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SUMMARY

Studies of diagnostic accuracy require more sophisticated methods for their meta-analysis than studies of
therapeutic interventions. A number of different, and apparently divergent, methods for meta-analysis of
diagnostic studies have been proposed, including two alternative approaches that are statistically rigorous
and allow for between-study variability: the hierarchical summary receiver operating characteristic (ROC)
model (Rutter and Gatsonis, 2001) and bivariate random-effects meta-analysis (van Houwelingen and
others, 1993, 2002; Reitsma and others, 2005). We show that these two models are very closely related,
and define the circumstances in which they are identical. We discuss the different forms of summary model
output suggested by the two approaches, including summary ROC curves, summary points, confidence
regions, and prediction regions.

Keywords: Bivariate normal distribution; Diagnostic tests; Hierarchial models; HSROC model; Meta-analysis; ROC
analysis; Sensitivity and specificity.

1. INTRODUCTION

There is increasing interest in systematic reviews and meta-analyses of data from diagnostic accuracy
studies (Deeks, 2001; Deville and others, 2002; Bossuyt and others, 2003; Khan and others, 2003;
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240 R. M. HARBORD AND OTHERS

Whiting and others, 2004; Tatsioni and others, 2005; Gluud and Gluud, 2005). Typically, the data from
each primary study are summarized as a 2×2 table, based on dichotomized test result against true disease
status, from which familiar measures such as sensitivity and specificity can be derived.

Several statistical methods for meta-analysis of data from diagnostic test accuracy studies have been
proposed (Moses and others, 1993; Rutter and Gatsonis, 2001; Dukic and Gatsonis, 2003; Siadaty and
Shu, 2004; Reitsma and others, 2005). These methods reflect two important characteristics of such data.
First, a negative correlation between sensitivity and specificity is expected because of the trade-off be-
tween these measures as the test threshold varies (Moses and others, 1993; Deeks, 2001). Second, and in
contrast to meta-analysis of data from randomized controlled trials, substantial between-study heterogene-
ity is to be expected and must be incorporated in the models (Lijmer and others, 2002). The inferential
focus of these methods is also a matter of debate. Some authors propose estimating summary measures of
sensitivity and specificity, or prediction regions within which we may expect the results of a future study
to lie (Reitsma and others, 2005), while others suggest that in the presence of substantial heterogeneity,
the results of meta-analyses should be presented as summary receiver operating characteristic (SROC)
curves (Rutter and Gatsonis, 2001).

Littenberg and Moses (1993) (see also Moses and others, 1993) proposed a method of generating a
SROC curve using simple linear regression that has been frequently used. However, the assumptions of
simple linear regression are not met and the method is therefore approximate. There is also uncertainty as
to the most appropriate weighting of the regression (Walter, 2002; Rutter and Gatsonis, 2001).

Two statistically rigorous methods for the meta-analysis of data from diagnostic test accuracy studies
have been proposed (Reitsma and others, 2005; Rutter and Gatsonis, 2001) that overcome these prob-
lems but are necessarily more complex. In this paper, we review the characteristics of these methods. We
show that although these have been discussed as alternative ways to analyze such data, they are equiv-
alent in many circumstances and hence often lead to identical statistical inferences. Section 2 describes
the bivariate model, while Section 3 describes the hierarchical summary receiver operating characteristic
(HSROC) model. In Section 4, we explain the relationship between these two models. In Section 5, we
discuss the different focus of inference and presentation of model estimates suggested by the two parame-
terizations. A worked example is presented in Section 6, and the implications of the work are discussed in
Section 7.

2. THE BIVARIATE MODEL

The bivariate model is based on an approach to meta-analysis introduced by van Houwelingen and others
(1993) (see also van Houwelingen and others, 2002). It has recently been applied to meta-analysis of
diagnostic accuracy studies by Reitsma and others (2005).

Following Reitsma and others (2005), we define µAi as the logit-transformed sensitivity in study i ,
and µBi as the logit-transformed specificity. We use the letter µ where Reitsma and others (2005) used θ
to avoid a clash of notation with the HSROC model defined in Section 3. The bivariate model is a random-
effects model in which the logit transforms of the true sensitivity and true specificity in each study are
assumed to have a bivariate normal distribution across studies, thereby allowing for the possibility of
correlation between them (Reitsma and others, 2005):(

µAi

µBi

)
∼ N

((
µA

µB

)
, �AB

)
with �AB =

(
σ 2

A σAB

σAB σ 2
B

)
. (2.1)

Covariates that affect either sensitivity or specificity or both can be included in a natural way by replacing
one or both of the means µA and µB by linear predictors in the covariates. For example, for a single
covariate Z that may affect both sensitivity and specificity, we could replace µA by µA + νA Zi and µB

by µB + νB Zi .

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/2/239/230328 by guest on 20 M

arch 2024



Unification of models for diagnostic meta-analysis 241

3. THE HSROC MODEL

The HSROC model (Rutter and Gatsonis, 2001) was motivated by a model for ordinal regression
(McCullagh, 1980) that has been used to estimate a receiver operating characteristic (ROC) curve from
a single study with data available for multiple thresholds (Tosteson and Begg, 1988). The model is for-
mulated in terms of the probability πi j that a patient in study i with disease status j has a positive test
result, where j = 0 for a patient without the disease and j = 1 for a patient with the disease. In the usual
terminology of diagnostic accuracy studies, πi1 is the true-positive rate or sensitivity in study i , while πi0
is the false-positive rate, equal to 1 − specificity. The HSROC model is defined by separate equations
for within-study variation (Level I) and between-study variation (Level II). (The Bayesian formulation
originally presented by Rutter and Gatsonis (2001) requires an additional third level specifying the priors
for the model parameters.)

3.1 HSROC level I (within study) model

The Level I model for study i takes the form

logit(πi j ) = (θi + αi Xi j ) exp(−βXi j ), (3.1)

where Xi j is a dummy variable denoting the true disease status for a patient in study i with disease
status j . Rutter and Gatsonis (2001) chose to code Xi j = − 1

2 for those without disease ( j = 0) and
+ 1

2 for those with disease ( j = 1). Both θi and αi are allowed to vary between studies. Rutter and
Gatsonis (2001) refer to the θi as “cutpoint parameters” or “positivity criteria,” as they model the trade-
off between sensitivity and specificity in each study: true-positive rate (sensitivity) and false-positive rate
(1−specificity) both increase with increasing θi . The αi are “accuracy parameters,” as they measure the
difference between true-positive and false-positive fractions in each study. When β = 0, the diagnostic
odds ratio for each study does not depend on the cutpoint parameter θi , and αi is then the log of the
diagnostic odds ratio. β is a “scale parameter” or “shape parameter” which models possible asymmetry
in the ROC curve by allowing true-positive and false-positive fractions to increase at different rates as
θi increases. When β �= 0, the diagnostic odds ratio varies with θi even if the accuracy parameter αi is
held fixed. β is assumed to be constant across studies, although this assumption can be relaxed somewhat,
for example to allow a different value of β in each of several groups of studies (Rutter and Gatsonis,
2001).

3.2 HSROC level II (between study) model

Level II models the variation of the parameters θi and αi between studies. In the simplest case, θi and αi

are assumed to have independent Normal distributions, with θi ∼ N(�, σ 2
θ ) and αi ∼ N(	, σ 2

α ).
More generally, the means of the two distributions may be determined by linear functions of study-
level covariates. For example, with a single covariate Z that affects both the cutpoint and accuracy
parameters,

θi ∼ N(� + γ Zi , σ
2
θ ) (3.2)

αi ∼ N(	 + λZi , σ
2
α ), (3.3)

where the coefficients γ and λ express the effect of the covariate Z on the cutpoint and accuracy pa-
rameters, respectively. This model may be extended to include more than one covariate, or to allow the
covariates that affect the accuracy parameters to differ from those that affect the cutpoint parameters.
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242 R. M. HARBORD AND OTHERS

4. RELATIONS BETWEEN THE TWO MODELS

We now clarify the relationship between the bivariate and HSROC models. We shall start from the HSROC
model. For brevity, first let b = exp(β/2). We can reexpress level I of the HSROC model by splitting (3.1)
into separate equations for those with and without disease:

logit(πi1) = b−1
(

θi + 1

2
αi

)
(4.1)

logit(πi0) = b

(
θi − 1

2
αi

)
. (4.2)

The bivariate model is written in terms of µAi and µBi , the logit transforms of sensitivity and speci-
ficity in study i . In the notation introduced in Section 3, the sensitivity in study i is πi1 and the specificity
is 1 − πi0, so

µAi = logit(πi1) (4.3)

µBi = logit(1 − πi0) = −logit(πi0). (4.4)

We can therefore relate the random variables that form the basis of the two models:

µAi = b−1
(

θi + 1

2
αi

)
(4.5)

µBi = −b

(
θi − 1

2
αi

)
. (4.6)

This pair of equations tells us that µAi and µBi are linear combinations of two random variables, θi

and αi , which the HSROC model assumes to have independent normal distributions (conditional on any
covariates). Any pair of linear combinations of random variables with normal distributions has a bivariate
normal distribution (see, e.g. Dudewicz and Mishra, 1988, p. 242). Therefore, the HSROC model implies
that the joint distribution of µAi and µBi is bivariate normal. So the HSROC model is precisely equivalent
to the bivariate model. We give explicit expressions for the relationships between their parameters in the
subsections that follow.

We can express the relationship more concisely using matrix notation. We may write (4.5) and (4.6)
in a single matrix equation as(

µAi

µBi

)
= S−1

(
θi

αi

)
, where S−1 =

(
b−1 1

2 b−1

−b 1
2 b

)
. (4.7)

Inverting this, (
θi

αi

)
= S

(
µAi

µBi

)
, where S =

(
1
2 b − 1

2 b−1

b b−1

)
. (4.8)

S is then the transformation matrix associated with the change from the bivariate model coordinates (logit-
transformed sensitivity and specificity) to the HSROC model coordinates (cutpoint and accuracy parame-
ters). Note that S is not orthogonal (S−1 �= ST). As illustrated in Section 6, it follows that when plotted in
bivariate model space (logit-ROC space), the axes corresponding to the coordinates of the HSROC model
are not perpendicular to each other.
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Unification of models for diagnostic meta-analysis 243

4.1 Relation between parameters of models with no covariates

We can then express the relationship between the parameters of the two models without covariates in
terms of the transformation matrix S by taking the expectation and variance of both sides of (4.8):(

�

	

)
= S

(
µA

µB

)
(4.9)

(
σ 2

θ 0

0 σ 2
α

)
= S�ABST. (4.10)

The assumption of the HSROC model that θi and αi are uncorrelated, i.e. the off-diagonal elements
above are zero, fixes the value of b and hence the transformation matrix S. So S is a non-orthogonal
transformation that diagonalizes the variance–covariance matrix of the bivariate model. On expanding the
right-hand side of (4.10), we find that these off-diagonal elements are zero if and only if b = √

σB/σA or,
equivalently,

β = log(σB/σA). (4.11)

Thus, the shape parameter (β) of the HSROC model is determined solely by the ratio of the variances of
logit sensitivity and logit specificity in the bivariate model, and, perhaps surprisingly, is unrelated to their
correlation. Equations (4.9) and (4.10) then allow us to relate the other parameters of the HSROC model
to those of the bivariate model:

� = 1

2
{(σB/σA)1/2µA − (σA/σB)1/2µB} (4.12)

	 = (σB/σA)1/2µA + (σA/σB)1/2µB (4.13)

σ 2
θ = 1

2
(σAσB − σAB) (4.14)

σ 2
α = 2(σAσB + σAB). (4.15)

We can also invert these equations to give the five parameters of the bivariate model in terms of those
of the HSROC model:

µA = b−1
(

� + 1

2
	

)
(4.16)

µB = −b

(
� − 1

2
	

)
(4.17)

σ 2
A = b−2

(
σ 2

θ + 1

4
σ 2

α

)
(4.18)

σ 2
B = b2

(
σ 2

θ + 1

4
σ 2

α

)
(4.19)

σAB = −
(

σ 2
θ − 1

4
σ 2

α

)
, (4.20)

where b = exp(β/2), as defined above.
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244 R. M. HARBORD AND OTHERS

4.2 Relations between parameters of models with covariates

We now move on to examine the relationship between the models when covariates are included. If the
bivariate model is extended to include a single covariate Z that affects both the sensitivity and specificity,
(4.10) is unchanged, while (4.9) for the expectation of (4.8) becomes

E

(
θi

αi

)
= S

(
µA + νA Zi

µB + νB Zi

)
=

(
1
2{bµA − b−1µB + Zi (bνA − b−1νB)}

bµA + b−1µB + Zi (bνA + b−1νB)

)
. (4.21)

This is of the form

E

(
θi

αi

)
=

(
� + γ Zi

	 + λZi

)
. (4.22)

The extension to more than one covariate, with each covariate affecting both accuracy and cutpoint
parameters, is straightforward. Therefore, a bivariate model in which one or more covariates affect both
sensitivity and specificity is equivalent to an HSROC model in which the same covariates are allowed to
affect both accuracy and cutpoint parameters.

However, a bivariate model in which different covariates are allowed to affect sensitivity from speci-
ficity, or covariates are included for only sensitivity or only specificity, will not be equivalent to an HSROC
model including covariates, unless constraints are imposed on the relationship between the coefficients of
the covariates in the HSROC model. The converse is also true.

5. FOCUS OF INFERENCE AND MODEL OUTPUTS

The two approaches lead to different forms of model output appearing more natural.

5.1 HSROC model

The HSROC model gives rise to a SROC curve by allowing the threshold parameter θi to vary while
holding the accuracy parameter αi fixed at its mean 	. For the model without covariates, the expected
sensitivity for a given specificity is then given by (Rutter and Gatsonis, 2001; Macaskill, 2004)

logit(Sensitivity) = 	 eβ/2 − eβ logit(Specificity). (5.1)

Rutter and Gatsonis (2001) suggest that the curve is restricted to the observed range of estimated speci-
ficities of the studies to discourage extrapolation beyond the data. If β = 0, the curve is symmetric about
the “sensitivity = specificity” diagonal. This SROC curve does not depict the uncertainty in any of the
parameter estimates and depicts the variability in threshold but not in accuracy.

5.2 Bivariate model

As Reitsma and others (2005) suggest, confidence and prediction regions in ROC space can be constructed
using the estimates from the bivariate model. As sensitivity and specificity may be highly correlated,
separate confidence intervals for the mean logit sensitivity µA and mean logit specificity µB may be
misleading. It is preferable to use an elliptical joint confidence region for both parameters. Such an ellipse
is most easily generated using a parametric representation (Douglas, 1993):

µA = µ̂A + sAc cos t (5.2)

µB = µ̂B + sBc cos(t + arccos r), (5.3)
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Unification of models for diagnostic meta-analysis 245

where sA and sB are the estimated standard errors of µ̂A and µ̂B , r is the estimate of their correlation, and
varying t from 0 to 2π generates the boundary of the ellipse. The constant c has been called the boundary
constant of the ellipse (Alexandersson, 2004); asymptotically, to give a 100(1 − α%) confidence region,

c =
√

χ2
2;α , where χ2

2;α is the upper 100α% point of the χ2 distribution with two degrees of freedom.

When the number of studies is small, it may be preferable to use a more conservative approximate confi-
dence region given by c = √

2 f2,n−2;α , where n is the number of studies and f2,n−2;α is the upper 100α%
point of the F distribution with degrees of freedom 2 and n − 2 (Douglas, 1993; Chew, 1966). Such an
ellipse in logit-ROC space can then be back-transformed to conventional ROC space to give a confidence
region for the summary operating point.

It is also possible to construct a prediction region giving the region which has a given probability (e.g.
95%) of including the “true” sensitivity and specificity of a future study. The covariance matrix for the
true logit sensitivity and logit specificity in a future study is

�AB + Var

(
µ̂A

µ̂B

)
. (5.4)

In practice, both terms must be estimated by fitting the model to the data. The parameters sA, sB , and r in
(5.2) and (5.3) can then be replaced by the corresponding quantities derived from this covariance matrix to
give the prediction ellipse in logit-ROC space. Again, this can be back-transformed to a prediction region
for the true sensitivity and specificity of a future study in conventional ROC space.

6. EXAMPLE: LYMPHANGIOGRAPHY FOR DIAGNOSIS OF LYMPH NODE METASTASIS

As an example, we shall apply both methods to data on 17 studies of lymphangiography for the di-
agnosis of lymph node metastasis in women with cervical cancer, one of three imaging techniques in
the meta-analysis of Scheidler and others (1997) which has been much used as an example data set for
methodological papers on diagnostic meta-analysis (Rutter and Gatsonis, 2001; Macaskill, 2004; Reitsma
and others, 2005). A SROC plot showing the estimates of sensitivity and specificity from the individual
studies is shown in Figure 1.

We fitted both the bivariate and the HSROC models using the NLMIXED procedure in the statistical
software package SAS (SAS Institute Inc., 2003), using code similar to that given by Macaskill (2004)
and available from the authors on request. Note that our results differ slightly from those in Reitsma and
others (2005) as they use empirical logit transforms and their standard errors followed by the MIXED
procedure in SAS, where we choose to model the binomial error structure directly using the NLMIXED
procedure.

Table 1 shows the parameter estimates obtained for both models, and the result of applying (4.11)–
(4.20) to transform estimates from the HSROC model to the corresponding parameters of the bivariate
model and vice versa. The standard errors of the transformed estimates were computed by the delta
method using the ESTIMATE statement of the NLMIXED procedure. As can be seen, the results are
virtually identical. (The standard errors are identical in theory due to the close relationship between the
delta method and maximum likelihood; Cox, 1998; Cox and Hinkley, 1974, Exercise 4.15.) By taking the
inverse logit transforms of µA and µB , respectively, and assuming their estimates have a normal distribu-
tion, the summary estimate of sensitivity is found to be 0.67 (95% CI, 0.60–0.74) and that of specificity
is 0.84 (95% CI, 0.76–0.89). In this example, σAB is estimated to be positive, though with large standard
error. This implies a positive correlation between sensitivity and specificity across the studies, not the neg-
ative correlation that would be expected if the between-study heterogeneity was due mainly to variation
in threshold.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/2/239/230328 by guest on 20 M

arch 2024



246 R. M. HARBORD AND OTHERS

Fig. 1. SROC plot for the data of Scheidler and others (1997) on lymph node metastasis for diagnosis of cervical
cancer. The area of the circles are in proportion to the number of patients in each study.

Table 1. Results of fitting the bivariate and HSROC models to the lymphangiography data

Parameter Estimate (SE) from bivariate model Result of applying (4.16)–(4.20)
to HSROC estimates below

µA 0.7266 (0.1545) 0.7266 (0.1545)
µB 1.6390 (0.2505) 1.6390 (0.2506)

σ 2
A 0.1250 (0.1307) 0.1250 (0.1307)

σ 2
B 0.8233 (0.4056) 0.8236 (0.4058)

σ 2
AB 0.0766 (0.1470) 0.0765 (0.1470)

Estimate (SE) from HSROC model Result of applying (4.12)–(4.15)
to bivariate estimates above

� 0.0706 (0.3271) 0.0706 (0.3271)
	 2.1872 (0.3087) 2.1871 (0.3087)
β 0.9427 (0.5764) 0.9427 (0.5765)
σ 2
α 0.7948 (0.5115) 0.7947 (0.5115)

σ 2
θ 0.1222 (0.1083) 0.1221 (0.1083)

SE, standard error.

Figure 2 shows the 95% confidence region for the summary operating point and a 95% prediction
region for the true operating point in a single future study in both logit-transformed ROC space (left
panel) and back-transformed to conventional ROC space (right panel). The prediction region covers a
greater range of specificity than sensitivity, in contrast to the estimates from the separate studies shown
in the SROC plot in Figure 1, which exhibit more variation in estimated sensitivity than specificity. This
is due to the fact that most of the studies had a considerably larger number of patients with negative
results on the reference test than positive results, leading to greater sampling variability in the estimates
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Unification of models for diagnostic meta-analysis 247

Fig. 2. Summary points, lines, and regions in logit-transformed ROC space (left) and conventional ROC space (right).
Filled circle: summary point. Solid line: SROC curve. Dotted line: boundary of the confidence region for the summary
point. Dashed line: boundary of prediction region. The left-hand panel also shows the HSROC model coordinate axes
in logit-transformed ROC space. Note that these axes do not align with the major or minor axes of the ellipse.

of sensitivity than specificity. The prediction region is for the true sensitivity and specificity in a future
study, not the estimated values.

Also shown in Figure 2 is the SROC curve (a straight line in logit-transformed ROC space). Note
that the SROC curve takes a conventional shape despite the positive estimate of the correlation between
sensitivity and specificity. The left-hand panel also shows the HSROC coordinate axes in logit-transformed
ROC space. Note that these axes do not align with the major or minor axes of the ellipse. The θ axis is
parallel to the ROC curve, while its horizontal reflection is parallel to the α axis. The method of Littenberg
and Moses (1993) (using unweighted linear regression) gives a curve similar to, but slightly above, the
HSROC curve, as shown in Macaskill (2004).

7. DISCUSSION

We have shown that the HSROC model and the bivariate random-effects model for meta-analysis of di-
agnostic accuracy studies are very closely related, and in common situations identical. In the absence of
study-level covariates, they are different parameterizations of the same model. The bivariate model allows
inclusion of covariates that affect sensitivity or specificity or both, while the HSROC model allows co-
variates that affect accuracy or threshold parameters or both. An HSROC model that allows one or more
covariates to affect both accuracy and threshold parameters is equivalent to a bivariate model that allows
the same covariates to affect both sensitivity and specificity. However, the HSROC model can be more
easily extended to include a covariate to affect the degree of asymmetry of the SROC curve.

The models may differ in the options for introducing greater model parsimony by dropping or com-
bining parameters: The HSROC framework allows the analyst to drop the random effect for the accuracy
parameter and assume this is fixed across all studies, and hence that only the threshold parameter varies
between studies. This corresponds to perfect negative correlation between the logit transforms of sensi-
tivity and specificity in the bivariate model (σAB = −σAσB). The confidence and prediction regions then
collapse to lie along the SROC curve. The HSROC framework also allows the assumption of a symmetric

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/2/239/230328 by guest on 20 M

arch 2024



248 R. M. HARBORD AND OTHERS

SROC curve with constant diagnostic odds ratio by setting β = 0, which in the bivariate model corre-
sponds to equal variances of logit sensitivity and logit specificity (σ 2

A = σ 2
B). The ability to enforce such

constraints on bivariate model parameters may vary between software packages. By contrast, it does not
appear natural to set any of the parameters of the bivariate model to zero. One practical advantage of the
bivariate model is that it can be fitted in a wider range of software, for example MLwiN, SAS, or the
Stata package “gllamm” (Rabe-Hesketh and others, 2004), whereas the HSROC model is at present only
estimable using WinBUGS or the NLMIXED procedure in SAS.

As we have seen, the different parameterizations of the HSROC and bivariate models arise from dif-
ferent ideas of the most appropriate meta-analytic summaries of the results of diagnostic test accuracy
studies, and have primarily been used to produce these chosen summaries. The HSROC parameterization
naturally leads to a SROC curve when the threshold parameter θ is allowed to vary between studies but
the accuracy parameter α is fixed at its mean. This may be reasonable when there is little or no detectable
heterogeneity in the accuracy parameter, i.e. σ 2

α is estimated to be close to zero, or when there is con-
siderably greater variability in threshold than in accuracy. The bivariate model parameterization naturally
leads to a summary operating point, i.e. a summary sensitivity and specificity, together with confidence
intervals for each or a joint confidence region for both together. When there is a considerable degree of
between-study heterogeneity, as is common in meta-analysis of diagnostic accuracy studies, a prediction
region may be preferable to a confidence region.

In our example in Section 6, fitting both models to the same data gave near-identical results in agree-
ment with the formulae derived in Section 4.1, when both models were fitted using the NLMIXED pro-
cedure in SAS. However, such close agreement may not always be found in practice, particularly if the
models are fitted using different approaches in different software. Rutter and Gatsonis (2001) originally
proposed fitting the HSROC model using a Bayesian Markov chain Monte-Carlo method. Unlike maxi-
mum likelihood estimates, Bayesian posterior means or medians are not invariant under nonlinear transfor-
mations such as those in Section 4.1. Reitsma and others (2005) fit the bivariate model using the MIXED
procedure in SAS, which, unlike the NLMIXED procedure, requires first calculating empirical estimates
of the logit transforms of sensitivity and specificity and their standard errors, treating the latter as fixed
and approximating the within-study variability of the logits by a normal distribution. This approach is less
computationally demanding but involves some degree of approximation when the study sizes are small.
In addition, regardless of the method of estimation, there is typically little information on the covariance
parameter σAB of the bivariate model unless there are many studies of reasonable size with consider-
able variation in sensitivity and specificity between them. Its estimation may therefore prove troublesome
(R. Riley and others, in preparation).

Another reason for apparent discrepancies between results in previous publications is that when fitting
models to the data of Scheidler and others (1997), authors have made different assumptions about the
equality of parameters between the three imaging techniques assessed, of which for simplicity we have
only considered one, lymphangiography, in the example here. Rutter and Gatsonis (2001) allowed all
five parameters of the HSROC model to differ between the three imaging techniques. Macaskill (2004)
assumed that the two variance parameters σ 2

α and σ 2
θ were the same while the other three parameters 	,

�, and β differed. Reitsma and others (2005) estimated a bivariate model in which the three variance–
covariance parameters σA, σB , and σAB are the same for the three imaging techniques and the two location
parameters µA and µB differ, thereby constraining the three SROC curves to have the same degree of
asymmetry.

It may initially seem surprising that (4.11) for β, the shape parameter of the HSROC model, does
not involve the covariance σAB of the bivariate model but only the ratio of the variances. In fact, σAB

only enters (4.14) and (4.15) for the variances of the HSROC parameters. It follows that the equation
for the SROC curve given by the HSROC model does not require this covariance. It is therefore possible
to use (4.11), (4.13), and (5.1) to estimate the equation of the SROC curve from separate conventional
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“univariate” random-effects meta-analyses of logit-transformed sensitivity and logit-transformed speci-
ficity. These could be performed using any of the widely available packages for random-effects meta-
analysis. The estimates obtained by such an approach will not be identical to those from the bivariate
model as joint marginal normality of two random variables does not imply they have a bivariate normal
distribution. However, if the bivariate normal model does hold, separate univariate analyses should give
consistent estimates of the means and variances, with only a slight loss in efficiency (Riley and others,
2006). Separate univariate analyses may therefore provide an alternative to the method of Littenberg and
Moses (1993) as a way of generating a SROC curve using widely available algorithms. Separate univariate
analyses may also be useful in providing starting values for the iterative procedures required to fit either
the bivariate or the HSROC models, which may aid convergence.

There is empirical evidence that aspects of the design and conduct of diagnostic accuracy studies can
lead to bias or increased variation in their results. Exploration of potential sources of heterogeneity is
therefore a crucial component of systematic reviews of such studies. Sources of between-study hetero-
geneity may include differences in patient selection and clinical setting, disease severity, specifics of the
index and reference tests, and interobserver variability (Lijmer and others, 1999; Whiting and others,
2004). The expected effect of a covariate on test performance may lead to a preference for one of the two
parameterizations implied by the HSROC and bivariate models. For example, “spectrum bias,” in which
the subjects included in a study are not representative of the patients who will receive the test in practice
(Whiting and others, 2003), might be expected to affect test accuracy rather than threshold, and might
therefore be most appropriately investigated using the HSROC approach. Conversely, between-study vari-
ation in disease severity will affect sensitivity but not specificity, leading to a preference for the bivariate
approach. For most study characteristics, however, there are few a priori reasons to prefer one approach
over the other; further empirical research on this issue is needed.

The methods explored in this paper assume that only summary data from each study are available in
the form of a 2 × 2 table. Meta-analysis of individual patient data may offer particular advantages for
diagnostic research (Khan and others, 2003). It would allow differences in patient spectra to be properly
accounted for, and enable assessment of the additional information provided by a test above that already
known from patient history and clinical examination. For test results that are originally numerical or
ordered categorical, it would also capture within-study information about the ROC curve that is lost when
a particular threshold is chosen and the results collapsed into a summary 2 × 2 table.

In summary, we have demonstrated that the HSROC and bivariate models are very closely related and
often identical. The parameter estimates from either model can be used to produce a summary operating
point, an SROC curve, confidence regions, or prediction regions. The choice between these parameteriza-
tions depends partly on the degrees of and reasons for between-study heterogeneity. Empirical evidence
about this would be useful in guiding analysts.
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