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SUMMARY

Many studies in health services research rely on regression models with a large number of covariates
or predictors. In this article, we introduce novel methodology to estimate and perform model selection
for high-dimensional non-parametric multivariate regression problems, with application to many health-
care studies. We particularly focus on multi-responses or multi-task regression models. Because of the
complexity of the dependence between predictors and the multiple responses, we exploit model selection
approaches that consider various level of groupings between and within responses. The novelty of the
method lies in its ability to account simultaneously for between and within group sparsity in the presence
of non-linear effects. We also propose a new set of algorithms that can identify inactive and active pre-
dictors that are common to all responses or to a subset of responses. Our modeling approach is applied
to uncover factors that impact healthcare expenditure for children insured through the Medicaid benefits
program. We provide important findings on the association between healthcare expenditure and a large
number of well-cited factors for two neighboring states, Georgia and North Carolina, which have similar
demographics but different Medicaid systems. We also validate our methods with a benchmark cancer
data set and simulated data examples.

Keywords: Sparse Additive Models; Healthcare expenditure; High-dimensional data; Multivariate regression; Non-
parametric regression; Medicaid health benefits program.

1. INTRODUCTION

Data in healthcare are generated at every patient’s encounter with the healthcare system resulting in billions
of pieces of data every day. Every patient in any medical setting generates an invaluable data point that
can contribute to understanding what works, for who and where. Patient data are acquired within various
settings, including administrative, clinical, policy, or discovery among others. Particularly, administrative
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or claims data are often used to make inference on delivery outcomes of a healthcare system, for example,
of great interest to the current health policy making is healthcare expenditure (Neff and others, 2004;
Reschovsky and others, 2011).

In this study, we are particularly interested in understanding what factors are associated with healthcare
expenditure for the Medicaid system, a governmental insurance program for low-income population in the
United States. The number of potential factors driving healthcare expenditure can be however very large,
representing various determinants of health and healthcare, including social and economic environment,
demographics, access to care, health indicators, to name a few, and most importantly, utilization of the
healthcare system.

Most existing studies in healthcare focus on aggregated expenditure at the county level because many
factors of interest are also county aggregates. These aggregations further reduce the sample size, with
an increase in the ratio of the number of factors (p) to the observation sample size (n). Moreover, the
relationships between the contributing factors and the healthcare expenditure are not necessarily linear
as assumed in much of the existing health services research. These relationships may also be different
across communities and/or time periods. Addressing these challenges intrinsic to the study of variations
in healthcare expenditure or other system outcomes requires development and implementation of high-
dimensional models with inference on model selection and non-linear associative relationships.

Estimation of (non)linear associations and model selection in a high-dimensional setting is a common
statistical problem encountered in several other fields, including biostatistics, genomics, and imaging
among others. Recent research has advanced well-established regularized regression approaches (Tibshi-
rani, 1996) to the analysis of high-dimensional multivariate regression (Obozinski and others, 2011).

In multivariate linear regression, the model of interest is given by Y (k)
i = ∑P

j=1 Bjkx(k)
ij + ε

(k)
i , with

i = 1, . . . , nk where nk is the sample size associated with the kth response Y (k) for k = 1, . . . , K responses.
The P covariates x(k)

j , j = 1, . . . , P can take the same values across all K responses (referred herein as
multi-responses regression) or different values (referred herein as multi-task regression). In this article, we
consider a generalization of the multivariate linear regression model in that it allows modeling non-linear
regression functions of the covariates in an additive manner, similarly to the additive regression models
(Hastie and Tibshirani, 1986), resulting in a multi-responses/task additive regression model

Y (1) = β(1) +
Group 1︷ ︸︸ ︷
f (1)

1 (X (1)

1 )+ · · · +
Group P︷ ︸︸ ︷
f (1)

P (X (1)

P )+ε(1)

...

Y (K) = β(K) + f (K)

1 (X (K)

1 )︸ ︷︷ ︸
Group 1

+ · · · + f (K)

P (X (K)

P )︸ ︷︷ ︸
Group P

+ε(K)

(1.1)

Each model denoted by (k) links a set of predictors X (k)

1 , . . . , X (k)

P to a response Y (k) through univariate
additive functions f (k)

1 , . . . , f (k)

P for k = 1, . . . , K . In this non-parametric setting, the objective is to perform
model selection on the additive terms while also controlling the smoothness of the selected additive
components. We also assume that there is a intercept β(k) associated with each responses.

In this article, we will also consider cases where the responses Y (k) are categorical, and “Y (k) = 1” if
the corresponding observation belongs to category k with k ∈ (1, . . . , K). We will use a multi-category
additive logistic regression model

P(Y (k) = 1|X = x) = exp(f (k)(x))

1+∑K−1
l=1 exp(f (l)(x))
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Lin and Zhang (2006), Meier and others (2009), Yin and others (2012) and Ravikumar and others
(2009) proposed different methods to simultaneously perform model selection and smoothness of the
additive components in the presence of one response (K = 1). These methods are not well suited to
problems with multiple responses since they solve each model (k) individually. Liu and others (2009) and
Foygel and others (2012) estimate all these models jointly by taking advantage of the fact that responses
can share common predictors. Liu and others (2009) adapt the �∞ regularization method of Turlach and
others (2005) to the non-parametric setting; and Foygel and others (2012) use a non-parametric reduced
rank regression. These multi-responses regression methods consider that all functions associated with one
predictor are in the same group, implying that the same set of predictors is selected to model all responses.
These methods however do not allow selection of different predictors for multiple responses, which in
turn can result in overfitted models because if a predictor is selected as active for one response, it will
automatically be selected for all the other responses. This is because these methods use regularization
norms that achieve groupwise selection only.

The implication of group wise selection of predictors is that if the jth group of additive functions is
selected then all the predictors X (1)

j , . . . , X (K)
j associated with these functions influence the responses.While

such larger models can be useful, it is desirable to reduce the set of predictors further to better understand
whether the association of one predictor to a response is an outlier, i.e. only influencing a small number
of responses, or whether it is underlying, i.e. present throughout a large number of responses. It can be
viewed as the strength of the association between a predictor and the multiple responses. For this, within
group selection needs to complement the selection of the group of additive functions. Hence, we can select
or discard an entire group of functions, but we can also select a subset of functions within a group. This
model selection idea has been considered in the context of linear regression by Simon and others (2013).
They proposed a regularized scheme, which uses a joint �1 and �1\�2 penalty.

One contribution of this work is a non-parametric estimation method that can perform joint estimation
and selection of multi-responses additive models in high-dimensional settings. To the best of our knowl-
edge, this is the first method that can simultaneously perform group wise and within group selection of
additive functions in the presence of multiple responses. We also introduce an efficient algorithm that
relies on functional block coordinate descent and functional coordinate descent to estimate additive func-
tions. The main advantage of the algorithm is that each non-null additive function is updated via a closed
form formula. We adapt the penalized local scoring algorithm introduced by Liu and others (2009) to our
estimation method, and thus, we can perform multi-category classification with additive functions.

We apply the proposed methodology to identify the factors associated with healthcare expenditure,
including healthcare utilization for services provided by different provider types, determinants of health
such as socio-economic factors and demographics, and healthcare access factors among others. We per-
form the analysis at the county level and with comparison of two states, Georgia and North Carolina.
Our focus is on the children population insured under the Medicaid-benefits program. We compare the
association between expenditure and relevant factors for five different years, where each year represents
a different response in the multi-responses regression model. The first objective is to identify factors that
are significantly associated with expenditure across 5 years and to identify outlying associations if any.
The second goal is to exploit the use of additive functions to uncover the nature of the non-linear impact
of these identified factors on the expenditure across years. We will also be able to assess how these factors
associate to healthcare expenditure over time with a comparison between the two states.

To validate our methodology, we also perform multi-category tumor classification and biomarker dis-
covery from a benchmark gene microarray data that has been used in previous articles (Kahn and others,
2001; Tibshirani and others, 2002; Zhang and others, 2008; Liu and others, 2009). We find that our
method is able to achieve high classification accuracy with a number of genes substantially lower than the
previous methods that exploited this data set. We accompany this analysis with a series of simulations.
We defer the validation analysis to the Supplemental available at Biostatistics online.
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The remainder of the article is organized as follows. In Section 2, we review the literature on non-
parametric model selection methods in high dimensional settings, and we explain the need for the
methodology we introduce in this article. In Section 3, we introduce a new method that jointly lever-
ages a composite �1\�2 functional norm and �1 functional norm to induce group and within group sparsity
across additive functions. In Section 4, we introduce the factors considered in our application, and we
also provide their respective sources. We then use our method to uncover factors that impact healthcare
expenditure for children insured through the Medicaid benefits program. We present the results of the
method applied to synthetic data in the Web Appendix of supplementary material available at Biostatistics
online. In Section 5, we conclude by providing insights on the application of the proposed method to the
motivating applied problem as well as other applied problems. In the web supplements, we present proofs
of the conditions presented in Section 3, and the validation analysis performed on a cancer data set, where
we compare our method to existing methods and additional results showing the non-linear effects of all
the factors on Medicaid related healthcare expenditure.

2. BACKGROUND

In this section, we provide a brief description of existing methods used to tackle high-dimensional additive
models. These methodologies will be used as a building block for the proposed methodology. If we consider
a random vector X = (X1, . . . , XP) and a random variable Y , a typical statistical problem is the estimation
of additive models.

Y = β + f (X) + ε, where E(ε) = 0, and f (X) = f1(X1) + · · · + fP(XP) and β ∈ R is the intercept.
For a given random variable Xj with distribution μj and a measurable function fj of xj, ‖fj‖ denotes the

L2(μj) norm fj : ‖fj‖ =
√

E
[
f 2(xj)

] = √∫Xj
f 2(xj)dμj. For x ∈ R

n, we denote ‖x‖2 = 1
n

∑n
i=1 x2

i . For a

random variable Xj with j ∈ {1, . . . , P}, Hj = {fj|E(fj(xj)) = 0} denotes a Hilbert subspace of functions
fj that are L2(μj) measurable, with mean zero, and inner product defined as 〈fj, gj〉 = E(fj(xj)gj(xj)). We
will focus on P-dimensional functions f (x) that have an additive form f (x) = ∑P

j=1 fj(xj), with fj ∈ Hj.
To estimate the additive functions fj in their model, Hastie and Tibshirani (1986) find the set of functions
that minimize the least squares criterion defined below:

Min
f :fj∈Hj

L(f) where L(f) = 1
2 E

[(
Y − β −∑P

j=1 fj(Xj)
)2
]

. They propose to use a backfitting approach

to estimate the smooth functions fj, fj = E

[(
Y − β −∑l �=j fl

)
|Xj

]
= Qj

(
Y − β −∑l �=j fl

)
, where

Qj = E
[
.|Xj

]
is the projection operator onto Hj. The estimate of each smooth function under this setting

is given by f̂j ← Sj(Y − β̂−∑l �=j f̂l), where Sj is a smoothing matrix, f̂j ∈ R
n and f̂j =

[
fj(x1j), . . . , fj(xnj)

]
,

and β̂ =
∑n

i=1 Yi
n . Other algorithms have been proposed to estimate additive models, for instance, marginal

integration was introduced by Linton and Nielsen (1995).
Ravikumar and others (2009) extends this model to the high-dimensional setting (P 
 n) and create a

method labeled Sparse Additive Models (SpAM). They impose sparsity at the function level and thus are
able to perform model selection by solving the optimization problem:

Min
f :fj∈Hj

L(f) + λ�(f), with �(f) = ∑P
j=1 ‖fj‖. They use a sparse backfitting algorithm where at each

step the smooth function updates are given by: fj =
[
1− λ

‖QjRj‖
]
+

QjRj, With Rj = Y − β −∑l �=j fl is a

partial residual, the operator [.]+ = max(0, .).
More recently, Yin and others (2012) proposed the GroupSpAM, which adapts the group lasso to the

non-parametric setting. They penalize the additive components in a group manner. For a partition G of
{1, . . . , p}, they solve the following optimization problem:
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Min
f :fj∈Hj

L(f) + λ�group(f), with �group(f) = ∑g∈G
√

dg‖fg‖ = ∑g∈G
√

dg

√∑
j∈g E

[
f 2
j (Xj)

]
, where fg is a

set of functions in group g and dg is the number of predictors in group g. The computational approach to
update the group of additive functions is a block coordinate descent algorithm.

In our methodology, we exploit the use of a composite �2\�1 functional penalty and �1 penalty to identify
the covariates whose functions are active for at least one of the responses in a multi-task or multi-responses
regression model. This allows to select all the additive functions associated with a specific predictor and
uniquely determines for which responses this predictor is relevant.

3. L2\L1 AND L1 JOINT FUNCTIONAL SPARSITY

As stated in the introduction, we consider a multi-task (or a multi-responses) regression problem with K
responses. For each regression problem, the data are {(x(k)

i , y(k)
i ), i = 1, . . . , nk , k = 1, . . . , K}. Without

loss of generality, we assume that n1 = · · · = nK = n . Each model has the form:

Y (k) = β(k) +
P∑

j=1

f (k)
j (X (k)

j ). (3.1)

We assume that E

[
f (k)
j (X (k)

j )
]
= 0 ∀j ∈ {1, . . . , P}. By solving the optimization problem (3.2), we can

jointly estimate groups of functions fj =
(

f (1)
j , . . . , f (K)

j

)
or f (k) =

(
f (k)

1 , . . . , f (k)

P

)
. We propose to induce

sparsity within the groups of predictors that appear to be relevant, to account for the fact that not all the
responses share the same predictors.

Min
f (1) ,...,f (K)

K∑
k=1

L(f (k))+ (1− α)λ��2\�1(f)+ αλ��1(f), (3.2)

where L(f (k)) = 1
2 E

[(
Y (k) −∑P

j=1 f (k)
j − β(k)

)2
]

, ��1(f) =
∑P

j=1

∑K
k=1 ‖f (k)

j ‖, and

��2\�1(f) =
∑P

j=1

√
K
√∑K

k=1 ‖f (k)
j ‖2 =∑P

j=1

√
K‖fj‖. Solving the optimization problem (3.2) is equiv-

alent to solving the problem for the covariate index j while all the others covariates are held constant.

f̂ (1)
j , . . . , f̂ (K)

j = argmin
f (1)
j ,...,f (K)

j

K∑
k=1

1

2
E

[(
R(k)

j − f (k)
j

)2
]
+ (1− α)λ

√
K‖fj‖ + αλ

K∑
k=1

‖f (k)
j ‖, (3.3)

where R(k)
j = Y (k)−∑� �=j f (k)

l −β(k) is the partial residual associated with the kth task and the jth covariate

X (k)
j . The regularization parameter λ is responsible for inducing sparsity among the additive functions at

the group level.When λ is large, many additive functions are shrunk to the null function. The level of
sparsity applied to individual additive functions within each group is controlled by α ∈ (0, 1). So when α

is close to 1, we have a model where there is mainly sparsity induced separately on each function, while
when α is close to 0 sparsity is induced mainly in a group manner.
A block coordinate descent algorithm can be used to solve the optimization problem (3.3). The first step
consists in deriving the stationary conditions that are satisfied when fj is optimal (see Web Appendix
D of supplementary material available at Biostatistics online). This derivation is done by computing the
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gradients and subgradients of functionals in the Hilbert space Hj. By leveraging these stationary conditions,
we are able to find necessary and sufficient conditions under which the optimal solution for problem (3.3)
is fj = 0. The first condition provides the criterion that allows us to determine if all the additive functions
associated with variables X (k)

j , with k ∈ {1, . . . , K} are null.
Condition 1: The covariates X (k)

j with k ∈ {1, . . . , K} are inactive as a group through their additive
functions f (k)

j , fj = 0 if and only if

√√√√√ K∑
k=1

E

⎡
⎣[(1− αλ

‖Q(k)
j R(k)

j ‖2

)
+

Q(k)
j R(k)

j

]2
⎤
⎦ < (1− α)λ

√
K . (3.4)

The proof of this condition is given in WebAppendix D of supplementary material available at Biostatistics
online. The partial residuals R(k)

j ( associated with f (k)
j ) measures the amount of variation in the responses

Y (k) that is left unexplained after accounting for the effects of all the other additive functions, that can
influence the response Y (k). If there is a lot of variation left unexplained, condition 1 suggests that the
group of additive functions f (1)

j , . . . , f (K)
j will be selected because the weighted sum of �2 norms of the

projection of the partial residuals on the space spanned by the predictors X (1)
j , . . . , X (K)

j will be larger than

the threshold. If for a covariate X (k)
j , ‖Q(k)

j R(k)
j ‖2 < αλ, we obtain

(
1− αλ

‖Q(k)
j R(k)

j ‖2

)
+
= 0 and the term

Q(k)
j R(k)

j doesn’t contribute to the group condition.
Thus the main difference between our new condition (3.4) and the condition in (1.5) in the Web

Appendix of supplementary material available at Biostatistics online lies in the fact that the new condition
puts emphasis on the within group sparsity.
The second condition provides the criteria for determining which functions f (k)

j should be selected out of

an active group of functions fj =
(

f (1)

1 , . . . , f (K)

1

)
.

Condition 2: For a given index j if the set of covariates X (1)
j , . . . , X (K)

j is active then a covariate X (k)
j

with k ∈ {1, . . . , K} is inactive through its additive function f (k)
j , f (k)

j = 0 if and only if

√
E

[(
Q(k)

j R(k)
j

)2
]
≤ αλ. (3.5)

To derive this condition, we simply incorporate the explicit derivative of the group penalty ‖fj‖ in the
stationary conditions since we know that at least one function out of fj is selected. Based on this updated
stationary condition, we rely on properties of the subgradient of the function f (k)

j to derive condition 2.
The complete proof of condition 2 is given in Web Appendix E of supplementary material available at
Biostatistics online. The condition simply states that the additive function f (k)

j = 0 if the �2 norm of the
projection of partial residual R(k)

j on the space spanned by the covariate X (k)
j is less than the threshold αλ.

Conditions 1 and 2 are used as thresholding conditions in Algorithm 1, which expands on how the
additive functions associated with the same predictors are updated. The main idea is to first check using
condition 1, if a group of additive functions has an effect on the responses. If a group is selected, we then
test using condition 2 if each additive function in the group has a �2 norm greater than the defined threshold.
The algorithm also shows that the non-null additive functions are updated through a closed-form formula
and that the new value depends on the previous updates of the additive functions in the same groups.
In the algorithm, the theoretical values of the criteria used in the thresholds are estimated by empirical
values that are computed by multiplying the empirical partial residuals by a smoothing matrix associated
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with a specific predictor. Hastie and Tibshirani (1986) demonstrated the convergence of backfitting when
smoothers such as smoothing kernels and splines are used as empirical estimators. This result should hold
within our algorithm since it relies mainly on backfitting.
For all the results reported in this article, we used a Gaussian kernel smoothers, and we use a plugin
bandwidth hj = 0.6∗ sd(Xj)n−1/5. Note that other smoothers such as natural cubic splines and polynomial
splines can also be used.

Algorithm 1 Soft-thresholding operator Algo1λ[R̂(1)
j , . . . , R̂(K)

j , S(1)
j , . . . , S(K)

j ]

(1) Input: Smoothing matrices S(k)
j , estimated partial residuals R̂(k)

j ,
for j fixed and k ∈ {1, . . . , K}, and the regularization parameter λ.

(2) Estimate Q(k)
j R(k)

j = E

[
R(k)

j |X (k)
j

]
as Q̂(k)

j = S(k)
j R̂(k)

j ∀k ∈ {1, . . . , K}
(3) Estimate ∀k ∈ {1, . . . , K} g(k)

j =
(

1− αλ

‖Q(k)
j R(k)

j ‖2

)
+

as ĝ(k)
j =

(
1− αλ

‖Q̂(k)
j ‖2

)
+

(4) Estimate hj =
√√√√∑K

k=1 E

[[(
1− αλ

‖Q(k)
j R(k)

j ‖2

)
+

Q(k)
j R(k)

j

]2
]

as ĥj =
√∑K

k=1
1
n‖ĝ(k)

j Q̂(k)
j ‖2

(5) If ĥj < (1− α)λ
√

K set f̂j = 0
(6) Else

i. For each k ∈ {1, . . . , K} if ‖Q̂(k)
j ‖ < αλ then f̂ (k)

j = 0

ii. Else update f̂ (k)
j (i + 1) = Q̂(k)

j

1+ (1−α)λ
√

K
‖f̂j (i)‖

+ αλ

‖f̂ (k)
j (i)‖

, where i is the ith iteration

(7) Center all the estimated functions f̂ (k)
j ← f̂ (k)

j − mean(f̂ (k)
j )

(8) Output: estimated additive functions f̂j =
(

f̂ (1)
j , . . . , f̂ (K)

j

)

We dubbed the method proposed in this section Group Sparse Multi-Task SpAM (GSMTSpAM). The
algorithm described so far assumes that the responses are continuous, however these methods can
be adapted to accommodate data sets with categorical responses. When dealing with multi-category
classification problems, we use a penalized local scoring algorithm as in Liu and others (2009). The
method derived from applying the model described in Section 3 to categorical variables is dubbed Group
Sparse Multi-category Additive Logistic Regression (GSMALR). In the Web Appendix A of supple-
mentary material available at Biostatistics online, we present a penalization scheme that only uses a
�1\�2 penalty, this is essentially the GroupSpAM applied to features of multiple responses. We dub
this method Group Multi-Task SpAM (GMTSpAM), and present the details of the algorithm in the
Web Appendix A of supplementary material available at Biostatistics online. The simulations are rel-
egated to the Appendix of supplementary material available at Biostatistics online. In the simulation
settings, we use a generalized cross validation scheme to find the optimal regularization parameters
(α, λ). The optimal regularization parameters minimize the generalized cross validation proposed by Liu
and others (2009). The criteria is computed as follows: GCV (α, λ) = ∑n

i=1

∑K
k=1

L(f̂)
(n2K2−nK df (α,λ))

, where

df (α, λ) = ∑K
k=1

∑P
j=1 ν

(k)
j I (‖f̂ (k)

j ‖ �= 0) and ν
(k)
j = trace(S(k)

j ). A 10-fold cross validation on the val-
idation data sets can also be used. For the cross validation approach, we can select the regularization
parameters that minimize the cross validated mean squared error. We generate a grid of regularization
parameters. For α we pick 10 equally spaced value in the range α = (0.05, . . . , 0.95) and for λ, we select
among 10 equally spaced values (0.75, . . . , 3.0). This leads to a selection of a pair of parameters among a
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grid with a 100 combinations. For each combination (α, λ), train the model on the data associated with the
validation data set, and we select the pair of values with minimal GCV. After identification of the optimal
regularization parameters, we estimate the additive functions on the training data sets with those optimal
parameters.

4. APPLICATION: HEALTHCARE EXPENDITURE IN THE MEDICAID SYSTEM

The objective of this case study is to identify the factors associated with variations in healthcare
expenditure. Factors of interest are related to healthcare utilization, healthcare access, demographics,
socio-economic, and community environment factors. The primary questions of interest are: What are the
health determinants that are associated with variations in expenditure while controlling for healthcare
utilization? What are the differences between the two states? Particular emphasis is on healthcare access
as it has been at the forefront of the current health policy agenda in the United States.

We implement the application framework to data of two neighboring states, North Carolina and Georgia,
for years 2005 to 2009. We compare Georgia and North Carolina because of similarities in the demograph-
ics (each with approximately 2.3 million children), economic environments (similar median household
income and percentage of population below poverty level) while having different Medicaid managed care
systems, Medicaid-only CMOs in Georgia, and state-based primary care managed providers (PCMP) in
North Carolina as summarized by a report published by Kaiser Family Foundation. We consider only the
child population insured under the Medicaid-benefits program but the models apply to other populations
and insurance programs.

The relationships between expenditure and factors associated with expenditure may or may not vary
throughout the years, thus we consider a different response for each year. Considering each year separately
instead of studying the associative relationships to expenditure longitudinally is particularly important
because of the year-to-year variations in federal and state-level health policies related to reimbursements,
eligibility, and managed care.

We measure expenditure as the Medicaid payments or reimbursements per medicaid eligible member
per month (PMPM) aggregated at the county-level using the Medicaid Extract (MAX) files acquired from
the Centers for Medicare and Medicaid (CMS) Services for the two states and for the 5 years. In particular,
we aggregate yearly expenditure by first summing all the claims associated with Medicaid eligible patients
who reside within each county and then dividing this quantity by the total number of months of eligibility
in the county to obtain the county level cost PMPM. In our model, we will have five responses where
each response corresponds to the expenditure PMPM for all the counties in a given state. We have 100
observations per response in North Carolina and 159 observations per response in Georgia.

We will next describe the factors that will be included as covariates to explain expenditure variations
for the populations in this study.

4.1. Model covariates

We acquired data on 40 covariates described in this section.
Healthcare utilization. Utilization measures are included in the study since they are directly linked

to healthcare expenditure. Grupp-Phelan and others (2001); Glynn and others (2011) and Harrison and
others (2012) have analyzed the relationships between utilization and cost of healthcare systems for various
medical conditions; the general consensus is that higher utilization of the systems leads to higher cost.

The utilization measures include the number of claims PMPM that are associated with the type of
services, for instance inpatient services, outpatient services, dental services, and miscellaneous services.
The second set of utilization measures are linked to the place where the medical services were provided.
These measures are the number of claims PMPM associated with hospitalizations, visits to the medical
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practitioner office, emergency room, and outpatient hospital. The data source for these measures is the
MAX claims database.

Healthcare access. The main goal of the study is to identify predictors that can be used to intervene
and recommend policies that will help reduce healthcare expenditure. The determinants of health that can
be used for interventions are mainly related to access, including both financial and geographic access.
The proxies used to measure financial access in our analysis are the county-level poverty rates and the
percent of adults who reported that they could not see the doctor because of cost. The percent of children
(under 19) without insurance is also included since lack of health insurance is a barrier to accessing health
care. The geographic access consists of two measures, availability, and accessibility to pediatric primary
care, where availability is defined as providers’ patient volume or time available for healthcare delivery
that patients experience when seeking care and accessibility is defined as the time and/or distance barriers
that patients experience in reaching their providers. The estimates of these two measures are derived from
Gentili and others (2017).

Demographics. Demographic measures have been extensively used in the literature as a control factor
to study the disparities in financial and geographical access to care (Nobles and others, 2014). The demo-
graphics variables included in our models consist of the percentage of claims that are associated with white
and non-white patients during the year of interest for the Medicaid-enrolled patients. The demographics
variables also include age related variables such as the percentage of claims that are attributed to patients
between the age of 0 and 5 years, between the age of 6 and 14 years, and between the age of 15 and 18
years. The data source for these variables is the MAX claims data.

Socio-economics factors. Some socio-economic factors, such as education, economic indicators, crime,
and family planning related metrics, have been reported to have an impact on healthcare outcomes (Dooley
and others, 2006; Egerter and others, 2009).To account for the impact of education on healthcare outcomes,
we include the county level illiteracy rates, which represents the percentage of the population aged 16 and
older that lacks basic literacy skills, the percentage of high school graduates or higher and the percentage of
Bachelor degree or higher. The economic factors are the county level per capita income, the unemployment
rate, and the percentage of household units with a mortgage with housing costs greater than 30% of
income in a given county. High housing costs and high unemployment rates can be associated with poor
health outcomes. Additionally, since employer-sponsored health insurance is the most prevalent coverage,
unemployment can reduce access to health care. We also include crime related variables such as homicide
rates, which represents the homicide rate pre 100,000 in a given county and violent crime rates. Family
related social variables are the percent of single parent family households with children and the teen
birth rate measured as the number of births per 1000 female population aged 15–19. The data sources for
these variables are summarized in Table 3 of the Web Appendix of supplementary material available at
Biostatistics online.

Health factors. Health factors are directly associated with the cost of health care systems. To measure
county-level health status of the population, we use the percentage of the population aged 20 and older,
that has a BMI greater or equal to 30 kg/m2 (obesity rates), the diabetes rates, low birth weight defined
as the percent of live births for which the infant weighted less than 2500 g. According to County Health
Rankings and Roadmaps, (Paneth, 1995), low birth weight is a good predictor of infant mortality and
childhood handicap, and they may lead to higher utilization of the systems by affected patients. We also
use a self-reported indicator of health, which is the percent of adults reporting in a survey poor or fair
health. Nutrition related variables are also added, namely the limited access to healthy foods measured
as the percent of population who are low income and do not live close to a grocery store, and the percent
of fast food restaurants within each counties. While most of the health factors are derived for the adult
population, we believe that they reflect the health status of the population within a community. The data
sources for these variables are also presented in Table 3 of the Web Appendix of supplementary material
available at Biostatistics online.
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4.2. Results

We apply our model to identify the most important factors and to estimate the potential non-linear rela-
tionships between healthcare expenditure and the 40 covariates considered in this study. In this analysis,
we demean and scale every predictor by its mean and standard deviation. We also demean and scale the
response by the global charges mean (and standard deviation) computed across years and counties. Once
the additive functions are estimated, for ease of interpretation they are scaled back to the dollars amount
by multiplying them with the response standard deviation.

To identify the variables that are more likely associated with healthcare expenditure in Georgia and
in North Carolina, we perform a stability selection analysis. To perform the analysis we follow the steps
below:

(1) Form a training data set by randomly selecting 140 counties (respectively 90 counties) out of the
159 counties (respectively 100 counties) present in Georgia (respectively North Carolina).

(2) Generate a grid of regularization parameters. For α we pick 25 equally spaced value in
the range α = (0.001, . . . , 0.1) and for λ we use a logarithmic scale and select 26 values(
10(−25), 10(−24), . . . , 10(−1), 1

)
.

(3) For each combination (α, λ), train the model on the data associated with the randomly selected
counties.

(4) Assess if a predictor is selected for at least one of the years among the 5 years (2005–2009).
(5) Repeat the steps above 100 times.
(6) Display a heat map that shows for each predictor and for all the regularization parameters (α, λ) the

number of times the predictor was included in the model.

Model selection. We perform a cross validation predictive scheme, to have a sense of the optimal
values of the parameters α and λ. In Figure 7 of the Web Appendix of supplementary material available at
Biostatistics online, we see that the values of the parameter α with the best predictions are below 0.1 for
North Carolina (0.04 for Georgia). This suggests that the �1 penalty is more strongly enforced than the
group penalty. This implies that when a predictor is associated with healthcare cost for 1 year, it is highly
likely that it will be associated with the cost of care during the other years. Figure 12 of the Web Appendix
of supplementary material available at Biostatistics online, shows the full regularization paths for the norm
of the additive functions associated with the relevant predictors in North Carolina (with similar results for
Georgia but not reported here). For all years and both states, the utilization variables such as the number of
claims associated with other services, inpatient services, outpatient services, and inpatient hospitalizations
are the first variables to enter in the model. Then the average county level congestion, financial access
variables, and some health indicators then become influential.

Utilization factors. We find that utilization variables are the most important factors driving Medicaid
healthcare expenditure at the county level in North Carolina and in Georgia.

Let’s first enumerate the utilization variables that have a significant effect on cost in both states.
Among the utilization variables the number of claims associated with inpatient hospitalizations, outpatient
hospitalizations, and visits to the physician office have an effect on Medicaid expenditure in Georgia and
in North Carolina. The number of claims issued from inpatient hospitalizations have the strongest positive
relationship with the county level expenditure per Medicaid eligible. We find that a standard deviation
increase in this predictor leads to an average cost increase of about $50 in Georgia (see Figure 1) and
$18.25 in North Carolina x ∈ [−2, 2] (see Figure 2). Similarly, we observe that as the number of claims
associated with visits to the physician’s office increases Medicaid health expenditure also increases by an
average amount of about $10 in Georgia (see Figure 1) and North Carolina (see Figure 2).
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Fig. 1. Effect of determinants of health on county level Medicaid charges in Georgia.

The impact of some utilization variables is more consistent in only one state. For instance, the number
of claims issued from emergency rooms or during inpatient care delivery clearly lead to increase in
expenditure in Georgia; but their relationships to North Carolina Medicaid expenditure is highly non-linear
and thus more ambiguous.

Some determinants of health associated with utilization tend to only be influential in one state and
not the other. We find that predictors such as the number of claims issued from prescriptions, dental care
visits and visits to the clinic are influential in Georgia but not in North Carolina. Services categorized
as “other services” appear to be significantly associated with expenditure in North Carolina but not in
Georgia.

Healthcare access. We find evidence that availability of services is associated with the healthcare
expenditure in Georgia, but not in North Carolina. This association is negative in Georgia, so a decrease
in congestion leads to a minor increase in expenditure if all the other predictors are held constant. Access
to care measured by accessibility or travel distance has a minor positive impact on expenditure in North
Carolina, but no effect in Georgia. A standard deviation increase in travel distance led on average to a $10
increase in health expenditure in 2007 and 2009 for counties with the highest travel distances (x ∈ [0, 2],
see Figure 2).

Determinants of health associated with financial access have an insignificant effect on healthcare
expenditure in both states. In North Carolina, we find that the percent of those who reported not being
able to see the doctor because of cost is marginally impacting cost in counties with very high or very low
financial access (see Figure 2).
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Fig. 2. Effect of determinants of health on county level Medicaid charges in North Carolina.

Demographics factors. In North Carolina, we do not find strong evidence suggesting that demographics
are significantly associated with healthcare expenditure, consistently across all years. In Georgia, counties
with a high percentage of teenagers (aged 15–18 years) tend to have lower healthcare expenditure (see
Figure 1), and among the socio-economic factors, the percent of unemployed adults and the per capita
income are significantly associated with expenditure, however they are less often included in the model
than the most relevant utilization measures.

Health factors. For North Carolina, we find that an increase in the percentage of fast food restaurants
is associated with a marginal increase of the county level health care expenditure (see Figure 2). And
in Georgia, if the number of preventable hospital stay increases by one standard deviation, Medicaid
expenditure decreases by about $20 (Figure 1). The percentage of individuals reporting poor or fair health
in Georgia also mildly influences Medicaid expenditure.

In the Web Appendix of supplementary material available at Biostatistics online, we display the pre-
dictors that do not affect Medicaid healthcare expenditure (see Figures 13 and 14 supplementary material
available at Biostatistics online).

5. CONCLUDING REMARKS

In this article, we have presented a new methodology for variable selection when dealing with multivariate
additive non-parametric regression or classification. The methodology introduces a novel joint penalty, by
combining a functional �2\�1 norm with a functional �1 norm applied to additive terms in the multivariate
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additive regression model. By deriving the subdifferentials of these penalties, we propose a series of
backfitting algorithms that can update each additive functions with a closed form solution. We illustrate
the merit of the method by performing a series of simulations. In these simulations, the benefits of the group
sparsity and the within group sparsity in the presence of non-linear relationships between the responses
and the predictors are characterized by a better ability to select relevant variables in the presence or
absence of within group sparsity. We also see in that the predictive performance of the proposed methods
are superior to the sparse linear methods and SpAM (see Tables 1 and 2 supplementary material available
at Biostatistics online).

We validated the proposed methodology using the children cancer data set introduced in Kahn and
others (2001). The method is used to classify the small round blue cell tumors (SRBCTs) into four
categories of cancers. We find that the method proposed in this article can achieve a 100 % classification
rate with only 12 genes out of 2308, while method such as MT-SpAM of (Liu and others, 2009) achieves
this classification rate with 20 genes. More details are provided in the Web Appendix G of supplementary
material available at Biostatistics online.

We applied the proposed method to uncover factors associated with Medicaid healthcare expenditure
in Georgia and in North Carolina. It is not surprising that one major factor associated with the Medicaid
expenditure in both Georgia and North Carolina is the utilization of inpatient hospitalization. While
controlling for this major utilization, the association of the utilization of other type of providers is not
consistently significant. For example, in our study, we find that utilization of the clinics and dental services
are not significantly associated with healthcare expenditure in North Carolina while it is significant for
Georgia. On the other hand, utilization of other services is not statistically significant in Georgia, while it is
significant in North Carolina. These findings suggest that targeted interventions for healthcare utilization
will not have the same impact across all states.

While healthcare access has been spotlighted in the current health policies, we find that it has a marginal
association to the Medicaid expenditure while controlling for utilization. Among the two measures of
geographic access, accessibility, and availability, only availability of services has some marginal impact
on expenditure in Georgia, while only accessibility has some marginal effect in North Carolina. This
finding indicates that reductions in expenditure can be only be slightly impacted by policies to improve
geographic access.

Moreover, demographics and health factors have also an insignificant association with expenditure
except for the percentage of fast food restaurants, a health factor which has commonly been associated
with high obesity prevalence.

Last, we find some non-linearities in the relationships described above, which can further help design
policies that will leverage influential variables in a more targeted manner (i.e. by focusing on ranges where
the costs exhibit sharp increases).

In this article, we have focused solely on estimation and did not explore inference, as this is beyond
the scope of our analysis. The estimation of uncertainty and inference in high dimensional settings has
recently been developed for linear methods. Assigning confidence intervals directly to our method would
be inappropriate, since our estimates (just like lasso) have a non-continuous distribution that cannot
easily be characterize in high dimensional settings. The current methods proposed for building confidence
intervals around sparse estimates either perform a de-biasing of the original estimates or split the sample
in multiple subsets to separately perform estimation then inference. It would be interesting to explore
inference pertaining to the factors we have identified as drivers of medicaid costs.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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