2 is defined as 1− R2

reg when regressing
the standardized treatment-effect estimatesyi /si , obtained from the limit meta-analysis, on 1/si . This is
easily done using standard linear regression software. ThusG2 is given by

G2 = 1 −

[∑
wi yi − 1

k

(∑√
wi
) (∑√

wi yi
)]2

[∑
wi − 1

k

(∑√
wi
)2] [∑

wi yi
2 − 1

k

(∑√
wi yi

)2] .

G2 is closely related to the heterogeneity statisticQ′, defined in Section5 and measuring residual vari-
ation with respect to a fixed-effect model allowing for small-study effects, whileG2 is based on the
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Fig. 4. Coverage of 95% confidence intervals of treatment-effect estimate on log-odds ratio scale forτ2 = 0.1 and 10
studies per meta-analysis, 6 models. Various scenarios.

limit meta-analysis and scaled to [0,1] by dividing the residual sum of squares by the total sum of
squares:

G2 =
Q′

Limit meta-analysis
Total Sum of Squares in limit meta-analysis

. (7.1)

For testing for residual heterogeneity after allowing for small-study effects, we propose to apply theQ′

statistic to the given analysis instead of the limit meta-analysis. The reason is that the shrinkage process
leading to the limit meta-analysis removes random error and thus causes bothQ andQ′ to decrease very
much. Thus, we propose the following test procedure (using the same level for all 3 tests):

1. For a test of heterogeneity in the usual sense (that is, not distinguishing between heterogeneity
caused by small-study effects and heterogeneity from other causes), takeQ, which under the null
hypothesis of no heterogeneity follows aχ2

k−1 distribution. Stop if the test is not significant.
2. If the null hypothesis of no heterogeneity is rejected, carry out an appropriate test of small-study

effects, for example, by takingQ − Q′, which under the null-hypothesis of no small-study effects
follows aχ2

1 distribution.
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Fig. 5. Forest plot (left), funnel plot (middle), and radial plot (right) for original (top) and limit (bottom) meta-analysis
(fictional example, see text).

3. If the null hypothesis of no heterogeneity is rejected, test for residual heterogeneity beyond small-
study effects, usingQ′, which under the null hypothesis of no residual heterogeneity follows aχ2

k−2
distribution. Residual heterogeneity can be quantified byG2.

7.1 Examples

In this subsection, we look at 4 examples, representing typical settings: no heterogeneity; small-study
effects without additional heterogeneity; and heterogeneity including minor or major small-study effects.

7.1.1 No statistical heterogeneity.If no statistical heterogeneity is found in the given meta-analysis
(that is, τ̂2 = 0), the limit meta-analysis yields equalyi = β̂F for all trials, and the limit radial plot is
perfectly fitted by the regression line, that is,G2 = 0. Though a test on potential small-study effects may
be significant, notice that—as an immediate consequence of the fixed-effect model—all deviations from
the mean are random by definition, which means that any apparent small-study effect must be spurious
as well. In this case, funnel plot asymmetry disappears with increasing precision. Note, in passing, that
the requirement of homogeneity when testing for funnel plot asymmetry—see, for instance,Ioannidis and
Trikalinos(2007)—may be reducedad absurdum.
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Fig. 6. Thrombolytic therapy data (Olkin, 1995). Forest plot (left), funnel plot (middle), and radial plot (right) for
original (top) and limit (bottom) meta-analysis.

7.1.2 Small-study effects without additional heterogeneity. G2 is based on a notion of heterogeneity
different from that usually used, in the sense that it does not incorporate potential small-study effects.
Thus, it is possible thatG2 = 0 while τ̂2 > 0, that is, there is no other heterogeneity apart from that
due to small-study effects (to whichτ2 is sensitive but notG2). This can be illustrated by a fictional,
somewhat pathological example (Figure5). Here, we see a striking small-study effect so that all dots in
the radial plot lie more or less exactly on one line not going through the origin. Therefore, all variation is
explained by a fixed-effect model that allows for small-study effects, and residual heterogeneity measured
by G2 is almost zero, thoughτ2 > 0 (Q = 15.46(p = 0.031), I 2 = 54.7%[0%; 79.5%], G2 = 0.01%).
Adjusting for small-study effects yields residual heterogeneityQ′ = 0.052(p = 1.000), that is, there
is no heterogeneity left beyond the small-study effect, which itself is significant:Q − Q′ = 15.41
(p 6 0.001).

7.1.3 Heterogeneity: thrombolytic therapy data.We use the example introduced above, see Figure1 and
also Figure6. The various estimates are given in Table1. This is an example showing some heterogeneity
(τ̂2 = 0.018). The limit radial plot looks similar to the original one and shows some residual variation. We
find I 2 = 18.6%, whereasG2 = 15.4%. For this meta-analysis, most tests indicate a minor small-study
effect (e.g.p = 0.075, 0.088, 0.091, 0.063 for Egger’s test, Harbord’s test, Peters’ test, and the arcsine
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Table 1. Estimated odds ratios from different models for the thrombolytic therapy data example
(Olkin, 1995)

Original meta-analysis Limitmeta-analysis

Model Fixed-effect model Random-effects model Fixed-effectmodel
Plot Radial plot Generalized radial plot Limit radialplot

Model without intercept exp(μF) exp(μR) exp(μlim)
0.753 [0.710; 0.798] 0.732 [0.664; 0.808] 0.779 [0.735; 0.826]

Model with intercept exp(βF) exp(βR) exp(βlim)
0.787 [0.731; 0.847] 0.840 [0.710; 0.993] 0.772 [0.717; 0.831]

Expectation exp(β0)
0.796 [0.739;0.857]

test, respectively, seeEggerand others, 1997; Harbordand others, 2006; Petersand others, 2006; Rücker
and others, 2008a). The value ofG2 indicates residual heterogeneity beyond this, not explained solely
by a fixed-effect model allowing for small-study effects. However, it is is not significant, if tested viaQ′

(Q′ = 80.84, p = 0.137). Further, we findQ = 84.73(p = 0.096) andQ − Q′ = 3.884, again consistent
with a small-study effect (p = 0.049).

7.1.4 Heterogeneity and small-study effects: passive smoking data.This example byHackshawand
others(1997) was intensively discussed in the literature for several reasons (for details, seeCopas and
Shi, 2000b; Senn, 2009). It was also used byCopas and Malley(2008) when deriving a robustP-value
for the treatment effect in meta-analysis. We findQ = 47.52(p = 0.095), Q′ = 40.96(p = 0.225),
and therefromQ − Q′ = 6.55(p = 0.010), indicating a small-study effect. The plots are shown in
Figure7, the estimates given in Table2. Both the fixed-effect model (μF) and the random-effects model
(μR) find an odds ratio of about 1.2 and thus a significant excess risk of lung cancer for persons exposed
to passive smoking. The effect is reduced when using the limit meta-analysis but still significant (μlim).
By contrast, it vanishes completely if adjusting for small-study effects, with nearly concordant estimates
for βF, βR, βlim, andβ0. For this meta-analysis, heterogeneity seems moderate, measured byτ̂2 = 0.0168
and alsoI 2 = 24.2%. However, at first glance surprisingly,G2 is very large(G2 = 94.6%), indicat-
ing much residual heterogeneity, caused by the fact that just 2 of the 3 large dominating studies show
reciprocal effects with mutually exclusive confidence intervals. Since these studies are large, they are rel-
atively insensitive to the shrinkage process, see the bottom left and bottom right panels of Figure7. The
passive smoking data example therefore shows thatG2 is particularly sensitive to heterogeneity in large
trials.

8. DISCUSSION

We have introduced the concept of limit meta-analysis, derived from an extended random-effects model
for meta-analysis which includes a parameter for the bias introduced by potential small-study effects.
The limit meta-analysis takes into account small-study bias to yield shrunken estimates of individual
study effects. We showed that these shrunken estimates can also be justified from an empirical Bayesian
viewpoint. Our approach is thus consistent with the philosophy of random-effects modeling that “inference
for each particular study is performed by “borrowing strength” from the other studies” (Higgins and
others, 2009). We are essentially correcting for possible small-study effects before we “borrow strength”
from other studies. The limit meta-analysis gives rise to 3 possible estimators for the overall intervention
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Fig. 7. Passive smoking data (Hackshawand others, 1997). Forest plot (left), funnel plot (middle), and radial plot
(right) for original (top) and limit (bottom) meta-analysis.

Table 2. Estimated odds ratios from different models for the passive smoking data (Hackshaw and others,
1997)

Original meta-analysis Limitmeta-analysis

Model Fixed-effect model Random-effects model Fixed-effectmodel
Plot Radial plot Generalized radial plot Limit radialplot

Model without intercept exp(μF) exp(μR) exp(μlim)
1.204 [1.120; 1.295] 1.238 [1.129; 1.357] 1.086 [1.010; 1.168]

Model with intercept exp(βF) exp(βR) exp(βlim)
1.009 [0.865; 1.176] 0.973 [0.757; 1.250] 1.065 [0.913; 1.242]

Expectation exp(β0)
1.094 [0.939;1.276]

effect, adjusting for small sample effects, as well as a measure of heterogeneity after accounting for small
sample effects.

We derived ML estimates of the quantities in the limit meta-analysis in Section4. However, we show—
as a direct consequence of interpreting the limit meta-analysis in terms of the radial plot in Section5—that
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parameter estimation in limit meta-analyses can be carried out using existing software. This removes one
hurdle to its use in practice.

The ultimate aim of quantitative meta-analysis is to arrive at a pooled estimate of the intervention
effect. We thus performed a comprehensive simulation study with binary response data to compare the 3
proposed estimators of the pooled effect that emerged from our limit meta-analysis with currently used
estimators. The simulation study explored a range of effect sizes, underlying event probabilities, hetero-
geneity (unrelated to small-study effects) and selection (as a surrogate for small-study effects). All 3 pro-
posed estimators had small bias and comparable mean square error in the presence of small-study effects.
However, the “β0” estimator (2.4) gave the best confidence interval coverage and is thus our preferred
estimator in the presence of small-study effects.

Unfortunately, neither the proposed nor existing estimators performed acceptably in all situations—
that is, in both situations where small-study effects were present and situations where small-study effects
were not present. In practice, analysts must therefore decide which estimator to use. To support this
decision, we advocate one of the more recent tests for publication bias. A useful summary is given in
Chapter 10, Section 4, of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins and
Green, 2009). We acknowledge that some authors take a censorious attitude to such tests, believing them
misleading (Lau and others, 2006; Terrin and others, 2003; Tang and Liu, 2000), stigmatizing them as
“pseudo tests” (Ioannidis, 2008), and questioning whether funnel plots are a suited means at all for judging
small-study effects (Terrin and others, 2005). However, when applied following a prespecified analysis
protocol, with their limitations duly acknowledged, we argue that such concerns (Ioannidis and Trikalinos,
2007) are minimized and that testing is a useful aide to researchers in judging funnel plots. After all,
adjusted treatment-effect estimates were used successfully for predicting the effect of the whole database
of antidepressant trials in the food and drug administration registry from a biased subset of published trials
(Morenoand others, 2009b).

In this paper, we have not considered the source of small-study effects, be it publication bias or hetero-
geneity arising from differing patient, or other study specific, characteristics. Specifically, when adjust-
ing the treatment-effect estimate for small-study effects, it does not matter where the small-study effect
comes from (Morenoand others, 2009a). The limit meta-analysis can be readily extended to adjust for
any covariates which explain heterogeneity; it then would address remaining unexplained small-study
effects.

An even more provoking question was raised byStanleyand others(2010), whether it “could be better
to discard 90% of the data,” arguing that in the presence of small-study effects all adjusting methods lead
to estimates that are very similar to the results of the one or 2 largest studies. However, these may also
disagree, as illustrated by the passive smoking data example.

Of course, the above process may not explain all the heterogeneity, and we propose the test statisticQ′

and the measureG2 to assess and quantify, respectively, the remaining heterogeneity after adjusting for
small-study effects. If we believe the principal source of small-study effects is publication bias, then de-
tecting and investigating heterogeneity “after this has been accounted for” is arguably of greater scientific
relevance—as it relates directly to factors affecting the efficacy of the intervention in practical settings.

A potential drawback of our approach is its dependence on the estimation ofτ2, for which a number
of competing estimators are given in the literature. In this article, we have used the methods-of-moments
estimator (DerSimonian and Laird, 1986). This estimator is both the most widely accepted and used. It
is implemented in the Review Manager software for Cochrane reviewers (The Cochrane Collaboration,
2009). Unfortunately, the difference between these estimators tends to be greater the smaller the number
of studies in the meta-analysis and the smaller the true heterogeneity. We therefore revisited our analysis
of both the thrombolytic therapy and the passive smoking meta-analyses, using 7 options for estimating
τ2 available in the R package metafor (R Development Core Team, 2008). We found that while our
3 pooled effect estimators were relatively robust, the estimate ofG2 varied considerably. Thus, we prefer
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to use the test statisticQ′ to assess heterogeneity and reportG2 as a measure of such heterogeneity,
possibly also reporting the latter for a range of estimates ofτ2.

Another issue is the use of the Copas selection model for generating the data in the simulation study.
Strictly, in using this model, we are generating data from a slightly different model than we are fitting to
the data. However, if a method is reliable in this setting, this provides reassurance for its use in practice,
where we cannot know the data generation model.

To conclude, we have introduced the idea of a limit meta-analysis which we believe is a promising
approach for finding “shrunk,” empirical Bayes, estimates of study effects in the presence of small sample
bias. This led to 3 proposed estimators for an overall effect in the presence of small sample bias. Our
simulation study suggested all 3 methods had smaller bias and mean square error than estimators which
did not account for small sample bias. One of these 3 methods, the “expected limit estimate,” also had
good confidence interval coverage and is our preferred method for use in practice. We have also described
an approach for assessing heterogeneity after accounting for small-study effects, and illustrated its utility
with a reanalysis of data on the effects of passive smoking.

SOFTWARE

All calculations were carried out using the freely available software R, version R-2.10.1, particularly
using the packages meta (Schwarzer, 2007) and metafor (R Development Core Team, 2008). R code for
calculation of all estimates given in this paper can be obtained from the first author.

ACKNOWLEDGMENT

Conflict of Interest:None declared.

FUNDING

Deutsche Forschungsgemeinschaft (FOR 534 Schw 821/2-2 to G.R. and J.R.C).

REFERENCES

BEGG, C. B. AND MAZUMDAR , M. (1994). Operating characteristics of a rank correlation test for publication bias.
Biometrics50, 1088–1101.

COCHRAN, W. G. (1954). The combination of estimates from different experiments.Biometrics10, 101–129.

COPAS, J.AND LOZADA-CAN, C. (2009). The radial plot in meta-analysis: approximations and applications.Applied
Statistics58, 329–344.

COPAS, J. AND SHI, J. Q. (2000a). Meta-analysis, funnel plots and sensitivity analysis.Biostatistics1, 247–262.

COPAS, J. B. AND MALLEY, P. F. (2008). A robust p-value for treatment effect in meta-analysis with publication
bias.Statistics in Medicine27, 4267–4278.

COPAS, J. B.AND SHI, J. Q. (2000b). Reanalysis of epidemiological evidence on lung cancer and passive smoking.
British Medical Journal320, 417–418.

COPAS, J. B. AND SHI, J. Q. (2001). A sensitivity analysis for publication bias in systematic reviews.Statistical
Methods in Medical Research10, 251–265.

DERSIMONIAN , R. AND LAIRD, N. (1986). Meta-analysis in clinical trials.Controlled Clinical Trials7, 177–188.

DUVAL , S. AND TWEEDIE, R. (2000). A nonparametric “Trim and Fill” method of accounting for publication bias
in meta-analysis.Journal of the American Statistical Association95, 89–98.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/12/1/122/391113 by guest on 10 April 2024



140 G. R̈UCKER AND OTHERS

EGGER, M., SMITH , G. D., SCHNEIDER, M. AND MINDER, C. (1997). Bias in meta-analysis detected by a simple,
graphical test.British Medical Journal315, 629–634.

ENGELS, E. A., SCHMID, C. H., TERRIN, N., OLKIN , I. AND LAU, J. (2000). Heterogeneity and statistical signif-
icance in meta-analysis: an empirical study of 125 meta-analyses.Statistics in Medicine19, 1707–1728.

GALBRAITH , R. F. (1988). A note on graphical presentation of estimated odds ratios from several clinical trials.
Statistics in Medicine7, 889–894.

GREENLAND, S. AND O’ROURKE, K. (2001). On the bias produced by quality scores in meta-analysis, and a hier-
archical view of proposed solutions.Biostatistics2, 463–471.

GREENLAND, S. AND ROBINS, J. M. (1985). Estimation of a common effect parameter from sparse follow-up data.
Biometrics41, 55–68.

HACKSHAW, A. K., LAW, M. R. AND WALD , N. J. (1997). The accumulated evidence on lung cancer and environ-
mental tobacco smoke.British Medical Journal315, 980–988.

HARBORD, R. M., EGGER, M. AND STERNE, J. A. (2006). A modified test for small-study effects in meta-analyses
of controlled trials with binary endpoints.Statistics in Medicine25, 3443–3457.

HARDY, R. J.AND THOMPSON, S. G. (1998). Detecting and describing heterogeneity in meta-analysis.Statistics in
Medicine17, 841–856.

HIGGINS, J. P.AND GREEN, S. (2009).Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2.
http://www.cochrane-handbook.org.

HIGGINS, J. P., THOMPSON, S. G.AND SPIEGELHALTER, D. J. (2009). A re-evaluation of random-effects meta-
analysis.Journal of the Royal Statistical Society, Series A172, 137–159.

HIGGINS, J. P. T. AND THOMPSON, S. G. (2002). Quantifying heterogeneity in a meta-analysis.Statistics in
Medicine21, 1539–1558.

IOANNIDIS, J. P. (2008). Interpretation of tests of heterogeneity and bias in meta-analysis.Journal of Evaluation in
Clinical Practice14, 951–957.

IOANNIDIS, J. P. A.AND TRIKALINOS, T. A. (2007). The appropriateness of asymmetry tests for publication bias
in meta-analyses: a large survey.Canadian Medical Association Journal176, 1091–1096.

JACKSON, D. (2006). The implications of publication bias for meta-analysis’ other parameter.Statistics in Medicine
25, 2911–2921.

KNAPP, G., BIGGERSTAFF, B. J. AND HARTUNG, J. (2006). Assessing the amount of heterogeneity in random-
effects meta-analysis.Biometrical Journal48, 271–285.

LAU, J., IOANNIDIS, J. P. A., TERRIN, N., SCHMID, C. H. AND OLKIN , I. (2006). The case of the misleading
funnel plot.British Medical Journal333, 597–600.

MCCULLAGH , P. AND NELDER, J. (1989).Generalized Linear Models. London: Chapman and Hall.
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