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SUMMARY
In this paper we propose a multivariate extension of family-based association tests based on generalized

estimating equations. The test can be applied to multiple phenotypes and to phenotypic data obtained
in longitudinal studies without making any distributional assumptions for the phenotypic observations.
Methods for handling missing phenotypic information are discussed. Further, we compare the power of
the multivariate test with permutation tests and with using separate tests for each outcome which are
adjusted for multiple testing. Application of the proposed test to an asthma study illustrates the power of
the approach.
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1. INTRODUCTION

Studies of association between disease outcomes and genetic markers often use samples of diseased
subjects along with their parents or other family members. Such samples can be used to construct family-
based association tests (FBATs) (Thomson, 1995; Zhao, 2000; Lairdet al., 2001). We use the term FBAT
very generally to denote an association test which uses genetic data on family members to compute the
distribution of a suitable test statistic under the null hypothesis, conditioning on the phenotypes. FBATs
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196 C. LANGE ET AL.

provide simple and powerful tests to detect linkage between a marker and a disease susceptibility locus,
in the presence of linkage disequilibrium between the two loci. The best known FBAT, the TDT proposed
by Spielmanet al. (1993), was developed for dichotomous disease traits under the assumption of having
known genotypes for both parents and at least one affected offspring. Other tests have been suggested for
quantitative phenotypes: Rabinowitz (1997); Allisonet al.(1999) and Abecasiset al.(2000). Approaches
for multiple phenotypes or longitudinal measures of phenotypes have not been developed.

Many genetic studies collect data on a set of related phenotypes that are potentially associated with
the marker loci under study. One approach is to test all phenotypes individually and to adjust thep-value
for multiple testing by the bonferroni correction. In practice, correcting thep-values by Bonferroni is
conservative and many genetic studies may fail to detect true associations. Modifications of the Bonferroni
correction have been proposed: for example, Hochberg (1988). Another alternative is to use permutation
tests which permute the observed data under the null-hypothesis.

In the univariate phenotype setting, most FBAT statistics are based on the general likelihood-score test
approach discussed in Lazzeroni and Lange (2001); Schaid and Sommer (1996) and Lairdet al. (2000).
Here we propose a natural extension of FBATs to multivariate phenotypes based on GEE scores (Liang and
Zeger, 1986). Without making any assumptions about the distributions of the phenotypes, the multivariate
FBAT test allows us to test the null hypothesis that the marker locus is not linked to any genetic locus that
has an influence on the selected phenotypes. The proposed methodology is illustrated by an application to
an asthma genetics study. While multiple FBAT-testing with various corrections failed to find a significant
association, the multivariate test gives a significant result. Simulation experiments involving quantitative
traits show that the multivariate FBAT clearly outperforms permutation tests and individual FBATs with
corrections for multiple testing.

2. EXTENSION OFFBAT TO MULTIVAR IATE DATA

In this section we will introduce an extension of FBATs for multivariate phenotypes which we
subsequently refer to asFBAT-GEE. Since we compute the distribution of the test statistic conditional
on the observed phenotypes, FBAT-GEE is a valid multivariate test that does not require any distributional
assumption for the phenotypes. Hence FBAT-GEE can be applied directly to multiple phenotypic
observations of arbitrary types: for example, dichotomous outcome variables, counts, continuous variables
and to combinations of different types of variables.

For simplicity of exposition, we assume that we observen independent families consisting of parents
and one offspring, but the method extends easily to the more general case where we observe siblings and/or
one or more parent is missing using the approach described in Rabinowitz and Laird (2000). We test the
null-hypothesis that a marker locus is not linked to any disease-susceptibility locus for any ofm selected
phenotypes. The proposed idea can easily be adapted to situations when more than one linked/unlinked
loci are included. However, to outline the idea it is sufficient to discuss this simpler one-locus scenario.

Assume first that we observe one bi-allelic marker locus with allelesA and B, with xi counting the
number of transmittedA alleles in the offspring of thei th family, i.e. xi = 0, 1, 2. Other choices of
genotype coding are possible (Schaid and Sommer, 1994). The parental genotypes for thei th family are
denoted bypi 1 and pi 2. Suppose there is a single phenotype and let the phenotypic observation for the
offspring in thei th family be yi . For such setups, Lazzeroni and Lange (2001); Schaid and Sommer
(1996) and Lairdet al. (2000) pointed out that univariate FBATs can be derived quite generally from
likelihood scores where the likelihood function models the phenotypeYi given the marker scorexi . Under
the assumption thatYi givenxi can be modelled by a generalized linear model with distributions from the
exponential family—for example, Bernoulli for binary traits, normal distribution for continuous traits—
conditioning on the sufficient statistic for any nuisance parameter under the null-hypothesis, Lunettaet
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A multivariate family-based association test using generalized estimating equations 197

al. (2000) showed that the likelihood score is given by the statistic
∑n

i =1 ti xi whereti is an appropriate
coding of the phenotypeyi . When trios with a single affected offspring are given, settingti = 1 yields the
standard TDT proposed by Spielmanet al. (1993). When also unaffected offspring are sampled, then
coding affected offspring byyi = 1 and unaffected byyi = 0 and settingti = yi − K gives the
FBAT proposed by Whittaker and Lewis (1998) whereK is the population prevalence of the disease.
For quantitative phenotypesyi , we defineti = yi − y wherey is the sample mean and obtain so the
quantitative FBAT proposed by Rabinowitz (1997). Notice that settingti = 0 means that thei th offspring
does not contribute to the test statistic (see below).

The statistic
∑n

i =1 ti xi can then directly be utilized to construct a FBATχ2, ie

χ2 = (S− E(S))2

VS
∼ χ2

1 (1)

with the statisticS = ∑n
i =1 ti xi . Its expected value isE(S) = ∑n

i =1 ti E (xi |pi 1, pi 2 ) and its variance
is VS = ∑n

i =1 t2
i Var(xi |pi 1, pi 2 ). The mean and the variance of the marker,E (xi |pi 1, pi 2 ) and

Var(xi |pi 1, pi 2 ), are computed under the null-hypothesis conditioned on the parental genotypes.
When we observem phenotypes instead of only one phenotype per offspring, the univariateχ2 can

be used to test each phenotype individually, but it cannot test all phenotypes simultaneously. However,
its generalization to multivariate data is straightforward. We denote them-dimensional vector containing
all the phenotypic information for thei th offspring byyi = (yi 1, . . . , yim) and use the multivariate score
based on the generalized estimating equation (GEE) approach (Liang and Zeger, 1986; Heyde, 1997).
The GEE score is then given by the statisticS = ∑n

i =1 xi ∆i Var(ti )
−1ti , where Var(ti ) is the ‘working’

variance matrix for the phenotypes of thei th individual,∆i is a diagonal matrix that depends on the
model assumptions of the underlying GEE model andti is them-dimensional vector containing the coded
trait information: for example, for continuous phenotypesti = yi − y wherey is the vector of observed
sample means. With no missing phenotypic data and no covariates, the variance matrix ofti and∆i are
identical for all subjects underH0, ie Var(t) ≡ Var(ti ) and∆ ≡ ∆i . Thus, they vanish when the score
test is constructed under the null-hypothesis. Hence we define them-dimensional centered score vectorS̃
by

S̃ =
n∑

i =1

ti (xi − E (xi |pi 1, pi 2 )) . (2)

Further, note thatE
(

S̃
)

= 0. It is then easy to see that them× m variance matrix of the vector̃S is given

by

VS̃ = Var
(

S̃
)

=
n∑

i =1

ti tt
i Var(xi |pi 1, pi 2 ) . (3)

So the multivariate extension of the univariate FBAT can be defined by

χ2
FBAT−GEE = S̃t V−1

S̃
S̃. (4)

Asymptotic theory (Lange and Laird, 2002) therefore implies that the multivariate FBATχ2
FBAT−GEE is

asymptoticallyχ2-distributed,

χ2
FBAT−GEE ∼ χ2

k , (5)

where the degrees of freedomk � m are given by the rank of the variance matrixVS, i.e.k = rank (VS).
Unless there are linear dependences between them phenotypes,k = m. In general, since all phenotypes
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198 C. LANGE ET AL.

are incorporated simultaneously in the computation ofχ2
FBAT−GEE, the FBAT-GEE test uses more

information than individual FBATs and should therefore be more powerful.
The interpretation of a significant FBAT-GEE test result depends on assumptions about the underlying

genetic model. When one assumes that all phenotypes tested by FBAT-GEE are linked to an unobserved
trait/genetic mechanism which is influenced by the tested gene, a significant FBAT-GEE can be understood
as a significant result for the underlying trait/mechanism, which is expressed by the selected phenotypes.

When one assumes no shared genetic mechanism and the main purpose of FBAT-GEE is to reduce
the number of comparisons by testing jointly all phenotypes in one symptom group, a significant FBAT-
GEE result implies that one has to test all phenotypes of a significant group individually by FBATs to
detect the associated traits. Since the individual univariate FBATs are only applied when FBAT-GEE was
significant, the significance level of FBAT-GEE is maintained and is also the overall significance level.
For example, assume we want to test 30 phenotypes for association at an overall significance level ofα.
The traits can be grouped into 5 subgroups. Then using individual FBATs, the adjusted significance level
is α/30 (Bonferroni correction). However, when we first test the five groups by FBAT-GEE the adjusted
significance isα/5. Assuming that one group shows significance, we test all six phenotypes within this
group individually, each at an adjusted significance level ofα/6. Thus, the overall significance level and
the significance level in each step, FBAT-GEE and then univariate FBATs, isα.

When a multi-allelic marker locus is considered, the FBAT-GEE test extends naturally. The marker
informationxi becomes ap-dimensional vector giving marker information for multiple alleles,

S̃ =
n∑

i =1

ti ⊗ (xi − E (xi |pi 1, pi 2 )) ,

where⊗ denotes the Kronecker product. Note thatS̃ is now apm-dimensional vector. The variance ofS̃
is a pm× pm matrix given by

Var
(

S̃
)

=
n∑

i =1

{
ti tt

i

} ⊗ Var(xi |pi 1, pi 2 ) .

E (xi |pi 1, pi 2 ) and Var(xi |pi 1, pi 2 ) for the multiallelic case are given in Horvathet al. (2001). The
FBAT-GEE test for a multi-allelic locus can also be computed by (4) and has an asymptoticχ2-
distribution under the null-hypothesis where the degrees of freedom are given by the rank of Var(S̃).
Since Var(xi |pi 1, pi 2 ) generally has rankp − 1, Var(S̃) has rankm(p − 1) as long as all phenotypes
are linearly independent. It is important to note that for alternative genotypic codings, eg for dominant or
recessive diseases, Var(xi |pi 1, pi 2 ) may have rankp. Then Var(S̃) has rankmp.

The multivariate FBATχ2
FBAT−GEE and its validity do not depend upon any distributional assumption

for the phenotypes. This model-free character ofχ2
FBAT−GEE has the great advantage that it allows us

to test different trait types (e.g. binary phenotypes, continuous phenotypes, etc.) simultaneously without
having to specify a statistical model which describes the dependence of the multivariate phenotypic vector
yi on the marker scorexi .

Note thatχ2
FBAT−GEE as defined here is a valid test for the null-hypothesis of no linkage if siblings

are used, because transmissions of genes from parents to different offspring are independent when there
is no linkage. For the null-hypothesis of no association in the presence of linkage, transmissions are
correlated (Martinet al., 2000). However,χ2

FBAT−GEE can easily be modified to test for association
using the empirical variance proposed by Lakeet al. (2000). Generalization of FBAT-GEE for missing
parental information and/or for missing phenotypic information are also straightforward. When parental
genotypic information is missing, the conditional marker mean and variance under the null-hypothesis can
be computed by using the theory of family-based association tests (Rabinowitz and Laird, 2000; Lairdet
al., 2000).
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A multivariate family-based association test using generalized estimating equations 199

When phenotypic information is missing, we have the choice between two approaches, imputing the
missing phenotypes or using the GEE score of the ‘observed’ phenotypes. For example, the phenotypes
can be imputed by the observed phenotypic mean, which is equivalent to settingti j = 0 whenti j is defined
by ti j = yi j − y j . Note that this effectively means that thei th subject contributes no information to the test
statistic for thej th phenotype. A more sophisticated way would be to imputed the missing phenotypes
by the EM-algorithm (Dempsteret al. 1977), estimating the mean and variance matrix from the entire
sample. However, no matter which imputation technique we elect they all suffer from the conceptional
drawback of being computed under the null-hypothesis. The imputed phenotypes will therefore always
provide evidence for the null-hypothesis and will make the testχ2

FBAT−GEE more conservative. On the
other hand, applying imputation techniques under the alternative hypothesis would require making model
assumptions about the distribution of the phenotypes.

Alternatively, in presence of missing phenotypic information, the ‘observed’ GEE score can be
utilized. The GEE score is now given byS = ∑n

i =1 xi Ii ∆i Var(ti )
−1ti whereti is the vector of observed

traits.Ii is constructed by taking am×m identity matrix and removing the columns that correspond to the
missing phenotypic information. Since the matrices∆i and Var(ti ) are constructed by taking∆ and Var(t)
and removing the rows and columns that correspond to the missing observations, the dimensions of∆i

and Var(ti ) can vary between families. The variance matrix Var(ti ) and∆i do therefore not vanish in the
construction of score test statistic and have to be estimated when the GEE score is used for the computation
of the test statistic. We will apply both approaches of handling missing phenotypes, imputation techniques
and ‘observed’ GEE scores, to the asthma study.

Further, it is important to note thatχ2
FBAT−GEE is invariant under any linear transformation. Since

principal component analysis or canonical correlations are special cases of such linear transformations,
they can only be useful to reduce the number of phenotypes tested. Simply transforming phenotypes will
not have any effect either on thep-value or on the power.

3. DATA ANALYSIS : CHILDHOOD ASTHMA MANAGEMENT PROGRAM

We applied the FBAT-GEE approach to a collection of parent/child trios in the Childhood Asthma
Management Program (CAMP) Genetics Ancillary Study. The CAMP study is a clinical trial of 1041
asthmatic children who were randomized to three different asthma treatments (CAMP, 1999). Blood
samples for DNA were collected from 696 complete parent/child trios from 640 pedigrees in the CAMP
Ancillary Genetics Study. Baseline phenotype values, before randomization to treatment groups, were
used in this analysis. Genotyping was performed at a polymorphism located at amino acid 16 of the Beta-2
Adrenergic Receptor (B2AR) gene. Previous case/control association studies have reported an association
of the B2AR-16 polymorphism with various phenotypes including bronchodilator responsiveness,
nocturnal asthma, and pulmonary function (the forced expiratory volume at one second of a forced
expiratory maneuver, or FEV1) (Turkiet al., 1995; Martinezet al., 1997; Summerhillet al., 2000). Asthma
is a clinical condition often associated with an atopic predisposition; we have selected three phenotypes
related to the allergic response, including total eosinophil count, core number of positive allergy skin
tests to common environmental antigens, and total serum immunoglobulin E levels (expressed as log10).
Asthma is also associated with a variety of abnormalities in pulmonary function, including reductions
in forced expiratory flow (such as the FEV1), increased tendency for bronchoconstriction in response
to chemicals such as methacholine (expressed as the natural logarithm of the provocative concentration
causing a 20% reduction in FEV1 or ln(PC20)), and increased FEV1 following administration of
bronchodilator medications. We included three pulmonary function phenotypes, FEV1 (expressed as
percentage of predicted after bronchodilator treatment), ln(PC20) and bronchodilator responsiveness
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200 C. LANGE ET AL.

Table 1. Single phenotype analysis with separate FBATs at an overall significance level ofα =
0.05: significance level for the separate FBATs after Bonferroni-correction,αBonferroni = 0.008

Phenotype N Y
√

Var(Y) S E(S) Var(S)
√

FB AT p-Value
FEV1 439 103 12.3 268.1 −92.634 20417 2.525 0.012
ln(PC20) 439 0.052 1.17 4.764 −6.018 201.685 0.759 0.448
BD increase 379 25.3 26.5 684.7 185.549 93217 1.635 0.102

Eosinophil count 422 517 459 −3468 −8817 27615752 1.018 0.309
log(IgE) 434 2.63 0.675 5.643 −0.927 70.329 0.783 0.433
Number of positive 393 5.56 4.27 68.34 43.616 2545 0.490 0.624
skin tests

(expressed as change in FEV1 as a percentage of predicted FEV1 after bronchodilator treatment). A more
comprehensive analysis of associations between B2AR-16 and baseline phenotypes will be presented
separately.

We elected to test at significance levelα = 0.05 whether any of the phenotypes was associated with
the biallelic marker locus (B2AR-16). Missing phenotypic data was handled either by imputation or by
computing FBAT-GEE based on the ‘observed’ GEE scores where all traits were considered to be normally
distributed and the phenotypic means and variance matrix were estimated by their empirical estimators
based on the observed and imputed phenotypes (EM-algorithm). The phenotypes were imputed either by
settingti j = 0 or by the EM-algorithm (Dempsteret al.1977). Of the 696 families, 439 had at least one
heterozygous parents and thus contribute to the test statistic.

Initially, we tested for association between B2AR-16 with each phenotype separately, using the FBAT
program http://www.biostat.harvard.edu/∼fbat/default.html). Thep-values for family-based association
testing of each phenotype separately are shown in Table 1. Although there was some evidence for
association of B2AR-16 to FEV1, after Bonferroni correction none of the phenotypes were significant
(αBonferroni = 0.008).

Subsequently, we used FBAT-GEE, which is also implemented in the FBAT program, to test for
association within the two groups of phenotypes, atopy-related and pulmonary function phenotypes
(Table 2). The FBAT-GEE was computed three times: by settingti j = 0, imputing missing values by
the EM-algorithm and based on observed GEE scores; since two groups were tested, the significance
level wasαBonferroni = 0.025. For all approaches of handling missing phenotypic information at this
level of significance, a significant association was detected between B2AR-16 and pulmonary function
phenotypes; no significant association to atopy-related phenotypes was detected. The significantp-value
(0.012) obtained by FBAT-GEE based on ‘observed’ GEE scores was slightly smaller than thep-value
obtained by the imputation methods (0.021 and 0.018). Since the imputation methods used here assume
that the null-hypothesis is true, it is likely that FBAT-GEE based on such imputed values is conservative.
On the other hand, using the GEE scores does not require such assumption. Further studies are desirable
to assess the optimal strategy.

Since the pulmonary function phenotypes showed a significant FBAT-GEE result, we test the
phenotypes of this group individually. The overall significance levelα = 0.05 is maintained when the
individual FBAT for the three phenotypes achieve jointly a significance level ofα = 0.05. We therefore
use the Bonferroni correction again. The individual FBATs have to be significant atα = 0.05/3 = 0.016.
Thus, FEV1 reaches overall significance (Table 1). Because FEV1 is not highly correlated with other
pulmonary function phenotypes, we conclude that there is good evidence for an effect of B2AR-16 only
on FEV1, and no evidence for atopy phenotypes or other pulmonary function phenotypes.
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Table 2. Joint phenotype analysis with FBAT-GEE at significance level ofα = 0.025.
Missing phenotypes were handled either by mean imputation, ie ti j = 0, by imputation

based on EM or by ‘observed’ GEE scores

Method Group N FBAT-GEE df p-value
Mean imputation Pulmonary function phenotypes 439 9.73 3 0.021

Atopy-related phenotypes 434 2.16 3 0.54

Imputation based on EM Pulmonary function phenotypes 439 10.068 3 0.018
Atopy-related phenotypes 434 1.916 3 0.59

GEE score Pulmonary function phenotypes 439 10.95 3 0.012
Atopy-related phenotypes 434 0.849 3 0.84

4. POWER COMPARISON BETWEENFBAT-GEE,PERMUTATION TESTS AND MULTIPLE ADJUSTED

FBAT-TESTING

In this section we assess the power of the FBAT-GEE test by simulation experiments and compare it
with permutation tests and with multiple FBAT-testing where thep-value is adjusted either by Bonferroni
correction (BC) or by Hochberg (1988) correction (HC). The HC-method is a sequential version of the
BC-method. The scenarios addressed in this simulation experiment are motivated by the asthma study.
We assume that a sample of asthmatics and their parents are available; we observe the genotypes of all
family members. For each asthmatic, two groups of three normally distributed phenotypes are measured.
Wewant to test each group for a potential association with the marker locus.

We generate trios with a biallelic marker locus by drawing the parental genotypesp1 and p2 from
the Bionomial distributionBi(2, p) wherep is the allele frequency of the disease gene in the population.
Using Mendelian transmissions, the genotype of the individualxi is then simulated based on the parental
genotypes. The phenotypic vectorYi for each individual is obtained by generating samples from a
multivariate normal distribution, i.e.Yi ∼ N ((a1xi , a2xi , a3xi ) ,Σ), where aj , j = 1, 2, 3 are the

additive effects for thej th phenotype andΣ =
(
σ 2

i j

)
is the (3 × 3) variance matrix. The strength of

an additive effect relative to the phenotypic variance is expressed by theheritability h2
j (Falconer and

Mackay, 1997), which is is defined as the the proportion of phenotypic variation explained by the genetic
variation, ieh2

j = Var
(
aj Xi

)
/Var

(
Yi j

)
. This equation can be solved foraj and an analytical expression

for aj givenh2
j can be obtained,aj = σ j j

√
h j /2p (1 − p)

(
1 − h j

)
.

In the asthma study we analyzed two groups of phenotypes, pulmonary function phenotypes and atopy-
related phenotypes. The empirical correlation matrices of these groups are used in the simulation study
as correlation matrices for the phenotypes; these are given in Table 3. For simplicity, we assume the
variancesσ 2

i i = 1 and use the correlation matrices of those groups as variance matrices. We conduct the
first simulation study under the assumption that all three phenotypes of the pulmonary function group
are associated with the marker locus. We therefore set the heritability of all three phenotypes to 0.05, ie
h1 = h2 = h3 = 0.05, andΣ equal to the correlation matrixΣ1 of the pulmonary function phenotypes
(Table 3). We generaten = 300 trios where each offspring has three phenotypes.

Then a number of tests are applied. First, we compute FBAT-GEE for the first phenotype. For a
univariate phenotype, FBAT-GEE is identical to the continuous FBAT proposed by Rabinowitz (1997).
Then we compute FBAT-GEE for the first two phenotypes and finally FBAT-GEE is calculated for all
three phenotypes. All observed FBAT-GEE values are compared to the appropriate threshold values.
Then the same sets of phenotypes are tested for association by testing the phenotypes individually by
the univariate continuous FBAT (Rabinowitz, 1997) and comparing the observed test statistic values to
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Table 3. Power comparison: FBAT-GEE versus multiple testing by univariate FBATs and adjusting
either by Hochberg correction (HC) or by Bonferroni correction (BC). The sample size is 300 and the

significance levelα = 0.01

Correlation Allele frequency N f am Test m = 1 m = 2 m = 3
matrix p

Scenario I: All phenotypes are associated h = 0.05 h = 0.05 h = 0.05
with the marker locus

Σ1=



1.00 −0.03 0.10
−0.03 1.00 −0.12
0.10 −0.12 1.00


 0.3 199 FBAT-GEE 0.56 0.84 0.94

Permutation 0.57 0.71 0.82
FBAT & HC 0.56 0.73 0.81
FBAT & BC 0.56 0.72 0.79

0.1 98 FBAT-GEE 0.53 0.77 0.88
Permutation 0.54 0.73 0.79
FBAT & HC 0.53 0.68 0.75
FBAT & BC 0.53 0.66 0.74

0.05 54 FBAT-GEE 0.46 0.66 0.75
Permutation 0.45 0.64 0.68
FBAT & HC 0.46 0.60 0.65
FBAT & BC 0.46 0.57 0.63

Scenario II: Only the first phenotype is associated h = 0.05 h = 0.00 h = 0.00
with the marker locus

Σ2=



1.00 0.43 0.27
0.43 1.00 0.48
0.27 0.48 1.00


 0.3 199 FBAT-GEE 0.56 0.56 0.49

Permutation 0.56 0.49 0.45
FBAT & HC 0.56 0.47 0.41
FBAT & BC 0.56 0.47 0.41

0.1 98 FBAT-GEE 0.53 0.51 0.43
Permutation 0.52 0.43 0.39
FBAT & HC 0.53 0.43 0.37
FBAT & BC 0.53 0.43 0.37

0.05 54 FBAT-GEE 0.47 0.43 0.34
Permutation 0.48 0.40 0.33
FBAT & HC 0.47 0.36 0.30
FBAT & BC 0.47 0.36 0.30

Estimated power and significance levels are shown based on 1 000 000 replicates. ‘FBAT & BC’ denotes the
continuous FBAT by Rabinowitz (1997) adjusted by Bonferroni correction for multiple testing. ‘FBAT & HC’
denotes the continuous FBAT by Rabinowitz (1997) adjusted by Hochberg correction (1988) for multiple testing.
The number of informative families is given byN f am.

threshold values that have been adjusted either by HC or by BC. Further, a permutation test is computed
where the phenotypic vectors are kept fixed and the trio’s genotypes are randomly permuted. As for FBAT-
GEE, the permutation test was computed for one, two and three phenotypes. This procedure is repeated
for 106 replicates. The allele frequency is assumed to bep = 0.3, 0.1, 0.05. The significance level is
α = 0.01. The results are given in Table 3. Table 3 shows the estimated power for all FBAT-GEEs,
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Table 4. Estimated significance levels: FBAT-GEE versus multiple testing
by univariate FBATs and adjusting either by HC or by BC. The sample
size is 300 and the significance levelα = 0.01. Scenario: no phenotype

is associated with the marker locus

Allele frequency N f am Test m = 1 m = 2 m = 3
p h = 0.00 h = 0.00 h = 0.00

0.3 199 FBAT-GEE 0.010 0.0099 0.010
Permutation 0.012 0.013 0.011
FBAT & HC 0.011 0.010 0.010
FBAT & BC 0.010 0.0098 0.0097

0.1 98 FBAT-GEE 0.0093 0.0088 0.0084
Permutation 0.008 0.009 0.009
FBAT & HC 0.011 0.008 0.008
FBAT & BC 0.0093 0.0087 0.0084

0.05 54 FBAT-GEE 0.0087 0.0078 0.0070
Permutation 0.008 0.010 0.012
FBAT & HC 0.008 0.008 0.008
FBAT & BC 0.0087 0.0079 0.0075

Estimated power and significance levels are shown based on 1 000 000 replicates.
‘FBAT & BC’ denotes the continuous FBAT by Rabinowitz (1997) adjusted by
Bonferroni correction for multiple testing. ‘FBAT & HC’ denotes the continuous
FBAT by Rabinowitz (1997) adjusted by Hochberg correction (1988) for multiple
testing. The number of informative families is given byNfam.

permutation tests and the individual FBATs adjusted either by HC or BC. Further, we estimated the true
significance levels forα = 0.01 (Table 4).

The same simulation experiment is repeated for the second group of phenotypes of the asthma study.
For the atopy-related phenotypes, we assume that only the first phenotype is associated with marker locus,
while the other two phenotypes are not, i.e.h1 = 0.05,h2 = h3 = 0. The correlation matrix is now given
by Σ2 (Table 3). The estimated power for this scenario is shown in Table 3.

For both scenarios, Table 3 shows that FBAT-GEE is preferable to permutation tests and testing by
individual FBATs and adjusting either by HC or by BC. When all phenotypes are associated with the
marker locus, the power of FBAT-GEE increases much faster than that of the other tests. On the other hand,
when only the first phenotype is associated with the locus, the power of FBAT-GEE drops more slowly
than the power for the other tests as further unassociated phenotypes are added. The overall ranking of the
tests which can be observed in each simulation experiment is FBAT-GEE, permutations tests, individually
testing with HC and individually testing with BC. While FBAT-GEE performs considerably better than
permutation tests, permutation tests clearly outperform individually testing. However, HC does only a
little bit better than BC.

The empirical significance levels for multiple testing with HC or BC are very close to those of FBAT-
GEE. This suggests that the higher power of FBAT-GEE is due to the fact that FBAT-GEE considers
all phenotypes simultaneously rather than uses only the information of one phenotype at a time. This
property makes FBAT-GEE a promising test that has many applications to multivariate data, repeated
measures and longitudinal data. Table 3 also shows that FBAT-GEE and individual FBATs adjusted by
corrections become more and more conservative for smaller values ofp. In a total population sample a
smaller allele frequencyp is equivalent to a smaller number of informative families. Further, we observe in
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Table 4 that the estimated significance level for FBAT-GEE decreases when the number of phenotypesm
increases. This observation indicates that the convergence speed of FBAT-GEE towards its asymptotic
distribution depends on the number of phenotypes, ie the distribution of FBAT-GEE converges more
slowly for increasingm.

The permutation test is slightly anti-conservative. In addition, we note that applying the permutation
test is much more complex with multiple siblings, missing parents and/or phenotypes, etc or when linkage
is present.

5. DISCUSSION

In this paper we have presented a multivariate approach to transmission disequilibrium tests that allows
us to test several phenotypes simultaneously for linkage with one marker locus. Although different trait
types can be tested simultaneously, no assumptions about their distributions have to be made. Further,
various extensions of the FBAT-GEE approach are possible. Since we only have to know the marker mean
and variance under the null-hypothesis for the computation of the test statistic, the FBAT-GEE approach
can easily be adapted to scenarios with multiple offspring per family and missing parental information, and
testing for linkage disequilibrium under the assumption of linkage. When phenotypic data are missing the
FBAT-GEE approach can easily be extended either by imputation methods or by ‘observed’ GEE scores.

We have compared the power of FBAT-GEE, permutation tests and multiple testing with HC and BC
by simulation experiments for scenarios derived from the asthma data set. Under these scenarios FBAT-
GEE proved to be substantially more powerful than the other tests. We also repeated these simulations
for combinations of different trait types: for example, counts, binary outcomes and percentages. Thereby
we used the multivariate normal distribution to generate random numbers and then ‘discreteized’ the
outcomes. The results of these simulation studies suggest that the superiority of the FBAT-GEE over
the other tests decreases with the discreteness of the phenotypes. For example, while FBAT-GEE is
clearly more powerful for count and percentage variables, this advantage becomes less relevant for binary
outcome variables. Further simulation studies also supported the assumption that ‘observed’ GEE scores
are a more powerful way of handling missing phenotypic information than imputation methods.

We have applied this novel approach for inclusion of multiple phenotypes to a relevant example in
asthma genetics. For many genetic epidemiological studies, comprehensive phenotypic data is collected.
However, use of multiple phenotypes in independent statistical tests requires correction for the multiple
testing performed. Our proposed method provides a more efficient use of multiple phenotypes that does
not require costly corrections for multiple comparisons. Further study will be required to determine the
optimal approach to group phenotypes for such analyses. So far, our experience with real data sets is
that FBAT-GEE is more powerful than individual FBAT testing when the phenotypes can be grouped
into symptom groups with up to eight or nine phenotypes in each group: for example, here pulmonary
function phenotypes and atopy-related phenotypes. Then testing each group individually and adjusting
for multiple testing seems to be far more powerful than testing each phenotype individually (Demeo et al
(in preparation)). A GEE approach for population data is discussed in Lange and Whittaker (2002).
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