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SUMMARY
Propensity score methods are used to estimate a treatment effect with observational data. This paper
considers the formation of propensity score subclasses by investigating different methods for determining
subclass boundaries and the number of subclasses used. We compare several methods: balancing a
summary of the observed information matrix and equal-frequency subclasses. Subclasses that balance
the inverse variance of the treatment effect reduce the mean squared error of the estimates and maximize
the number of usable subclasses.
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1. INTRODUCTION

In comparative studies, where investigators do not control treatment assignment, the directly estimated
treatment effect can be strongly affected by confounding (Rubin, 1991; Sommer and Zeger, 1991). Such
confounding can also affect randomized studies analysed by other than intent-to-treat, due to differential
enrollment in a suite of studies, differential treatment adherence, and informative censoring (Robins and
Finkelstein, 2000; Scharfstein et al., 1999; Ellenberg et al., 1992; Larntz et al., 1996; Sommer and Zeger,
1991). Observational data are often readily available, can be representative of the population of interest,
are prevalent even in randomized studies, and may be the only feasible source of information. Therefore,
valid and robust methods of analysing observational data are needed to take advantage of this information.

Many methods, such as matching and subclassification (Cochran, 1968; Billewicz, 1965; Rubin,
1979), have been used to control for confounding variables (covariates associated with both treatment
assignment/selection and outcome) with observational data. To address confounders, Rosenbaum and
Rubin (1983a) developed propensity score methods to make inferences about a binary treatment effect
with multiple observed covariates and observational data. The propensity score is the conditional
probability of assignment to a treatment group given a vector of observed covariates. Rosenbaum and
Rubin show that pair matching, subclassification, and covariance adjustment on propensity scores allow
for an unbiased estimate of the treatment effect.

Propensity score methods are frequently used to analyse observational data (Rosenbaum and Rubin,
1984, 1985; Rubin, 1997; Rubin and Thomas, 1992, 1996), and the efficacy of subclassification on the
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propensity score has been well documented (Roseman, L. D., 1998, Ph.D. Dissertation, Unpublished;
Drake, 1993; Rubin and Thomas, 1992, 1996; Rosenbaum and Rubin, 1983b). However, little attention
has been given to the formation of optimal subclasses for propensity score methods; equal-frequency
subclasses are generally used. Our goals are to select propensity score subclass boundaries to balance a
within-subclass feature (frequency or variance of the estimated treatment effect), and to select the number
of subclasses. Section 2 gives an overview of propensity score methods and Section 3 discusses methods
and rationales for forming subclass boundaries. Section 4 presents a simulation study to compare the
methods. The results are summarized in Section 5.

2. PROPENSITY SCORE METHODS

We use the following notation: Y is a response vector of interest, x is a vector of covariates, and z
is a vector of binary treatment assignment indicators, with z; = 1 for treatment and z; = 0 for control.
There are three links of interest: between covariates and response (x — Y), between covariates and
treatment (x — z), and between treatment and response (z — Y). Robins et al. (1992) show that a
correctly specified model for either of the x — z or x — Y links will provide asymptotically normal
and unbiased estimates of the treatment effect. In randomized studies the x — z link is known: x is
statistically independent of z, and thus unadjusted analyses of the data are valid.

In observational studies x and z cannot be assumed independent, and even small to moderate
differences in the distribution of the covariates between the treatment groups can have substantial biasing
effects. If we have measured all confounders and correctly model the association between covariates
and response (x — Y) we can obtain unbiased estimates of the treatment effect without considering
the association between covariates and treatment (x — z). However, if we cannot correctly model this
association, or if there are unmeasured confounders, then ignoring the association between covariates and
treatment assignment can bias the estimate for the treatment effect.

Cochran (1968) showed that adjustment by subclassification is an effective method for removing
bias due to a single confounding covariate. Subclassification divides the population into strata so that
observations within a stratum have a similar distribution for the confounding variable. When there are
many confounding covariates, however, subclassification may be impossible. Propensity score methods
allow subclassification to be used with multiple categorical or continuous covariates.

With x denoting the vector of covariates, the propensity score e(x) is the conditional probability of
treatment group assignment given a vector of observed covariates: e(x) = Pr(z = 1|x). Rosenbaum
and Rubin (1983a, 1984) and Rubin (1997) show that if treatment assignment is strongly ignorable (i.e.
all variables related to both outcome and treatment assignment are included in the vector of measured
covariates) and the propensity score is correctly formulated, then treatment assignment and the vector
of covariates are conditionally independent given the propensity score. In that case, for units with the
same propensity score the two treatment groups have the same distribution of covariates, and a treatment
effect can be estimated. Subclassification on the propensity score includes placing each unit in a subclass
according to its propensity score and then estimating a treatment effect separately for each subclass. If all
units in a subclass have the same propensity score and the propensity score is correct, then the weighted
mean of propensity score subclass-specific estimates is an unbiased estimate of the overall treatment
effect. Note that in a completely randomized study, the propensity score is identically 0.5, all units are in
a single subclass, and the unadjusted analysis is valid.

Of course, generally the propensity score must be estimated and one cannot produce completely
homogeneous subclasses. Thus, model-based covariate adjustment along with subclassification on the
propensity score is frequently used to account for small within-subclass differences in the covariate
distributions for the two treatment groups (Roseman, L. D., 1998, Ph.D. Dissertation, Unpublished;
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D’ Agostino, 1998; Rubin and Thomas, 2000). To implement the approach, one needs to estimate the
propensity score, determine the number of propensity score subclasses, and form the subclass boundaries.
Though Drake (1993) finds that using subclassification with five equal-frequency subclasses based on
an estimated propensity score is effective, the number of subclasses should depend on sample size and
empirical assessment of bias reduction. With a large dataset it may be desirable to form more than five
propensity score subclasses. Alternatively, with a small dataset it may not be possible to form more than
two or three propensity score subclasses and still obtain approximate balance of the covariate distribution
within subclasses (Rubin, 1997).

3. DETERMINING PROPENSITY SCORE SUBCLASSES

To obtain an overall treatment effect estimate Rosenbaum and Rubin (1983a) propose a weighted
average of propensity score subclass-specific estimates, with weights equal to the fraction of the
population within a subclass. However, if equal-frequency subclasses are formed we may find that most
observations in the lowest subclass have z; = 0, while most observations in the upper subclass have
z; = 1. That imbalance of treatment assignment indicates that there may be insufficient overlap to estimate
an effect. Even if the treatment effect is estimable, the results may be highly variable. With weights equal
to the fraction of the population, those subclass-specific estimates with high variance would be given equal
weight in the calculation of the overall treatment effect estimate.

If our primary interest is in the overall treatment effect, another weighting scheme has weights equal to
the inverse variance of the treatment effect, so that a subclass estimate with high variability will be given
less weight in the overall treatment effect calculation. But care must be taken with weights equal to the
inverse variance of the treatment effect, as any highly variable estimates would be effectively eliminated
from the calculation of the overall estimate. Though five subclasses may have been used, the effective bias
control may only be equivalent to three optimally constructed subclasses.

We investigate propensity score subclasses formed by balancing on the inverse variance of the
subclass-specific treatment effects, rather than by the number of observations within a subclass. If we form
propensity score subclasses this way and then estimate an overall treatment effect using the weighted mean
of subclass-specific estimates (weighted by the inverse variance of the treatment effect) each subclass will
be given similar weight. Our method should use more of the information in a dataset by forcing balance
between the treatment groups within each subclass, and will preserve the number of effective propensity
score subclasses. We contrast this method with using equal-frequency subclasses.

In forming subclass boundaries we order units by their propensity score and then select boundaries. We
have two goals. To reduce bias due to confounding variables, we want subclasses in which the propensity
score is similar for the treatment groups, arguing for a large number of subclasses. And, to maximize the
effective bias control, we want subclasses to have similar variances of the estimated treatment effect.

3.1 Balancing subclasses on estimated variance

Let X be a design matrix with the ith row equal to [1 z; x;1 x;2], i = 1,2,..., N, where z; is
the binary treatment assignment indicator and x;|; and x;» are continuous covariates. Assume that the
mean of the response Y is related to X8, where B = (B0, B:, Bx Br2)!. To balance propensity
score subclasses using the inverse variance of the treatment effect across G subclasses assuming N
observations, order the propensity scores from smallest to largest, labeling the corresponding observations

in the design matrix ny, ny,...,ny. Next find an initial target value for balancing the subclasses
. . . . —~—1_5 .
according to the inverse variance by first calculating Var ~(8;) for each subclass, g = 1,2, ..., G using

equal-frequency subclasses. Use the average of the equal-frequency subclass-specific inverse variances,
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é Zgzl @rgl (,31), as the initial target value. Find boundaries for the G subclasses to form the subclasses
in the order 1, G, 2, (G —2), 3, (G —3),...,(G/2). Forming subclasses by alternating between the
left and right extremes forces the imbalance towards the middle subclasses. To find a boundary point for
a subclass formed from the left, place it at max(n;) meeting the condition that the information contained
in the newly formed subclass is less than or equal to the target value. For a subclass formed by coming in
from the right, place it at min(n;) meeting the same condition. Finally, check the summary for the middle
subclass. If it is not approximately equal to the summaries for the more extreme subclasses (according to
a predetermined tolerance) then adjust the target value and iterate back to the previous step.

The method for calculating @;1 (,31) will depend on the data. For example, if Y ~ MV N (X8, o2l ),
the observed information matrix 7(8) is proportional to (X7 X), where X is the known design matrix.

To balance subclasses according to the inverse variance of the treatment effect, Var ™' (;@) is computed as
the appropriate element of ~'(8). For nonlinear response data, the observed information matrix cannot
generally be given in closed form. In that case, to balance the inverse variance of the treatment effect
across subclasses, maximum-likelihood estimates for 8 and the associated estimated covariance matrix
are found using iterative procedures. The appropriate element of the estimated covariance matrix is then
used to form the propensity score subclasses.

4. SIMULATION STUDY

We use synthetic datasets with propensity score subclass boundaries formed by two different methods:

balancing subclasses using the inverse variance [Vgr_l(,éz)] of the treatment effect as a summary
(method V) and forming equal-frequency propensity score subclasses (method F). For each dataset
we estimate propensity scores, form subclass boundaries for the true and estimated propensity scores
according to both methods, and finally compare the bias, variance, and mean squared error (MSE) of the
overall treatment effects.

Linear and nonlinear response datasets Y;j are generated according to the following factorial: i = 1
if the true propensity score vector depends on x| and 2 otherwise; j = 1 if the response Y depends on x|
and 2 otherwise; k = 1 if there is a linear relationship between Y and XS and k = 2 if the relationship is
nonlinear. All response datasets depend on the generated treatment assignment vector z; none depend on
X2.

In order to build the synthetic datasets we first generate the design matrix X. For each observation,
we generate two uncorrelated bivariate normal covariates with mean zero and variance equal to one, and
assemble them into the N x 2 matrix X = [x1 x2], where xx = (x1k, X2k, ..., xne)T fork =1, 2. A
simulation study (Gu and Rosenbaum, 1993) found that propensity scores behave very differently with
20 covariates than with two covariates. However, the two-covariate case plays quite a general role. In
theory, a dataset can be partitioned into two components: those covariates truly associated with treatment
selection, and those that are not so associated. The covariates x; and x> here can each be thought of as
linear combinations of several regressors.

To generate the treatment assignment vector we consider two different types of propensity score
vectors, and denote them as ‘true’ propensity score vectors. The first true propensity score vector,

generated with the linear logistic model e;; (f( ) = %, is used to form the treatment assignment

vector for datasets Y11x and Yj2x. The second true propensity score vector is represented by the etg(f( ),
which varies across observations but does not depend on x; or x»; its components are independent
draws from the Uniform(0, 1) distribution. That propensity score vector is used to generate the treatment
assignments for datasets Y1 and Yop;. For each of the true propensity score vectors, the associated
treatment assignment vector is formed by comparing the propensity score vector with a vector of
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Table 1. Summary of simulation parameters

Dataset  Relationship  Propensity
with XB* score y BT

Y111 T o 20 (1,—1,1,0)
Y21 T 0] 2.0 (1,-1,0,0)
h11 T P NA (1,-1,1,0)
Y201 T b NA (1,-1,0,0)
Y112 § 0] 05 (1.5,—1,1,0)
Y120 § 0] 05 (1.5,—1,0,0)
12 N &) NA (1.5,-1,1,0)
Yo § <) NA (1.5,—-1,0,0)

* Design matrix Xy, with ith row = [1 z; x;1 x;2];
BT = (Bo Bz Bx1 Br2)-
T MVN(XB, 021), with 02 = 0 and 0.224.

$h(1X) = 25 (i) @0 = exp(XB).

vy _ _exp(y1x1)
O en1(X) = Tepim-

® e,z(f(): no dependence on X.

élo(f( ): estimated propensity score based on x1 only.
€11 (X): estimated propensity score based on xj and x;.

Uniform(0, 1) draws. For each observation i, if the ith element of the true propensity score vector is
less than or equal to the corresponding number in the comparison vector then that observation has z; = 1,
otherwise it has z; = 0.

For the linear datasets the true underlying relationshipis ¥ ~ MV N (X8, o2l ), where the ith row of
X =1z x1 x2] and B = (Bo, Bz, Bx, ﬂxz)T. To generate the treatment assignment vector for datasets
Y111 and Y21 we use e,l(f() with y; = 2. For datasets Y111 and Y211 we use ,BT =, -1, 1, 0);
for datasets Y121 and Y271 we use 8 T =1, —1, 0, 0). For all cells in the factorial design we generate
datasets with 0 = 0 and with 02 = 0.224.

For the nonlinear response datasets we draw outcomes from a Weibull distribution with hazard

function A(y|X) = %(ﬁ)sq, where § > 0 is the shape parameter and o(X) > 0 is the scale
parameter. We use an increasing hazard function with «(X) = exp(Xf). We assume we know the exact
lifetimes of all observations, and generate only uncensored data. The propensity score vector e;] (X) with
y1 = 0.5 is used to generate the treatment assignment vector for nonlinear response datasets Y112 and
Y122. For datasets Y12 and Y1, we use ,BT = (1.5, —1, 1, 0); for datasets Yio> and Ypy, we use
,BT = (1.5, —1, 0, 0). Table 1 summarizes the simulation parameters.

We note that the propensity score vectors used to generate the treatment assignment vectors may
define two extreme cases: with etz(f( ) the covariates x| and x» play no role in treatment assignment. With
er1(x), y = 2,and x; ~ N(0, 1) for the linear datasets, the odds of receiving treatment at x; = 2 are
much greater than at x; = —2. With the nonlinear datasets and y = 0.5, the odds of receiving treatment
at x; = 2 are 7.4 times greater than at x; = —2, a more reasonable association.

To investigate precisely the magnitude and direction of any treatment effect bias, the first simulation
for each type of response data (linear and nonlinear) consists of one sample of size 2000 for each response
dataset, with propensity score subclass boundaries formed for up to 10 subclasses. To consider the trade-
off between bias and variance inflation with smaller samples, another simulation consists of 1500 samples
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of size 100 for each response dataset, with up to five propensity score subclasses.

For each dataset logistic regression is used to estimate two propensity scores: é9(X), based on x| only,
and e (f( ), based on x; and x». Propensity score subclass boundaries are determined separately using the
vectors of true and estimated propensity scores for the two methods V and F, where the true propensity
score vector is defined as the one used to generate the treatment assignment. For method V, propensity
score subclasses are balanced according to the inverse variance of the subclass-specific treatment effects,
from the model assuming that the response Y depends on treatment only.

Once the propensity score subclasses are formed, estimates of the treatment effect are obtained for
each dataset by fitting the model depending on treatment assigment only separately to each subclass. For
the nonlinear response models, the population estimands are assumed constant over subclasses. Weighted
averages of the subclass-specific estimates are calculated to estimate the overall treatment effect, with
weights equal to the inverse variance of the subclass-specific treatment effect estimates. If an overall
treatment effect is not estimable using all j subclasses, then the estimate with j — 1 subclasses is used
instead. The overall treatment effect estimate ignoring the propensity score is compared to the weighted
mean estimates from the two methods.

Models assuming that the response depends on treatment assignment only (Y ~ Bg + B;z for the
linear case, and the exponential model with log «(X) = By + B,z for the nonlinear datasets) are both
poor fits for datasets Y11x and Y21x, which do depend on x;. With those datasets we investigate whether
subclassification on the propensity score helps reduce the bias and variance of the estimated treatment
effect. The models are good fits for datasets Y12 and Y22k, which do not depend on x1. There we determine
if there is a ‘penalty’ for subclassifying on the propensity score when it is not necessary.

4.1 Results

4.1.1 Linear response with N = 2000. We first consider the linear response datasets Y111, where both
the propensity score and the response depend on x;. We have two cases: response data generated with
0% = 0 and with 6> # 0. With these datasets we expect the unadjusted treatment effect estimate to be
biased because treatment assignment is correlated with x|, and x; is not in the response model. Since
the propensity score does depend on x| we expect subclassification on the propensity score to reduce
the bias. Figure 1 shows the bias of the overall treatment effect estimates by the number of subclasses
used to calculate the estimate for the dataset generated with o> = 0 and subclass boundaries formed using
method V with the true propensity score. The dotted lines represent 95% confidence intervals based on the
standard errors of the weighted means. The bias of the estimates decreases as the number of subclasses
is increased; the variability of the estimates also generally decreases. Using only two propensity score
subclasses reduces bias by over 50%; using at least five propensity score subclasses produces generally
unbiased estimates with low variability. The bias of the overall estimates are similar when method F is
used (not shown) to form the subclass boundaries. The bias patterns are the same when the datasets are
generated with o2 3 0, but the variability is increased.

Table 2 gives the bias, variance, and MSE of the overall treatment effect estimate for a subset of the
number of propensity score subclasses used to calculate the estimate from the datasets generated with
o2 = 0. For dataset Y11; and subclass boundaries formed according to the true propensity score, the
bias decreases for both methods as the number of propensity score subclasses is increased. With either
method V or F, when more than six propensity score subclasses are used to calculate the treatment effect
the variance of the estimate is less than the variance with no subclassification, and there is a hundredfold
reduction in the bias. When three or more subclasses are used, the estimates using method F have more
bias but less variability than those using method V. The MSE decreases as the number of subclasses is
increased with both methods. Subclassification on the propensity score gives at least a sixfold reduction
of the MSE compared to no subclassification. The MSEs are similar for the two methods.
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Fig. 1. Bias (with 95% confidence intervals) of the overall treatment effect estimates by the number of propensity
score subclasses used to calculate the estimate for the linear model with dataset Y;, 2 =0, N = 2000, and up to
ten subclasses. Method V and the true propensity score are used to form the subclasses boundaries.

For dataset Y111, using an estimated propensity score to form the subclass boundaries does not change
the patterns of bias and MSE (data not shown). Subclass boundaries formed according to élo(f( ) are
identical in this large dataset to those using the true propensity score, so the bias and MSE results are the
same. The MSEs of the weighted means with subclasses formed according to é1; (X) are only slightly
larger than when using the true propensity score.

Although our primary interest is in the overall treatment effect estimates, we are interested in seeing
how the subclass-specific estimates contribute to the overall estimate. Figure 2 shows the subclass-specific
estimates from dataset Yj;; generated with o> = 0 when seven and ten propensity score subclasses
are used with the true propensity score and both methods. The bias of the overall treatment effects is
shown to the left of the origin for methods F and V, respectively. As with the overall estimates, both the
bias and the variability of the subclass-specific estimates decrease as the number of subclasses increases
with method V. Using five (not shown) or more propensity score subclasses produces generally unbiased
subclass-specific estimates except for the extreme propensity score subclasses. Those subclasses are
inherently the most unstable because most of the observations usually have the same treatment assignment.
The bias is similar when method F is used to form propensity score subclasses, but when using seven or
more subclasses the standard errors of the extreme subclass estimates with method F are at least twice as
large as when method V is used. The large variance for the extreme subclasses with method F effectively
eliminates them from the overall treatment effect estimate, since the inverse variance is used as the weight.
The results from the dataset generated with o> # 0 have a similar bias pattern but increased variability of
the estimates.

With dataset Y>1; the propensity score does not depend on x1, so subclassification on the propensity
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Table 2. Bias (absolute value x 1073), variance (x10™%), and MSE
(x10™%) of the overall treatment effect estimates by the number of
propensity score subclasses formed to calculate the estimate. Results are
from the linear response model with datasets Y111 and Y211, 02 =0, and

N = 2000
Number of subclasses
Data PS Method 1 2 3 5 7 10
Y11 e,l(f() \'% Bias 1181 451 115 24 10 7
Var 12 7 144 25 10 4

MSE 13950 2040 276 31 12 5
F Bias 1181 451 147 73 22 20

Var 12 6 81 20 6 2
MSE 13950 2042 299 73 11 6

Yo11  en(X) % Bias 26 35 30 32 40 38
Var 19 286 93 71 170 159

MSE 26 40 102 81 186 173

F Bias 26 30 27 39 48 43

Var 19 42 30 38 108 65

MSE 26 51 38 52 130 83

é10(X) v Bias 26 9 13 5 2 2

Var 19 3 15 7 4 2

MSE 26 4 17 7 5 2

F Bias 26 12 12 2 4 2

Var 19 313 7 4 2

MSE 26 4 14 7 4 1

score cannot be expected to reduce bias of the treatment effect estimates. On the other hand, subclassifica-
tion should not significantly increase the bias since x| and treatment assignment were generated without
correlation. When subclasses are formed according to the true propensity score e;2(X) the results are in
contrast to what was seen with dataset Y711; the MSE generally increases as the number of subclasses
is increased, and is usually greater than the MSE with no subclassification (Table 2). The treatment
effect estimates are biased because of the randomly non-zero correlation between the realized treatment
assignment and x. If we simply look at the MSE of the estimates, method F may appear to perform better.
However, the subclass-specific estimates (not shown) are highly variable with method F for the extreme
subclasses, effectively removing them from the calculation of the overall treatment effect. Results are
similar when subclasses are formed according to én(f( ) (not shown). Dramatic reductions in the MSE
are seen when the subclass boundaries are formed using propensity score ¢10(X), estimated from the
propensity score model adjusting only for x;, because that model adjusts for the empirical correlation
between treatment assignment and x;. With subclasses formed according to a well estimated propensity
score, the results are similar for both methods. The MSEs for dataset Y»1; generated with o2 # 0 follow
a similar pattern.

Datasets Y21 and Y77 are generated with no dependence on x;. Thus the linear model Y ~ By + B,z
has a good fit, and subclassification on the propensity score is unnecessary. For those datasets all estimates
are close to unbiased with small variance estimates. The maximum MSE for datasets Yj2; and Y5> with
up to 10 propensity score subclasses is 26 x 1074,
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Fig.2. Subclass-specific bias for seven and ten subclasses with the linear dataset Y1, 62 =0, and N = 2000. The
true propensity score is used with methods V and F to form subclasses. The bias of the overall treatment effects are
shown to the left of the origin for methods F and V, respectively.

4.1.2  Linear response with N = 100. Simulation results with N = 100 have the same patterns of bias
as the N = 2000 simulation, although the variability and MSE of the estimates are larger. Table 3 gives
the simulation average bias, variability, and MSE for the weighted means of subclass-specific treatment
effect estimates for datasets Y11 and Y»17.

For dataset Y711, the MSE decreases as the number of subclasses is increased when both the true
and estimated propensity scores are used to form the boundaries. The reduction in the MSE compared to
no propensity score subclassification is similar to the result with N = 2000; using only two subclasses
gives a sixfold reduction, while using five subclasses reduces the MSE dramatically. Using the estimated
propensity score only slightly increases the MSE compared to using the true propensity score (data not
shown). With more than two propensity score subclasses, the MSE for method V is lower than the MSE
for method F because the algorithm for determining propensity score subclasses with method V ensures
design matrices that are of full-column rank. For dataset Y111 and N = 100, with method F it was
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Table 3. Bias (absolute value x 10~3), variance (x 1073), and MSE (x 10~%)

of the average overall treatment effect estimates by the number of propensity

score subclasses formed to calculate the estimate. Results are from the linear
response model with datasets Y111 and Y211, 02 =0, and N = 100

Number of subclasses

Data PS Method 1 2 3 4 5
Yl 11 €r1 (X) V Bias 24 l 4 949 1 63 70 26
Var 103 57 89 40 25
MSE 60250 10050 1390 540 340
F Bias 2414 941 335 221 180
Var 103 51 56 42 38
MSE 60250 9820 2080 1280 1060
Ya11  en(X) \Y% Bias 20 21 18 17 22
Var 162 215 487 274 1034
MSE 3210 4260 7370 9860 13140
F Bias 20 13 19 13 7
Var 162 219 470 703 907
MSE 3210 4300 7120 9560 11720
é10(X) \Y Bias 8 9 1 1 1
Var 162 54 43 33 29
MSE 3210 1190 680 460 400
F Bias 8 12 2 0 1
Var 162 56 41 32 27
MSE 3210 1180 640 430 350

impossible to form four subclasses in over 15% of the simulations; in over 30% of the simulations we were
unable to form five subclasses. In those cases the weighted mean with fewer propensity score subclasses,
which generally has higher bias and variability, was included to calculate the simulation average. With
method V we were able to form five subclasses with all simulations.

For dataset Y»11 with 0> = 0, Table 3 shows again the divergent pattern of MSE using the true versus
estimated propensity scores. When the true propensity score is used to form subclass boundaries, the MSE
increases as the number of subclasses is increased, and is greater than the MSE with no subclassification.
Results are similar when subclasses are formed according to ¢11(X) (not shown). With the estimated
propensity score é19(X) the MSE is much smaller overall, and decreases as the number of subclasses is
increased. Method F failed with dataset Y1; for 6% of the simulations with four subclasses, and 20% of
the simulations with five subclasses. No simulations failed with method V.

The estimates from datasets Y121 and Y271 generated with o2 = 0, where the response model has a
good fit, are close to unbiased and have small variances. The average of the MSEs for the weighted means
of subclass-specific treatment effect estimates for datasets Y121 and Y2y generated with o2 # 0 range
from 40 x 10~* when no subclassification is used up to 180 x 10~* when five subclasses are formed.
In contrast, with N = 2000 the maximum MSE for datasets Y121 and Y71 and up to five subclasses is
11 x 1074,

4.1.3  Nonlinear response models. Figure 3 shows the bias of the overall treatment effect estimates by
the number of propensity score subclasses formed to calculate the estimate for datasets Y112 and Y212 with
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Fig.3. Bias (with 95% confidence intervals) of the overall treatment effect estimates by the number of propensity
score subclasses used to calculate the estimate for the nonlinear datasets Y11 and Y51 with method V, N = 2000,
and subclasses formed with the true and estimated propensity scores.

method V and N = 2000. For dataset Y3, the bias decreases as the number of subclasses is increased,
while the variance of the estimates remains fairly constant. The bias and the variability are similar when
the true and estimated propensity scores are used to form subclass boundaries. By contrast, for dataset
Y>12, the bias is not affected by the number of propensity score subclasses formed to calculate the estimate
when subclasses are formed according to the true propensity score, but decreases almost to zero when the
estimated propensity score is used.

Figure 4 shows the subclass-specific estimates from dataset Y112 when subclass boundaries are formed
with method V and the true propensity score for two, four, seven, and ten propensity score subclasses.
As with the linear case, the bias tends to decrease as the number of subclasses is increased, although
the subclasses with the highest propensity scores remain biased. Unlike the linear case, here the variance
increases as the number of subclasses is increased. The subclass-specific results are similar when method F
and the estimated propensity scores are used to form the subclass boundaries (not shown).
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Fig.4. Subclass-specific bias by the number of subclasses used from the nonlinear response model with dataset Y| 1o
and N = 2000. Method V and the true propensity score are used to form subclasses. The bias of the overall treatment
effect is to the left of the origin for methods F and V, respectively.

With dataset Y»12, where the true propensity score e;2(X) was generated independently of the covariate
X1, the subclass-specific results are similar to the linear case (not shown). The bias remains constant and
the variability of the estimates increases as the number of subclasses is increased with subclassification
according to en(X). The estimates from the extreme propensity score subclasses are very variable
with method F, effectively removing those subclasses from the weighted mean calculation. When the
subclassification is on the estimated propensity score é1o(X), which adjusts for the empirical correlation
between treatment assignment and x1, the bias and variability of the subclass-specific treatment effect
estimates are both small.

As with the linear response models, results from the simulations with N = 100 have the same patterns
of bias as the N = 2000 simulation, with increased variability and MSE of the estimates. Table 4 gives
the bias, variance, and MSE of the average overall treatment effect estimates by the number of propensity
score subclasses formed to calculate the estimate for dataset Y712. Using propensity score subclasses to
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Table 4. Bias (absolute value x 1073), variance
(x 1073), and MSE (x 1073) of the average over-
all treatment effect estimates by the number of
propensity score subclasses formed to calculate the
estimate. Results are from the nonlinear response
model, dataset Y112, and N = 100, using the true
and estimated propensity scores to form subclasses.
Without subclassification on the propensity score the
bias treatment effect is 1896 x 10_3, the variance is
65 x 1073, and the MSE is 3751 x 1073

Number of subclasses

PS Method 2 3 4 5
er1(X) v Bias 659 229 45 35
Var 153 214 292 292
MSE 653 346 433 422

F Bias 647 263 204 192
Var 143 120 135 145
MSE 663 284 284 293

é11(X) \Y% Bias 665 225 48 41
Var 152 236 310 308
MSE 661 376 462 448

F Bias 654 269 217 206
Var 146 126 144 152
MSE 644 298 301 308

calculate the overall treatment effect estimate, the bias is reduced fivefold with method V rather than
method F when four or more subclases are formed, primarily because method V preserves the number of
allowable subclasses. With datasets Y12 and Y313, less than 4% of the simulations failed with method V
to produce five subclasses. With method F, we were unable to form three, four, and five subclasses in 13,
51, and 77% of the simulations, respectively.

With datasets Y127 and Y2o the response models were a good fit, making subclassification on the
propensity score unneccessary. The bias and variability of the estimates are low for propensity score
subclasses formed by both methods and when either the true and estimated propensity score is used
to determine subclass membership (data not shown). For these datasets, method V failed to form five
subclasses in 1% of the simulations, while method F failed in over 20% of the simulations.

5. DISCUSSION

Simulations indicate that when propensity scores can be expected to help, subclassification on a
well estimated propensity score performs best when boundaries are formed by balancing the inverse
variance of the treatment effect, because that method preserves the number of effective subclasses.
Forming propensity score subclasses via equal frequencies within subclasses often leads to highly variable
estimates for the extreme subclasses; those extreme subclasses therefore contribute little to the overall
weighted mean. Using the inverse variance of the treatment effect as a balancing summary for propensity
score subclasses is computationally more intensive, but the method ensures that all subclasses are included
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in the overall estimate of the treatment effect, and with similar weights.

To achieve maximal bias reduction in the context of a given model specfication for the propensity score
and the covariance adjustment model, we suggest using as many propensity score subclasses as possible.
That is, push onward by increasing the number of propensity score subclasses until the treatment effect
cannot be estimated in at least one subclass, and then reduce the number of subclasses by one. Though the
plot of subclass-specific treatment effects will be noisy, the inverse-variance-weighted overall treatment
effect should be maximally bias-reduced. Using our method of forming propensity score classes will, in
general, allow for considerably more subclasses than by using equal-frequency subclasses. The foregoing
approach will not be ideal for diagnosing variation in subclass-specific true treatment effects, because at
the maximal subclassification the standard errors of the subclass-specific estimated treatment effects will
be large.

Another method for determining the number of propensity score subclasses to use is a visual inspection
of a plot of estimated treatment effects by the number of propensity score subclasses formed to calculate
the estimate, similar to figures 1 and 3. When subclassification on the propensity score can be expected to
help, the estimated treatment effects will move towards the truth as the number of subclasses is increased.

The simulations included here have a number of limitations that warrant future work. The propensity
score vectors used to generate treatment assignment for the linear response datasets force the covariate
x1 to have either an extremely strong association with treatment, or no association at all. Using a more
moderate propensity score vector deserves further study. The simulations also did not address how robust
the method of using the inverse variance of the treatment effect as a balancing summary for propensity
score subclasses is to model misspecification.
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