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SUMMARY
Statistical heterogeneity and small-study effects are 2 major issues affecting the validity of meta—analysis§
In this article, we introduce the concept of a limit meta-analysis, which leads to shrunken, empirical Bayeso
estimates of study effects after allowing for small-study effects. This in turn leads to 3 model-based ad—g
justed pooled treatment-effect estimators and associated confidence intervals. We show how visualizin
our estimators using the radial plot indicates how they can be calculated using existing software. The_
concept of limit meta-analysis also gives rise to a new measure of heterogeneity, @frrfed hetero- o
geneity that remains after small-study effects are accounted for. In a simulation study with binary data an&
small-study effects, we compared our proposed estimators with those currently used together with a recent
proposal by Morenand othersOur criteria were bias, mean squared error (MSE), variance, and coverage
of 95% confidence intervals. Only the estimators arising from the limit meta-analysis produced approx-
imately unbiased treatment-effect estimates in the presence of small-study effects, while the MSE was
acceptably small, provided that the number of studies in the meta-analysis was not less than 10. These
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limit meta-analysis estimators were also relatively robust against heterogeneity and one of them had a
relatively small coverage error.

Keywords Empirical Bayes; Heterogeneity?; Meta-analysis; Publication bias; Radial plot; Small-study effects.

1. INTRODUCTION

ojumoq

Systematic reviews and meta-analysis are invaluable tools of collating and synthesizing evidence in the
life sciences. However, 2 main threats exist to the validity of meta-analysis, heterogeneity, and small—studﬁ
effects. Heterogeneity may have different sources. One is “clinical heterogeneity” between patients froms
different studies, measured, for example, in patient baseline characteristics and not necessarily reflected in
the outcome measure. There may also be “heterogeneity related to study design” or other study-level cha‘_?;_'
acteristics. In this article, we are interested in “statistical heterogeneity,” quantified on the effect measure§
ment scale. That is, we look at the extent of treatment-by-study intera@em(2000. Heterogeneity g
on this scale essentially measures remaining between-study variation, the clinical implications of wh|ch3
are often context specific. o
There is a substantial literature on statistical heterogeneity in meta-analysis, see, for example
DerSimonian and Lair@986, Hardy and Thompso(L998, Thompson and Shai1999, Senn(2000,
Engelsand otherg2000, Higgins and Thompso(R002), Sidik and Jonkmaii2005, Knappand others
(2009, Mittlb 6ck and Heinz(2006, Jacksor(2006, Viechtbaue(2007) andRiickerand otherg2008H).
“Small-study effects” is a generic term for a phenomenon sometimes observed in meta-analysis thag
small studies have systematically different (often stronger) treatment effects compared to large one
(Sterneand others2000. Reasons for this may be publication bias, heterogeneity, selective outcome re-
porting bias, a mathematical artifa&chwarzeand others2002), or genuine random variatioRfthstein
and others 2005. There is a vast range of tests for small-study effects, most of them based on funnel
plots Begg and Mazumdafl994 Eggerand others 1997 Harbordand others2006 Petersand others
2006 Schwarzerand others 2007 Rickerand others 20083. Copas and Malle¥2008, building on
radial plots, developed robuBtvalues adjusting for small-study effec&anley(2008 was probably the
first who proposed a regression-based treatment-effect estimate adjusting for small-studyMdiiects.
and otherq20093 systematically evaluated adjusted estimates of a similar type in a comprehensive sim-
ulation study, including estimates derived from various linear regression tests and the trim-and-fill method<
introduced byDuval and Tweedi€2000.
The starting point of the present work is that small-study effects cannot easily be separated from=
heterogeneity. Rather, they can be seen as a particular case of heterogeneity. Consequently, this arti@e
has 2 objectives. First, we develop a new model-based method of calculating adjusted treatment-effeci.
estimates for a meta-analysis potentially affected by heterogeneity, including small-study effects. This is3
done via a so-called limit meta-analysis, a concept developed in Sectiecond, we use this concept R
of limit meta-analysis to introduce a new measure of heterogeneity, caffeavhich measures only
systematic heterogeneity that is not accounted for by small-study effects.
The article is organized as follows. In Sect@mwe introduce the limit meta-analysis model. In Section
3, we derive the limit meta-analysis using an empirical Bayes argument. In Séctraximum likelihood
(ML) estimates of the model parameters are derived. In Seétiave describe how the model can be
interpreted using radial plots. In Secti6ywe report results of a simulation study, comparing 3 estimates,
based on the limit meta-analysis, with established methods. In Settiwe build on the limit meta-
analysis to derive the new measu@?. Its properties are explored with real data examples. We conclude
with a discussion in Sectiod
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124 G. RICKER AND OTHERS

2. LIMIT META -ANALYSIS

The concept of limit meta-analysis is based on increasing the precision of a given meta-analysis using
a random-effects model that allows for small-study effects.k_be the number of studies in a meta-
analysis, and lek; be the within-study treatment-effect estimate (e.g. a log-odds raﬂ;?o)he (true)
within-study variance ok; (estimated byf), andw; = 1/32 the estimated inverse variance (also called
precision) used as the weight of study = 1, .. ., k) in the usual fixed-effect model.

We start from the random-effects model in meta-analysis. It assumes that the true treatment effects i
thek trials vary around a global mean treatment effegtwith an underlying between-study variancg
representing heterogeneity:

X = ur+Jo? + 2, @ N, 1). (2.1)

The fixed-effect model is the special case &= 0. In the next step, we extend the random-effects model %
to take account of possible small-study effects by allowing the effect to depend systematically on the
standard error:
i.i.d.
Xi = Br+ 02+ 12(ar+€), & = N(,1). 2.2)

dno-oiwepeoe)/:sdny woJj pepeojumoc’

Here, Sr corresponds to the treatment effect (adjusted for small-study effects and therefore usually dif-~
ferent fromuR) andar represents a potential small-study effect. This model is motivated by the test by
Eggerand otherg1997 which assumes an additive effect (intercept)representing “publication bias.”

We call it the “extended random-effects model” and will come back to this in Sebtigve now follow

an idea used earlieR(ckerand others 20080 and consider a setting where each study haMaiold
increased precision:

i.i.d.
XMi = Br+/02/M +12(ar +€), € = N(O,1).

Under this setting, all studies are assumed to be more precise (“larger”), but each within-study standar
error is still proportional t@;. LettingM — oo, we obtain

Xsoi = fr+ TR +€), € =N, ). (2.3)

nB AQ €11 16€/21/1/ZL/I01ME/SONSIEISOIG/WOD

In this model, the random variation within the studies has been removed, but there is still variation betweeng
study means. Note that

E(X0.i) = Br + TR = fo, SAY, (2.4)

and VaX,i) = 2. We termpo the limit meta-analysis expectation.
Based on this model, we construct a “limit meta-analysis” derived from the original meta-analysis. To
this end, first write the random errors of the studies in the extended random-effects ghgjdas (

20z Iudy Q) uo}

Xi — Br
,/ai2+12

We assume; is fixed for studyi and substitute it intoQ.3). Then thexr terms cancel out and we get

.[2
Xoo,i = PR+ m(xi - BR)-

€ = — OR. (2.5)
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By plugging in the study-specific standard errardor o; and A, 72 from fitting (2.2), we define the
“limit meta-analysis” with study-specific treatment-effect estimates

~ A2 ~
Yi = fr+ /ﬁ(xi o)) (2.6)

and standard errors. They; are interpreted as new study means, adjusted for small-study effects and
shrunken toward a new common mean. In the next paragraph, we use an empirical Bayes argument tg

interpret they; . -
8

Q.

g

3. RELATIONSHIP BETWEEN LIMIT META-ANALYSIS AND STANDARD 3

EMPIRICAL BAYES ESTIMATES 2

We apply the idea of the empirical Bayes estimate, equivalently the best linear unbiased predictor, giveng

for example, inHiggins and others(2009, Raudenbush and Brykl985, Stijnen and Houwelingen
(1990, Greenland and O’Rourkg001), Verbeke and Molenberg{200Q page 81), andRabe-Hesketh
and Skrondal(2005 page 22) to the setting of our extended random-effects m@ddl (et u; be the
trial-specific heterogeneity residual for triglincluding a potential small-study effect. B2.9), we have

U = /02 + 12(ar + €)

with E(uj) = ar,/0? + 72 and Vauj) = o2 + 2. Thus, we can split ug; into
Xi=pr+ Ui =pr+pi +3i,

where R is the treatment-effect parametg, is a random variable followindN (0, z2), representing
the heterogeneity of the “true” study means as in the usual random-effects modé|, iarad“biased”

random error variable with expectatioid® = ar, /aiz + r2 and variance Vdb;) = oiz, with E(6;) =0

only whenar = 0. The empirical Bayes method estimates the trial-specific heterogeneity regidyal

its posterior mean €;), given the observed;, the prior distributiong; g N (0, 72), with estimates

substituted for 2, o2, fr, andagr. Using Bayes formula, we obtain f@y a normal posterior distribution

with expectation
~ 2 A . .
E(B) = e (Xi — Br— ary/S* + T2) (3.1)
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S
and variance
A22
Var(f) = ——
U2

Estimatingg; by gi = E(B), interpreting the square root of the variance as its standard §T€rl§i)r and
furthermore usingd.4), we see that the limit meta-analysis®) can be written as

Vi = flr+14r+S2% = fo+S4,

wherez = [Q’i/é\Ei. This justifies our choice o§ as standard errors of. We can viewz as the
“specific z-score” or “specific standardized residual” for triaDne can think of setting up a new fixed-
effects model, where the population meam‘?&mnd the (usually unknown) measurement error is now a
shrunken estimate of its typical magnitudeg) (scaled by the trial-specific standard ersarThis gives us
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yi, which can be viewed as an estimate of the effect fromitrilaét is more robust with respect to random

as well as systematic error. We can then use(thes), i € 1,..., Kk to estimate the treatment effect

(fixed or random-effects model), adjusted for small-study effects, and assess and investigate heterogeneity.
Compared to standard empirical Bayes estimation, the limit meta-ana®y@is1&s a shrinkage factor of

J/12/(s? + £2), means less shrinkage than with empirical Bagiés (s? + 72)) (3.1).

4, MODEL FITTING USING ML

In this section, we simultaneously estimate the parameters of mp@| the treatment-effecfr and
the small-study effecir, given an estimate of the underlying between-study variafeepresenting
heterogeneity. As usual in meta-analysis, the observed data are the within-studypsahtheir within-
study variance estimated = 52(i = 1,...,k). Using the expectation®) = fr + ar,/0 + 72 and

variance Vafxi) = o + 72 of x; and inserting method-of-moment estimasgandz? for o2 andz?, we
obtain the log-likelihood contribution of studyomitting summands not depending @r or fr)

2
|((XR,,BR|Xi)=—2(§2—::_%\2) (Xi —ﬁR—aR /§2+‘?2) . (41)

Writing w; = 1/(5‘12 + 72), summing up over all studies and setting the partial derivatives to zero yields
the estimates

S wix — % SV S i

(4.2)
Zik=1 wi — %(Zik=1\/w_i)2

i

k
. 1 5
R = iE_l Vwi(Xi = fRr)- (4.3)
As we will see in Sectiors, fr (the treatment-effect estimate) afd (the small-study effect estimate)

can be interpreted as slope and intercept in linear regression on so-called generalized radial plots.
Variance estimators are derived from the expected Fisher informatio€{llagh and Nelderl989
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p. 472)
I_( k Zwm)
A\ Zver Zw
with inverse
-1 1 ( S —Zdﬁ)
kZw = (v \ -Zver k]
leading to the variance estimates:
A 1
Var(fr) = , (4.4)
e -t vm)
1 _
Var(ag) = 2 (4.5)

S — (S o)

Both variance estimates are inversely proportional to the sampling variance of the observed study preci-
sions ¥s. This means that estimation is the more precise, the more study precision varies. By contrast,
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when standard errors are similar or even equal for all studies (s), the limit meta-analysis is degen-
erate since regression gf/s on a constant As is infeasible, independently of whether heterogeneity or
small-study effects may or may not be present. This restriction is a common feature of all funnel plot
methods iggins and Greer2009.

5. MODEL FITTING AND INTERPRETATION USING RADIAL PLOTS

In this section, we show how to fit and interpret the extended random-effects i@dg)eh(practice. The
idea underlying the extended mod&l2) is best motivated by looking at radial and generalized radial
plots, seeGalbraith(1988, Copas and Malley2008, andCopas and Lozada-C#4a009.

5.1 Radial plot

A radial plot is a scatterplot, usingw; = 1/5 asx-coordinates anq/wix; = X /S asy-coordinates.

As easily seen (and well known), (i) the slope of the regression line through the origin is the treatment-
effect estimate of the fixed-effect model, denofgdand (ii) the sum of squared residuals with respect to
this line isQ, which measures the weighted squared deviation of study treatment effects from the overall

fixed-effect estimate:
k 2
> wjXj
Q=)D wi (Xi - ¢) .
=1

: 2. wj

wiepeoe//:sdny woly papeojumoq

o}

Under the null hypothesis of no between-study heterogen@itiollows a y? distribution withk — 1
degrees of freedonCochran 1954). Figurel (bottom left panel) shows the radial plot for an example, a
meta-analysis on thrombolytic therapy in acute myocardial infarc@dki, 1995. The line through the
origin is dashed.

Now we look at the best fitting line (not necessarily through the origin, solid line in bottom left
panel of Figurel). The test for small-study effects yggerand others(1997 uses this line, testing
the null-hypothesis that its intercept is zero. The interégptepresents small-study effects. In general,
the intercept differs from zero and thus the slope of the line, derfiitediffers from the fixed treatment-
effect estimate. FollowinG@opas and Malley2008, we can interpret this slope as a fixed treatment-effect
estimate, when allowing for small-study effects. This adjustment often results in smaller estimates of th
overall treatment effectStanley 2008 Morenoand others20093. Estimates of slope and intercept are
identical to the ML estimateg(2) and @.3). In analogy toQ, we can define a measug® of heterogeneity
with respect to the best fitting line:

20z IHdy 01 uo 1sanB'Aq €11 16€/221/1/Z 1 /aI0IHE/SOnSHeISOIq/W00"dNO

k
i=1

A N2
, PN a
Q=2 w (xi—ﬁp— ;) , (5.)
where thew; = 1/32 denote the fixed-effect model weights, as above. We have

Q<Q

since the best fitting line minimizes the residual sum of squares. Again, folld@dcgran(1954, it can
be shown that under the null hypothesis of no between-study heterogeneity and normal assuiption,
follows a 2 distribution withk — 2 degrees of freedom.
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I
Limit radial plot

Radial plot Generalized radial plot

Standardized treatment effect

6 - 5~ -, L
T T T T T T T T

Square root of inverse variance

Fig. 1. Thrombolytic therapy data exampl@lkin, 1995: radial plot (bottom left panel), generalized radial plot
(bottom right panel), and limit radial plot (top panel). Dashed: line through the origin. Solid: best fitting line. Details
in text.

5.2 Generalized radial plot

Following Copas and Malley2008, the radial plot can be generalized to incorporate between-study
heterogeneity, taking now the valuggoi = 1/, /§2 + 2 asx-coordinates anq/wixi = Xi /‘/Sa2 + 72
asy-coordinates (Figuré, bottom right panel). We do not use different notation for fixed and random-
effects weights. This generalized radial plot represents the random-effects model since tlig; sibfre
line through the origin in the generalized radial plot is the random-effects madglgstimate (dashed
line). We propose to complement the plot by a regression line that allows for an intercept (bottom right
panel of Figurel, solid line). Its slopepr is the treatment-effect estimate of the extended mai€),(
allowing for small-study effects. The intercept correspondégpthe bias introduced by small-study
effects, interpreted as the expected shift in the standardized treatment-effect estimate for a hypothetical
“small” study with zero precision.

The generalized radial plot provides an interpretationffoe= fr+toR, (2.4). This can be interpreted
as the expected adjusted treatment effect of a hypothetical study with infinite predsien0) and
coordinates 1z and g/t since inserting Az in the regression equation providgg/t = fr/t + aRr.
This regression problem is essentially equivalent to model (1LdYlbsenoand otherg(20093, see also
Stanley(2008.
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5.3 Limit radial plot

For M — oo, the radial plots (representing the fixed-effect model) approach a stable limitxwith
coordinates 15 andy-coordinatesy; /s (Figurel, top panel). This is equivalent to shrinking the points
of the funnel plot toward a “new” mean, see Sectlrin our data example, both lines become very
similar. One may add a generalized limit radial plot, representing the random-effects model for the limit
meta-analysis (not shown). As heterogeneity is much reduced by the shrinkage process, this is mostly very
similar to the limit radial plot.

5.4 Adjusted treatment-effect estimates

The basis of estimation is either a meta-analysis with raw @ata ) or the corresponding limit meta-
analysis(yi, 5), calculated using2.6). We use the convention that treatment-effect parameters denoted
by the letterp indicate models including an intercept, while parameters denoted ibgicate models
without an intercept. We consider the treatment-effect estimatedixed-effect model),ir (random-
effects model), an(ﬁ“m (limit meta-analysis, fixed-effect model) from a line through the origin, and
ﬂR, ﬁ,:, ﬁ“m, and,Bo from a best fitting line for the respective models. Our consideration in terms of radial
plots shows that all parameters can be estimated using standard meta-analysis software as follows:

1. Givenx; ands for each trial, calculat@, /g, and an estimate fd?, for example, the method-of-
moments estimatéderSimonian and Lairdl986.

Using the radial plot, determine the slofie

Using?2, construct the generalized radial plot and determine the ﬁﬁmd the intercepir.
Computely = Ar + 76r.

Use R.6) for calculating the limit meta-analysis treatment-effect estimgtesonstruct the limit
radial plot and compute the slop@sm of the line through the origin anfim, allowing for an
intercept.

arwd

Suppose a radial plot (that can also be a generalized radial plot}d@wdinates/w; andy-coordinates
Jw; i, where the weights); correspond to the chosen model. The slope of the line through the origin is

The slope of the best fitting line is given as #3), its intercept by 4.3). Analogous equations hold
for im and Bim, with x; replaced withy;. Standard errors and confidence intervals are calculated in
2 different ways, both based on the study weights For models without an intercept, the usual meta-
analytic approach is used, which takm as standard error of the pooled estimate. For models
including an intercept, the standard errors are derived from the variances gived)iar{d @.5). The
same standard errors are usedi@ (version without an intercept) amd$ andBiim (including intercept).
Notice that this approach, in line with the usual random-effects model, tréats fixed.
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6. SMULATION STUDY

In this section, we report results of a simulation study. We computed estimates(aual fixed-effect
model),ur (random-effects modelfr (fixed-effect model, allowing for an intercepfir (random-effects
model, allowing for an interceptlim (fixed-effect model for the limit meta-analysis, no intercefi),
(fixed-effect model for the limit meta-analysis, allowing for an intercept), ffhd= fr + rar. These
estimates were compared to the Mantel-Haenszel and the Peto estBrnegaland and Robingd 985
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Yusufand others1985. Moreover, we included one of the most successful adjusting methods identified

by the recent study dflorenoand otherq20093, the so-called Peters method, see &stersand others

(20089. Criteria were (i) the absolute bias of the treatment-effect estimate, (ii) the MSE, (iii) the observed
variance between treatment-effect estimates of the same scenatrio, and (iv) the coverage of 95% confidence
intervals. In particular, we were interested to know to what extent the methods were able to reduce bias in
the treatment-effect estimates in the presence of small-study effects.

S
6.1 Design §
We evaluated a number of scenarios, all based on binary response data, with varying number of trials u%}
the meta-analysis (5, 10, 20), control group event probability (0.05, 0.10, 0.20, 0.30), true odds ratio (0. 5,=
0.667, 0.75, 1), and heterogeneity variance£ 0, 0.05 0.1Q 0.20. Small-study effects were simulated
on the basis of the Copas selection model,Gepas and SHR000a 2001). This procedure is extensively
described irRiickerand otherg20083. The selection parameter of the mogél, was varied from 0 (no
selection), 0.36 (low selection), 0.64 (moderate selection), to 1 (strong selection). Trial sizes were drawng
from a log-normal distribution that was fitted to the sample sizes of the rosiglitazone meta-amibses (
and Wolskj 2007). The parameters were 6.056 (mean) and 0.69 (variance); quartiles were 244 (25%), 427O
(50%), and 747 (75%). Each of 768 scenarios was repeated 1000 times to provide Monte—Carlo estlmateg
of bias and coverage probabilities.

p e//:sduu wol}

6.2 Results

Results for bias and MSE are shown in Figui2esd3 for moderate number of studids £ 10, fixed) and
substantial heterogeneity{ = 0.1), which we believe are representative for many real meta-analyses.
Results were similar for the “classical” methods (fixed/random-effects model, Mantel-Haenszel method, @
and Peto method) with respect to all criteria. Of these, the Peto method had both the least absolute bias
and the least MSE. Therefore, only the Peto method was chosen to represent the classical methods gn
the plots. Not unexpectedly, in general, the absolute bias was larger for smaller number of trials, largers
heterogeneity, higher selection (small-study effects), and smaller event rates in the control group. The=
influence of the true odds ratio was weak. All (unadjusted) classical methods produced estimates biased:
downward (that is, odds ratios more distant from one) if there were small-study effects, and the MSE<
increased. The fixed-effect model allowing for an intercegjp) tended to a small positive bias (that is,

an odds ratio nearer to one) and large MSE and variance. For the random-effects model allowing for a
intercept Br), we often found markedly biased estimates, for which reason it is not shown.

By contrast, the estimates based on the limit meta—anaj&ﬁ@a, [lim andﬁo were nearly unbiased if
there were small-study effeCtéum had the smallest bias, but a larger variance of estimates between runs
of the same scenario thahm andﬁo. Thus, ftjim and/ﬁ’o had the smallest MSE, together with the Peto
method. The Peto method had the smallest variance, but tended to bias if there was selection, particularl
for small event proportions. For meta-analyses with a very small number of kialsh) or without any
selection, however, the new methods were markedly inferior to the classical methods (results not shown).
This is no surprise, as it is well known that for small meta-analyses, all funnel plot methods work poorly
with respect to both size and power. We thus recommend not to use adjusting methods if the number of
trials is less than 10. Moreover, the extended model has an additional parameter which must be estimated.
Bias and MSE of the Peters method were small, often ranging between that of the unadjusted methods
and those based on the limit meta-analysis.

Coverage was generally poor, if there was heterogeneity, see Hgiitgs is particularly true for
large heterogeneityt& = 0.2, results not shown) or strong selection. Naturally, the random-effects model
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A A-A Peto method
v-v-v Fixed effect model, allowing for an intercept (3—F)

=—=—a Limit meta-analysis, allowing for an intercept (p-lim)
=—s—a Limit meta-analysis, line through origin (u—lim)
=== Limit meta—-analysis, expectation (B-0)
* % % Peters method

5% 10% 20% 30%

T
5% 10% 20% 30% 10% 20%  30%

Event proportion in control group

Fig. 2. Bias of treatment-effect estimate on log-odds ratio scalef(R;g log OR) for 72 = 0.1 and 10 studies per
meta-analysis, 6 models. Various scenarios.
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was best within the classical models. The larger the small-study effect, the greater was the superiority of,
the new methods over the random-effects model. The limit meta-analysis expeg@gatiod the Peters S
method had best coverage within all adjusted models. There was almost no dependence on the true odds
ratio but a strong dependence on the control event rate, with an interaction between this and the mod%’
used: If there was selection, coverage increased with increasing control event rate for the classical models,
while it always decreased for both the new methods and the Peters method. The poor covégigge of S

S
seems to be due to underestimation of its standard error.

7. ANEW MEASURE OF HETEROGENEITY

The promising results for adjusted treatment-effect estimates based on the limit meta-analysis motivated
us to derive a new measure for heterogeneity, caliédt is determined on a percentage scale, following

the established measuté introduced byHiggins and Thompso(20029. G? assesses the proportion

of the variance that is unexplained after we have allowed for possible small-study effects in the limit
meta-analysis.
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4 A A Peto method
v-v-v Fixed effect model, allowing for an intercept (5—F)
==—au Limit meta—analysis, allowing for an intercept (B-lim)
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Fig. 3. MSE of treatment-effect estimate on log-odds ratio scalefoe= 0.1 and 10 studies per meta-analysis,
6 models. Various scenarios.

We note first that in a regression model there is a natural measure of the proportion of the unexplaine

variance: .
Residual Sum oSquares

Total Sum of Squares’

1- ereg:

wheresze is consistently estimated by the squared Pearson correlation coefficient. In analogy@3 this,
is defined with respect to the fixed-effect model fitted to the limit meta-analysis and allowing for small-
study effects (corresponding to paramefgr). Specifically,G? is defined as - ereg when regressing

the standardized treatment-effect estimaie’s;, obtained from the limit meta-analysis, opsL This is
easily done using standard linear regression software. GRus given by
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G2=1-

G2 is closely related to the heterogeneity stati€dic defined in Sectio® and measuring residual vari-
ation with respect to a fixed-effect model allowing for small-study effects, wlfeis based on the
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Fig. 4. Coverage of 95% confidence intervals of treatment-effect estimate on log-odds ratio seale-forl and 10
studies per meta-analysis, 6 models. Various scenarios.

limit meta-analysis and scaled to [0,1] by dividing the residual sum of squares by the total sum of
squares:

/
2 Limit meta-analysis
~ Total Sum of Squares in limit meta-analysis

(7.1)
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For testing for residual heterogeneity after allowing for small-study effects, we propose to apfy the
statistic to the given analysis instead of the limit meta-analysis. The reason is that the shrinkage proces
leading to the limit meta-analysis removes random error and thus cause® loithQ’ to decrease very
much. Thus, we propose the following test procedure (using the same level for all 3 tests):

n

1. For a test of heterogeneity in the usual sense (that is, not distinguishing between heterogeneity
caused by small-study effects and heterogeneity from other causesy takeich under the null
hypothesis of no heterogeneity foIIowsgé_l distribution. Stop if the test is not significant.

2. If the null hypothesis of no heterogeneity is rejected, carry out an appropriate test of small-study
effects, for example, by takin@ — Q’, which under the null-hypothesis of no small-study effects
follows a y2 distribution.
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Fig. 5. Forest plot (left), funnel plot (middle), and radial plot (right) for original (top) and limit (bottom) meta-analysis

(fictional example, see text).

3. If the null hypothesis of no heterogeneity is rejected, test for residual heterogeneity beyond small-
study effects, usin@@’, which under the null hypothesis of no residual heterogeneity follomé_g
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distribution. Residual heterogeneity can be quantifie@GBy

In this subsection, we look at 4 examples, representing typical settings: no heterogeneity; small-stud
effects without additional heterogeneity; and heterogeneity including minor or major small-study effects.

7.1.1 No statistical heterogeneitylf no statistical heterogeneity is found in the given meta-analysis
(that is, 72 = 0), the limit meta-analysis yields equgl = fF for all trials, and the limit radial plot is
perfectly fitted by the regression line, that@? = 0. Though a test on potential small-study effects may

7.1 Examples

Standardised treatment effect (z—score)

Standardised treatment effect (z—score)
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Inverse of standard error
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be significant, notice that—as an immediate consequence of the fixed-effect model—all deviations from
the mean are random by definition, which means that any apparent small-study effect must be spurious
as well. In this case, funnel plot asymmetry disappears with increasing precision. Note, in passing, that

the requirement of homogeneity when testing for funnel plot asymmetry—see, for indtzanugdis and

Trikalinos (2007—may be reducedd absurdum
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Fig. 6. Thrombolytic therapy data{kin, 1995. Forest plot (left), funnel plot (middle), and radial plot (right) for @
original (top) and limit (bottom) meta-analysis. g
o
7.1.2 Small-study effects without additional heterogeneity? i§Sbased on a notion of heterogeneity g
«Q

different from that usually used, in the sense that it does not incorporate potential small-study effects.
Thus, it is possible thaB? = 0 while 72 > 0, that is, there is no other heterogeneity apart from that
due to small-study effects (to whict? is sensitive but noG?2). This can be illustrated by a fictional,
somewhat pathological example (Figiie Here, we see a striking small-study effect so that all dots in
the radial plot lie more or less exactly on one line not going through the origin. Therefore, all variation is =.
explained by a fixed-effect model that allows for small-study effects, and residual heterogeneity measure
by G? is almost zero, though? > 0 (Q = 15.46p = 0.031), 12 = 54.7%[0% 79.5%] G? = 0.01%.
Adjusting for small-study effects yields residual heterogen€ity= 0.052p = 1.000, that is, there

is no heterogeneity left beyond the small-study effect, which itself is signific@nt: Q" = 15.41

(p < 0.009).

an

¥z& Iudy 0L uo3s

7.1.3 Heterogeneity: thrombolytic therapy dataWe use the example introduced above, see Fityarel

also Figure. The various estimates are given in Tabldhis is an example showing some heterogeneity
(2 = 0.018). The limit radial plot looks similar to the original one and shows some residual variation. We
find 12 = 18.6%, wherea&? = 15.4%. For this meta-analysis, most tests indicate a minor small-study
effect (e.g.p = 0.0750.088 0.091, 0.063 for Egger’s test, Harbord’s test, Peters’ test, and the arcsine
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Table 1. Estimated odds ratios from different models for the thrombolytic therapy data example

(Olkin, 1995
Original meta-analysis Limineta-analysis
Model Fixed-effect model Random-effects model Fixed-effeotel
Plot Radial plot Generalized radial plot Limit radabt

Model without intercept expiF) exp(uR) exp(iiim)
0.753[0.710; 0.798] 0.732[0.664; 0.808] 0.779 [0.735; 0.826]

Model with intercept exPr) exp(fr) exp(Biim)
0.787[0.731; 0.847] 0.840 [0.710; 0.993] 0.772[0.717; 0.831]

Expectation exffo)

0.796 [0.7390.857]

test, respectively, séeggerand others1997 Harbordand others2006 Petersand others2006 Riicker

and others 20083. The value ofG? indicates residual heterogeneity beyond this, not explained solely
by a fixed-effect model allowing for small-study effects. However, it is is not significant, if teste@’via
(Q' = 80.84 p = 0.137). Further, we fin@Q = 84.73 p = 0.096 andQ — Q' = 3.884, again consistent
with a small-study effectf = 0.049).

7.1.4 Heterogeneity and small-study effects: passive smoking datdas example byHackshawand
others(1997 was intensively discussed in the literature for several reasons (for detail€opas and

Shi, 2000h Senn 2009. It was also used bZopas and Malley2008 when deriving a robugP-value

for the treatment effect in meta-analysis. We figd= 47.52p = 0.095, Q" = 40.96p = 0.225,

and therefromQ — Q" = 6.55p = 0.010, indicating a small-study effect. The plots are shown in
Figure7, the estimates given in Tab® Both the fixed-effect modelu(r) and the random-effects model

(uRr) find an odds ratio of about 1.2 and thus a significant excess risk of lung cancer for persons expose
to passive smoking. The effect is reduced when using the limit meta-analysis but still signifigaht (

By contrast, it vanishes completely if adjusting for small-study effects, with nearly concordant estimates
for e, Ar. fiim, andfo. For this meta-analysis, heterogeneity seems moderate, measuree-1y.0168

and alsol 2 = 24.2%. However, at first glance surprising®? is very large(G2 = 94.6%), indicat-

ing much residual heterogeneity, caused by the fact that just 2 of the 3 large dominating studies showg
reciprocal effects with mutually exclusive confidence intervals. Since these studies are large, they are rel$
atively insensitive to the shrinkage process, see the bottom left and bottom right panels offFijuee
passive smoking data example therefore shows@as particularly sensitive to heterogeneity in large
trials.
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8. DISCUSSION

We have introduced the concept of limit meta-analysis, derived from an extended random-effects model
for meta-analysis which includes a parameter for the bias introduced by potential small-study effects.
The limit meta-analysis takes into account small-study bias to yield shrunken estimates of individual
study effects. We showed that these shrunken estimates can also be justified from an empirical Bayesian
viewpoint. Our approach is thus consistent with the philosophy of random-effects modeling that “inference
for each particular study is performed by “borrowing strength” from the other studitiggins and

others 2009. We are essentially correcting for possible small-study effects before we “borrow strength”
from other studies. The limit meta-analysis gives rise to 3 possible estimators for the overall intervention
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Fig. 7. Passive smoking datbldckshawand others 1997). Forest plot (left), funnel plot (middle), and radial plot
(right) for original (top) and limit (bottom) meta-analysis.

Table 2. Estimated odds ratios from different models for the passive smokingtdatk¢haw and others
1997

Original meta-analysis Limineta-analysis

Model Fixed-effect model Randome-effects model Fixed-effeotel
Plot Radial plot Generalized radial plot Limit radjalbt
Model without intercept extur) exp(uRr) exp(tiim)
1.204 [1.120; 1.295] 1.238[1.129; 1.357] 1.086 [1.010; 1.168]
Model with intercept exBr) exp(pr) exp(Biim)
1.009 [0.865; 1.176] 0.973[0.757; 1.250] 1.065 [0.913; 1.242]
Expectation exo)

1.094[0.9391.276]
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effect, adjusting for small sample effects, as well as a measure of heterogeneity after accounting for small

sample effects.
We derived ML estimates of the quantities in the limit meta-analysis in Se¢tidawever, we show—
as a direct consequence of interpreting the limit meta-analysis in terms of the radial plot in Seetiat
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parameter estimation in limit meta-analyses can be carried out using existing software. This removes one
hurdle to its use in practice.

The ultimate aim of quantitative meta-analysis is to arrive at a pooled estimate of the intervention
effect. We thus performed a comprehensive simulation study with binary response data to compare the 3
proposed estimators of the pooled effect that emerged from our limit meta-analysis with currently used
estimators. The simulation study explored a range of effect sizes, underlying event probabilities, hetero-
geneity (unrelated to small-study effects) and selection (as a surrogate for small-study effects). All 3 pro-
posed estimators had small bias and comparable mean square error in the presence of small-study effecfs.
However, the 3y” estimator @.4) gave the best confidence interval coverage and is thus our preferred 3
estimator in the presence of small-study effects. g

Unfortunately, neither the proposed nor existing estimators performed acceptably in all situations— &
that is, in both situations where small-study effects were present and situations where small-study effects’
were not present. In practice, analysts must therefore decide which estimator to use. To support thi§,
decision, we advocate one of the more recent tests for publication bias. A useful summary is given mv
Chapter 10, Section 4, of the Cochrane Handbook for Systematic Reviews of InterveHiiggieg and
Green 2009. We acknowledge that some authors take a censorious attitude to such tests, believing the
misleading Lau and others 2006 Terrin and others 2003 Tang and Liy 2000, stigmatizing them as
“pseudo tests’Ipannidis 2008, and questioning whether funnel plots are a suited means at all for judging
small-study effectsTerrin and others 2005. However, when applied following a prespecified analysis
protocol, with their limitations duly acknowledged, we argue that such condearsnidis and Trikalinas
2007 are minimized and that testing is a useful aide to researchers in judging funnel plots. After all,
adjusted treatment-effect estimates were used successfully for predicting the effect of the whole databasse
of antidepressant trials in the food and drug administration registry from a biased subset of published trlalﬁ
(Morenoand others20098.

In this paper, we have not considered the source of small-study effects, be it publication bias or hetero
geneity arising from differing patient, or other study specific, characteristics. Specifically, when adjust-
ing the treatment-effect estimate for small-study effects, it does not matter where the small-study effects
comes from Mlorenoand others 2009g. The limit meta-analysis can be readily extended to adjust for
any covariates which explain heterogeneity; it then would address remaining unexplained small- study'\)
effects.

An even more provoking question was raised3gnleyand otherg2010, whether it “could be better
to discard 90% of the data,” arguing that in the presence of small-study effects all adjusting methods leadz
to estimates that are very similar to the results of the one or 2 largest studies. However, these may alsﬁé
disagree, as illustrated by the passive smoking data example.

Of course, the above process may not explain all the heterogeneity, and we propose the tes@statistic
and the measuré? to assess and quantify, respectively, the remaining heterogeneity after adjusting for
small-study effects. If we believe the principal source of small-study effects is publication bias, then de-
tecting and investigating heterogeneity “after this has been accounted for” is arguably of greater scientific
relevance—as it relates directly to factors affecting the efficacy of the intervention in practical settings.

A potential drawback of our approach is its dependence on the estimatidn fof which a number
of competing estimators are given in the literature. In this article, we have used the methods-of-moments
estimator DerSimonian and Lairdl986. This estimator is both the most widely accepted and used. It
is implemented in the Review Manager software for Cochrane reviewées Cochrane Collaboratipn
2009. Unfortunately, the difference between these estimators tends to be greater the smaller the number
of studies in the meta-analysis and the smaller the true heterogeneity. We therefore revisited our analysis
of both the thrombolytic therapy and the passive smoking meta-analyses, using 7 options for estimating

2 available in the R package metafd® Development Core Tegn2008. We found that while our
3 pooled effect estimators were relatively robust, the estima@’ofaried considerably. Thus, we prefer
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to use the test statisti§’ to assess heterogeneity and rep@ft as a measure of such heterogeneity,
possibly also reporting the latter for a range of estimate<s of

Another issue is the use of the Copas selection model for generating the data in the simulation study.
Strictly, in using this model, we are generating data from a slightly different model than we are fitting to
the data. However, if a method is reliable in this setting, this provides reassurance for its use in practice,
where we cannot know the data generation model.

To conclude, we have introduced the idea of a limit meta-analysis which we believe is a promising
approach for finding “shrunk,” empirical Bayes, estimates of study effects in the presence of small sampley
bias. This led to 3 proposed estimators for an overall effect in the presence of small sample bias. Oug
simulation study suggested all 3 methods had smaller bias and mean square error than estimators Whi@_’l
did not account for small sample bias. One of these 3 methods, the “expected limit estimate,” also hadk
good confidence interval coverage and is our preferred method for use in practice. We have also describegl
an approach for assessing heterogeneity after accounting for small-study effects, and illustrated its utilityf,
with a reanalysis of data on the effects of passive smoking. g

SOFTWARE

All calculations were carried out using the freely available software R, version R-2.10.1, particularly
using the packages met8dhwarzer2007) and metafor R Development Core Tear2008. R code for
calculation of all estimates given in this paper can be obtained from the first author.
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