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Molecular biology of pain 

R. MUNGLANI AND S. P. HUNT

Noxious stimulation is followed by a rapid change in 
gene expression within the post-synaptic neurones of 
the dorsal horn of the spinal cord. These post- 
synaptic events are detectable for several hours after 
stimulation and are thought initially to reflect the 
direct activation of post-synaptic neurones by in- 
coming sensory afferents. In contrast, non-noxious 
stimulation has only a very limited effect on gene 
transcription suggesting that it is the incoming un- 
myelinated, polymodal nociceptor C-fibres and the 
small group of small diameter myelinated A� 
nociceptors that mediate the central effects on gene 
transcription. As the C-fibres, in particular, are 
highly topographically organized it follows that new 
gene expression in cord neurones is tightly linked to 
the peripheral site of stimulation and indeed the type 
and location of neurones within the dorsal horn are 
predictably related to the nature of the tissue which 
is stimulated—for example, skin, muscle or viscera. 

This review focuses on the expression of the 
immediate early gene (IEG) c-fos [16], which appears 
rapidly within the spinal cord after noxious stimu- 
lation. This gene codes for a protein (Fos) which 
forms part of the AP1 transcription factor complex 
[14, 24, 64] which may, in turn, control the expression 
of other genes, the products of which could form the 
substrate for long-term changes in neuronal ex- 
citability. We will attempt to relate Fos protein 
expression to possible changes in the processing of 
incoming sensory information. 

C-fos and c-jun were originally described as a class 
of genes rapidly and transiently expressed in cells 
after various forms of stimulation and hence the 
name “immediate early genes” [15]. In the central 
nervous system the IEG c-fos and c-jun [7, 62] are 
expressed after only specific types of stimulation, 
some of which are outlined below [28, 44, 79, 81]. 
The events from cell surface stimulation leading to 
IEG expression in the nucleus are complex and 
involve multiple second messenger pathways. The 
details of these pathways have been described 
elsewhere [8, 22, 36, 37, 48, 58] and will not be 
specifically addressed here, but in general those 
neurotransmitters associated with the processing of 
nociceptive information, such as glutamate and 
substance P, increase the concentration of Ca2� in the 
post-synaptic neurones leading to c-fos activation 
[19, 66]. 
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FOS EXPRESSION IN THE SPINAL CORD 

In the following section we will consider two 
hypotheses: (a) that Fos expression is a useful 
marker of the effect of peripheral noxious stimulation 
on post-synaptic spinal cord neurones [11, 63]; (b) 
that Fos expression may be important to the 
development of a pain state, as part of the adaptive 
response of the spinal cord to continuous or 
subsequent nociceptive input, or both. 

Fos as a marker of noxious stimulation 

Minutes after peripheral noxious stimulation, there 
is rapid expression of c-fos mRNA in post-synaptic 
dorsal horn neurones of the spinal cord. Within 
1–2 h of transcription the protein product of the 
gene, Fos, can also be found in these same neurones 
[28]. Protein synthesis inhibitors have no effect on 
the initial production of c-fos mRNA indicating that 
the pathways leading to transcription are already in 
a state of readiness to respond and do not require 
other proteins to be synthesized first [65]. Fos- 
positive neurones are restricted to laminae 1 and 2 of 
the dorsal horn with some labelling in lamina 5. 
Laminae 1, 2 and 5 are known to receive input from 
the unmyelinated C- and A�-fibres which are known 
to respond to noxious stimulation. To achieve Fos 
expression in these superficial laminae of the spinal 
cord it is essential to use noxious stimulation. Non- 
noxious stimulation is largely ineffective in inducing 
Fos protein expression. No Fos expression is seen in 
neurones of the dorsal column nuclei, ventral horn 
or, importantly, in the stimulated dorsal root 
ganglion cells themselves. Thus only a subset of 
post-synaptic neurones express Fos after sensory 
stimulation. 

EFFECT OF ANALGESIC AGENTS ON FOS EXPRESSION IN 

ACUTE PAIN 

Williams and colleagues extended these original 
observations on the induction of Fos protein in 
neurones of the spinal cord in rats [75–79]. In one set 
of experiments, under barbiturate anaesthesia, Fos 
protein appeared in laminae 1–2 of the ipsilateral 
lumbar spinal cord within 30 min of noxious thermal 
stimulation to one paw, peaking at 2 h. However 
another peak of Fos expression was seen within the 
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deep laminae (5–10), commencing at 8 h, and peaking 
at 16 h, this “second wave” of labelling started 
ipsilaterally in the spinal cord and spread to become 
bilateral (see fig. 2). 

The activation of neurones in the deeper laminae 
of the spinal cord is unlikely to be the result of a 
monosynaptic event. The initial thermal stimulation 
at 52 °C stimulates small diameter sensory fibres 
within the sciatic nerve which terminate in laminae 
1, 2 and 5. Fos-positive neurones were found in 
other laminae both ipsilaterally and contralaterally 
suggesting a polysynaptic mechanism. The first 
“wave” of Fos expression is known to be dependent 
on input from the sciatic nerve, because pre-emptive 
local anaesthetic block will abolish all Fos staining in 
the area of the dorsal horn corresponding to the 
innervation of the sciatic nerve [75]. When a local 
anaesthetic block of the ipsilateral sciatic nerve was 
performed 1 h after thermal stimulation, there was 
still a second-wave response; in fact there was some 
evidence that the number of Fos-positive cells may 
have actually slightly increased (see fig. 3). If instead 

of blocking the sciatic nerve, the animals were kept 
under continuous anaesthesia after the noxious 
thermal stimulus there were fewer Fos-positive 
neurones in the spinal cord than in those animals 
allowed to recover from anaesthesia after thermal 
injury. The combination of the two treatments (post- 
injury local anaesthetic block and continuous general 
anaesthesia) resulted in a similar number and pattern 
of Fos-positive cells in the spinal cord to those 
animals which had received only the general an- 
aesthesia. 

Comment 

These experiments suggest that if Fos is taken to be 
a reliable index of the efficacy of noxious stimulation 
then analgesia may only be effective when given just 
before, during or immediately after stimulation. It 
also suggests that Fos expression could be used to 
monitor the effectiveness of pre-emptive analgesia in 
animal models. 

 

Figure 1 A 40 �m thick section of spinal cord at L4 immunostained for Fos protein 2 h after stimulation of the 
left hind paw of an anaesthetized rat by immersion for 20 s in gently stirring water at 52 °C. Fos expression is 
predominant in laminae 1 and 2 as shown by the arrows. See also fig. 4. Bar � 100 �m. From Williams and 
colleagues [78] with permission. 

 

Figure 2 Fos cell counts after thermal stimulation in 
superficial (!!!!, laminae 1–2) and deep laminae ("""", laminae 
3–10). This figure shows a superficial “wave” of Fos at 2 h and 
a second “wave” of Fos peaking at 16 h more deeply. For 
clarity only the response of the ipsilateral horn is shown and 
the standard errors of the mean have been omitted. After 4 h 
the Fos expression becomes bilateral deeply but there is little or 
no spread superficially. Adapted from Williams and colleagues 
[78]. 

Figure 3 Fos-positive neurones per section of rat lumbar cord 
8 h after heat stimulation of the left hind paw, with and 
without local anaesthetic (LA) block of the sciatic nerve, 
continuous general anaesthesia (GA), or both (LA � GA). Local 
anaesthesia block of the peripheral nerve does not suppress the 
Fos response at 8 h, indicating that input from the periphery is 
not required for continued expression. General anaesthesia does 
reduce the later Fos expression, presumably by activating 
inhibitory mechanisms in the spinal cord. For clarity the 
standard errors of the mean have been omitted. Adapted from 
Williams and colleagues [78]. 
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EFFECTS OF OTHER ANALGESIC AGENTS ON FOS 
EXPRESSION IN ACUTE PAIN 

Opiates given pre-emptively (i.e. before the injury) 
reduce the extent of Fos expression in a dose- 
dependent manner [40, 59]; though, interestingly, 
even with very high doses of systemic morphine, 
there is still substantial Fos expression indicating 
that substantial nociceptive traffic has occurred. In 
contrast, it has been shown that morphine given after 
the injury, as with post-injury local anaesthetic 
block, is ineffective in preventing Fos expression 
[74]. 

Since the neurotransmitter glutamate acting at the 
NMDA (N-methyl-D-aspartate) receptor, plays a 
central role in afferent transmission and in the 
pathogenesis of pain states [18], one might expect a 
reduction in Fos expression in the spinal cord with 
NMDA antagonism. Interestingly, this only seems 
to be true in pain models where there is an intense 
afferent nociceptive barrage (presumably involving 
large amounts of glutamate release), such as after 
formalin injection into the paw [32]. In some other 
pain states, such as after thermal injury, NMDA 
receptor antagonists seem to be less effective in 
suppressing Fos expression [73, 81]. Alpha2 agonists 
have also been shown to be potent analgesics [55, 56], 
and it has been shown that the alpha2 agonist 
medetomidine strongly suppressed spinal cord Fos 
expression after noxious stimulation when given 
12 min before the stimulation. Interestingly, how- 
ever, medetomidine had no effect if it was given only 
5 min beforehand [57]. 

USEFULNESS OF FOS EXPRESSION AS A LONG-TERM 

MARKER OF NOCICEPTION IN CHRONIC PAIN MODELS 

Inflammatory pain models 

Fos expression in the spinal cord has been described 
in a rat model of arthritis [1–6]. In this model, 
arthritis is induced by the injection of Freund’s 
adjuvant into the base of the tail. After about 10 
days, polyarthritis affects the hindlimb joints and 
behavioural changes such as decreased locomotion 
and hyperalgesia to paw pressure appear. The 
symptoms peak at 3 weeks and continue for up to 11 
weeks after inoculation. The numbers of Fos- 
positive neurones were greatest in the lumbar 
segments L3–4 (corresponding to the innervation of 
the arthritic hindlimbs), and at 3 weeks (cor- 
responding to the severity of the disease state). The 
pattern of Fos-positive neurones was also different 
from that seen in acute pain models with most of the 
Fos-positive cells found in laminae 5 and 6 and less 
than 5 % of the total in laminae 1–2. Lamina 5 
contains the wide dynamic range (WDR) neurones 
which seem to play a role in integrating information 
from the periphery and also show marked sensitivity 
in pain states [60]. The axons of these neurones form 
the spinothalamic tracts [80]. Electrophysiological 
evidence indicates that afferent input from the 
inflamed joints and tissues continues in the arthritic 
model [40] and Fos protein might be expected to be 
seen in laminae 1–2 but this was not the case. 

Nevertheless, arthritic rats given a mechanical 
stimulus over the arthritic ankle joints under an- 
aesthesia did show a normal pattern of Fos response 
with large increases in laminae 1–2 as well as lamina 
5. This suggests that Fos expression in superficial 
laminae may be related to a phasic nociceptive input 
while deeper neurones respond to a tonic nociceptive 
input. 

When arthritic rats are treated with morphine 
before further mechanical stimulation, the greatest 
suppression of Fos is in superficial laminae indicating 
that it is the phasic component that is sensitive to 
morphine [3]. In contrast, if unstimulated arthritic 
rats are given repeated doses of naloxone, there is a 
trend for increases in Fos count in the deeper 
laminae. This suggests that there may be tonic 
activity of endogenous antinociceptive systems in 
situations of chronic arthritis [3]. The arthritis in 
this model can be reduced by inducing immuno- 
logical tolerance in the rats using an injection of 
dilute Freund’s adjuvant given 1–3 weeks before the 
main injection [21]. In these animals the Fos count in 
lamina 5 is also reduced and continues to show a 
high degree of correlation with the disease state [4]. 

Treatment of the established arthritic rats at 3 
weeks with non-steroidal anti-inflammatory drugs 
(NSAID) (aspirin or paracetamol) improves 
symptoms but surprisingly does not decrease Fos 
numbers in the spinal cord [5]. It is unclear why Fos 
expression and symptoms do not correlate after 
NSAID treatment, but it is pointed out that though 
the animals were less hyperalgesic, the arthritic 
joints showed very little decrease in size. In contrast 
with treatment of the arthritic rats at 3 weeks, 
NSAID do decrease Fos numbers and symptoms if 
started early in the disease at 1 week. Recently it has 
been shown that prostaglandin production con- 
tributes to transmission of noxious information in 
the spinal cord [39]. In accordance with this 
observation, intrathecally administered NSAID 
have been shown to decrease Fos expression in 
laminae 1–2 in response to mechanical stimulation in 
the arthritic model. 

Neuropathic pain models 

The pattern of Fos expression in chronic nerve 
injury (neuropathic) models of pain is very different 
from that seen in arthritis and other models of 
chronic inflammatory pain. An interesting feature is 
that Fos expression is now seen in laminae 3 and 4 of 
the spinal cord as well as the other layers more 
generally associated with nociceptive input (see fig. 
4). As has been described earlier, laminae 3–4 are the 
sites of termination of large diameter non-nocicep- 
tive myelinated afferents (A�) and the neurones here 
do not usually express Fos [28]. However, after 
sciatic nerve injury, it has been shown that low 
intensity A� stimulation will now elicit Fos ex- 
pression when previously it would not [26, 43]. It is 
increasingly being recognized that this normally 
innocuous A� input may play a large part in the 
generation of neuropathic states and helps to explain 
the allodynia seen clinically and in models of pain 
[49, 83] (see figs 4 and 5). 
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The spinal cord in neuropathic pain states may be 
subject to a similar afferent barrage from the 
periphery as in inflammatory pain states. However, 

in the former case the nerve impulses are generated 
from neuromas at the sites of nerve injury and also 
from the dorsal root ganglion. There is some 

 

Figure 4 A schematic diagram illustrating the different patterns of Fos expression in the L4 spinal cord seen in 
various pain models. Each dot represents three Fos-positive cells. (A) The division of the spinal cord into Rexed’s 
laminae [80]. Noxious information is carried by the A� and C-fibre and they synapse in laminae 1, 2 and 5. In 
contrast, non-noxious stimulation is carried by A� fibres which terminate in laminae 3 and 4. (B) The pattern 
of Fos expression 2 h after acute thermal injury to one paw. There is Fos expression mainly in laminae 1, 2 and 5 
ipsilateral to the injury (see also fig. 1). (C) What happens after 16 h after the same stimulus as in (B). Fos 
expression is now mainly in the deeper layers and also becomes bilateral (not shown). (D) The typical pattern of 
Fos expression 3 weeks after induction to arthritis where the Fos expression is widespread but mainly in the 
deeper layers especially in lamina 5. There is comparatively very little expression of Fos in laminae 1–2 despite 
the excessive C-fibre-mediated noxious input known to be present in this model. (E) Fos expression in a model of 
neuropathic pain 14 days after loose ligation of the sciatic nerve where it is known many of the symptoms are 
mediated by spontaneously discharging A� and A� fibres. The A� fibres terminate in layers 1 and 5 while the A� 
fibres terminate in laminae 3 and 4, the latter being the site of the greatest Fos expression in this model. See also 
fig. 5. Drawn from data in Abbadie and Besson [1], Williams and colleagues [78] and unpublished observations. 

 

Figure 5 Photomicrograph of Fos expression in the spinal cord 14 days after loose ligation of one sciatic nerve. 
There is persistent bilateral Fos expression throughout the spinal cord, but mainly in laminae 3 and 4 as shown 
by the arrows. These layers are usually only associated with non-noxious input and do not usually express Fos. 
The presence of Fos expression in these layers after nerve injury correlates with the presence of A� mediated 
allodynia in this model [9, 10] [Munglani and Hunt, unpublished observations]. IPSI � side of spinal cord 
ipsilateral to the injury. Bar � 100 �m. 
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evidence that this peripheral afferent input helps to 
maintain the pain state and the persistent Fos 
expression seen in the spinal cord [12, 13, 17, 29, 31]. 

Earlier nerve injury or previous nociceptive 
barrages will lead to enhanced Fos expression in the 
spinal cord in response to subsequent noxious and 
non-noxious stimulation [35, 68, 69, 77]. For ex- 
ample, there are enhanced numbers of Fos-positive 
neurones in the dorsal horn when saphenous nerve 
stimulation follows section of the adjacent sciatic 
nerve. This parallels the electrophysiological and 
behavioural data showing saphenous nerve allodynia 
and hyperalgesia in the presence of sciatic nerve 
damage [33, 61, 71, 77]. Other electrophysiological 
phenomena are also paralleled by changes in Fos 
expression in the spinal cord. For example, the 
ability of “diffuse noxious inhibitory control 
mechanisms” (DNIC) to reduce pain perception by 
a concurrent painful stimulus has also been 
demonstrated to be followed closely by changes in 
Fos expression [46]. 

Comment 

Patterns of Fos expression in both acute and chronic 
pain models seem to complement known behavioural 
and neurophysiological data. 

Consequences of Fos activation in the spinal 
cord 

Does Fos activation lead to important functional 
changes? Furthermore, does the activation of Fos 
contribute to the pain state or mediate the adaptive 
responses of the spinal cord to the peripheral insult? 
It has been shown recently that some 20–40 % of 
Fos-positive cells expressed after noxious stimu- 
lation are also GABA or glycine positive [72]. The 
latter two compounds have inhibitory roles within 
the CNS. The proteins Fos and Jun dimerize to form 
AP1-protein complex which then subsequently 
binds to the AP1 binding site of DNA to effect the 
transcription of other genes [16]. The AP1 binding 
site is found in the genes of the opioid family such as 
preprodynorphin, preproenkephalin as well as nerve 
growth factor and a number of neuropeptides 
including cholecystokinin (which is known to 
antagonize the action of morphine and endogenous 
opioids) and neuropeptide Y (which is thought to 
have an analgesic role at the level of the spinal cord) 
[25, 45, 47, 65, 84]. 

Fos increases in the dorsal horn in both arthritic 
and the nerve injury model are accompanied by 
increases in dynorphin (an endogenous opioid acting 
at the kappa receptor) [20, 27, 30, 41, 42, 53]. The 
increased expression of dynorphin occurs in both 
local circuit and projection neurones which receive 
nociceptive afferent input [50, 52, 70]. Dynorphin 
causes hyperalgesia when directly applied to the 
spinal cord in large doses and it had been suggested 
that hyperalgesia seen in these pain states was due to 
the expression of dynorphin [20, 34]. More recently, 
however, dynorphin has been shown to have a tonic 
analgesic action under both normal and inflammatory 
conditions [23, 67]. Since the preprodynorphin gene 

has several AP1-like binding sites and potentially 
may bind Fos (as a component of the AP1- 
transcription factor complex) it was tempting to 
speculate that Fos might lead directly to dynorphin 
expression. Certainly Fos is expressed in the same 
dorsal horn cells as those expressing dynorphin 
following noxious stimulation [54] and in a recent in 
vitro study activation of prodynorphin was com- 
pletely blocked by an injection of a c-fos antisense 
DNA (hence blocking DNA transcription) [38, 51]. 
Furthermore, in a formalin pain model it has been 
shown that pre-emptive antisense c-fos ad- 
ministration reduces Fos and dynorphin staining and 
increases pain behaviour [82]. These observations 
suggest that Fos activation, as well as being a marker 
of nerve cell activity, may result directly in the 
activation of analgesic opioids in the spinal cord. 

Summary 

We have attempted to define some of the patterns of 
expression of the IEG Fos in pain-related states. On 
one level, Fos may be used simply as marker of 
afferent stimulation and disease state, and in this 
respect Fos activation may be a useful tool after 
nociceptive stimulation to examine the effectiveness 
of different analgesic regimens. For example, certain 
analgesics such as opioids, alpha2 agonists and local 
anaesthetics are more effective when given pre- 
emptively or early in the injury rather than later on. 
Furthermore, the persistent expression of Fos in the 
presence of high dose pre-emptive opioids is dis- 
turbing and yet it may explain variable success of 
studies attempting to show pre-emptive analgesia 
with opioid-based analgesic regimens. We suggest 
that Fos expression, as well as defining the mag- 
nitude and the duration of insult to the spinal cord 
seems also to signal the adaptive responses of the 
nervous system to nociceptive insult. Though we 
have focused on only one IEG, c-fos, and attempted 
to relate appearance to known functional changes 
within the spinal cord, there are in fact many more 
genes known to be upregulated with the same or 
slower kinetics (e.g. Fos B, FRA-1, FRA-2, Jun B, 
Jun D, NGFI-A). Increased understanding of the 
role of these genes is likely to lead to many novel 
targets in the search for normalization or restoration 
of spinal cord function in pain states and after nerve 
injury. 
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