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Surgical pain attenuates acute morphine tolerance in rats
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Nociceptive stimuli, such as formalin-induced pain and adjuvant-induced arthritis, attenuate
tolerance to morphine antinociception. In this study, we have explored the effect of upper and
lower abdominal surgical pain on the prevention of acute tolerance to morphine antinociception
in Sprague–Dawley rats. Group I received lower abdominal surgery (LAS) and i.v. morphine
infusion; group II received LAS and i.v. saline infusion; group III received upper abdominal
surgery (UAS) and i.v. morphine infusion; group IV received UAS and i.v. saline infusion; group
V received i.v. morphine infusion; and group VI received i.v. saline infusion. The antinociceptive
effects of morphine were measured by an infrared thermal tail flick test. We also measured
plasma concentrations of morphine in rats receiving morphine infusions with or without surgical
treatment. We found that acute tolerance to morphine antinociception developed after 2 h
following i.v. infusion of morphine alone. However, both UAS and LAS significantly slowed the
rate of development of acute tolerance to morphine. The area under the time–response curves
(AUC) of groups I and III were mean 34 556 (SD 5607) and 32 548 (9783), respectively, which
were significantly different from that of group V (18 759 (8225)) (P,0.01). Also, there were
no significant differences between groups I and III. There were no significant differences
between groups for plasma morphine concentrations during the 8-h study (e.g. groups I, III
and V: 179.9 (22.6), 182.7 (14.4) and 170.9 (15.8) ng ml–1 at 8 h, respectively) and we suggest
that the appearance of acute morphine tolerance after morphine infusion is not pharmacokinetic
in nature.
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After long-term administration or continuous infusion of
morphine in animals, tolerance to morphine antinociception
develops rapidly,1–3 however, this phenomenon is rarely
observed in patients.4 5 The mechanism of this discrepancy
between patients and animals is not clear. Some have
suggested that the presence of pain during morphine admin-
istration may contribute to this difference.6–8 Using animal
models of formalin paw injection and adjuvant-induced
arthritis, it has been found that the appearance of noxious
stimuli during morphine administration may disturb the
development of tolerance to morphine antinociception.9–11

This finding is valuable in determining the correlation
between acute tolerance to morphine antinociception and
painful stimuli. However, the nature of this pain is not quite
similar to clinical pain as formalin and adjuvant are not the
causative agent of clinical pain; also, these two animal
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models can only represent in part, clinical pain (i.e. not
incisional pain). In clinical practice, postoperative pain is
a major problem for the acute pain service; therefore, it is
important to develop an animal model of pain to study the
relationship between clinical acute pain and morphine
tolerance. In our animal study, two clinical procedures, upper
abdominal and lower abdominal surgery, were developed.
Using these two surgical procedures, we have explored the
effect of postoperative pain on the prevention of acute
tolerance to morphine antinociception in Sprague–Dawley
rats.

Materials and methods
All testing was performed in accordance with the recom-
mendations and policies of the International Association



Surgical pain attenuates morphine tolerance

for the Study of Pain12 and the study was approved by
our Institutional Animal Investigation Committee. Male
Sprague–Dawley rats (250–300 g) obtained from the
National Lab Animal Breeding and Research Centre,
National Science Council, Taipei, Taiwan, were housed in
cages with controlled room temperature (2261°C), humidity
(50610%) and a 12-h light–dark cycle (from 06:00 to
18:00). Food pellets and water were availablead libitum
throughout the experiment. Tests were performed only after
the rats had acclimatized to the above environment for at
least 7 days. Experiments were performed between 08:00
and 17:00 in random order.

All animals received i.v. catheterization 24 h before
the experiment under pentobarbital (pentobarbitone) 45 mg
kg–1 i.p. anaesthesia. Briefly, after local skin infiltration
with 2% xylocaine, a polyethylene cannula (PE-50) filled
with heparinized saline 50 u. ml–1 was inserted into the
right external jugular vein. The free end was tunnelled
subcutaneously, exteriorized through a stab wound, and
then fixed to the back of the neck. After catheterization,
animals were housed separately to avoid cannula dis-
lodgement.

Twenty-four hours after i.v. catheterization, the rats were
allocated randomly to one of the two studies: pharmacodyn-
amic or pharmacokinetic.

Pharmacodynamic study
Rats were allocated randomly to one of six groups (n512
in each group): group I received lower abdominal surgery
(LAS) and i.v. morphine infusion; group II received LAS
and i.v. saline infusion; group III received upper abdominal
surgery (UAS) and i.v. morphine infusion; group IV received
UAS and i.v. saline infusion; group V received i.v. morphine
infusion; and group VI received i.v. saline infusion. Surgery
was performed under diethyl ether anaesthesia and the types
of surgical incisions used are shown in Figure 1 (A, B). In
UAS, a skin incision was made from the midline of the
abdomen (linea alba), starting 1 cm below the xiphoid
cartilage and running parallel to the subcostal line, approxi-
mately 2 cm in length. The wound was deepened to the
peritoneal cavity to expose the underlying liver and intestine.
The wound was then sutured in layers with 3-O silk. Finally,
the skin was closed with four stitches, approximately 0.3–
0.5 cm apart (3-O silk). In LAS, a transverse skin incision
was made at the level of the inguinal region, perpendicular
to the midline of the abdomen, and extended approximately
1 cm from the midline (linea alba) on each side. The
incision wound was deepened to the peritoneal cavity to
expose the underlying bladder and intestine. Finally, the
wound was sutured in layers with 3-O silk; the skin was
sutured as described above. All surgical procedures were
completed within 15 min. Rats in groups V and VI did not
undergo surgery but diethyl ether anaesthesia was given to
these rats.

After anaesthesia or surgery, or both, the rats were
allowed 30 min to recover. Morphine (dissolved in 0.9%
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Fig 1 A: Upper abdominal surgery (UAS). A skin incision was made from
the midline of the abdomen (linea alba), starting 1 cm below the xiphoid
cartilage and running parallel to the subcostal line, approximately 2 cm
in length. The wound was deepened to the peritoneal cavity to expose the
underlying liver and intestine. The wound was later sutured in layers with
3-O silk. Finally, the skin was closed with four stitches, approximately
0.3–0.5 cm apart, with 3-O silk.B: Lower abdominal surgery (LAS). A
transverse skin incision was made at the level of the inguinal region,
perpendicular to the midline of the abdomen, extending approximately 1
cm from the midline (linea alba) on each side. The incision wound was
deepened to the peritoneal cavity to expose the underlying bladder and
intestine. Finally, the wound was sutured in layers with 3-O silk and the
skin sutured as described above.

(w/v) sodium chloride solution) or saline was infused into
the conscious animals from a continuous drug infusion
balloon catheter (40 ml/24 h, Mitsuya, Osaka, Japan)
connected to the jugular vein cannula by a PE-50 tube. The
rate of morphine infusion was 2 mg kg–1 h–1 and the
duration of infusion was 8 h.

The antinociceptive effect was measured using an infrared
thermal tail flick test (7371, Ugo Basile, Italy). Latency
from the time of stimulus to tail flick (TF) was assigned as
response latency. Radiant heat was set to provide a pre-
drug latency of 2–4 s. To prevent tissue damage, a 10-s
cut-off time was set. A tail flick test was performed before
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catheterization and was repeated the day after catheterization
to exclude the effect of catheterization on the nociceptive
response. On the day of the experiment, tail flick latencies
were measured 10 min before and 30 min after medication,
and then every hour for 8 h. Effects were expressed as
percentage of the maximal possible analgesia (%MPA):

%MPA5((response latency–baseline latency)/ (cut-off
latency–baseline latency))3100%.

After testing, time–response curves were constructed and
the antinociceptive effect was expressed as area under the
time–response curve (AUC). The AUC above pre-test
baseline values was calculated by trapezoidal approximation
for each rat from 0 to 8 h.

Pharmacokinetic study
Rats were allocated randomly to one of three groups (n5
15 in each group): group 1 received LAS and i.v. morphine
infusion; group 2 received UAS and i.v. morphine infusion;
and group 3 received i.v. morphine infusion alone. The
surgical procedures and morphine infusion were the same
as described in the pharmacodynamic study (groups I, III,
V). All rats received diethyl ether anaesthesia. Thirty
minutes after the end of anaesthesia, morphine was infused.

Blood (1 ml) was collected from rats in each group by
direct cardiac puncture at 1 min before infusion of morphine
and at 1, 2, 4 and 8 h after the start of infusion. During the
study, each rat received only one puncture and three rats in
each group were used for blood collection time. Plasma
was obtained by centrifugation and frozen immediately to
–20°C until assay. Plasma concentrations of morphine were
measured using a modification of the method of Svensson.13

This method uses high pressure liquid chromatography with
electrochemical detection. The detection limit of the method
was 100 pg ml–1 with coefficients of variation of 7.4%,
9.6%, 8.0% (within-day) and 10.7%, 9.8%, 5.7% (between-
day) at 0.25, 2.5 and 25 ng ml–1, respectively. In this
assay, morphine can be distinguished from its metabolites,
morphine-3-glucuronide and morphine-6-glucuronide.

Statistical analysis
Results are expressed as mean (SD). AUC betweeen groups
and differences in plasma concentrations of morphine
between groups were analysed by the Kruskal–Wallis test.
P,0.05 was considered significant and a significant
decrease in AUC was considered as tolerance.

Results
In the pharmacodynamic part of the study, tail flick latencies
were not significantly different before and after catheter-
ization in all groups on the day before morphine administra-
tion (Table 1). On the day of the experiment, rats that
received saline infusion (groups II, IV and VI) did not
show any analgesic effects (Fig. 2A). Rats that received i.v.
morphine infusion demonstrated a significant analgesic
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Table 1 Tail-flick (TF) latencies (s) measured in rats before (BIC) and after
(AIC) i.v. catheterization (mean (SD))

TF (BIC) TF (AIC)

Control 2.42 (0.69) 2.62 (1.04)
Upper abdominal surgery 2.58 (1.00) 2.47 (0.48)
Lower abdominal surgery 2.68 (0.31) 2.33 (0.83)

Fig 2 Analgesic effect of morphine or saline in surgically treated or
control rats (n512 in each group). Animals receiving upper (UAS) or
lower (LAS) abdominal surgery were treated with morphine (M) 2 mg
kg–1 h–1 or saline (S) i.v. infusion. Control (C) animals did not undergo
surgery but were treated with morphine or saline infusion.A: Data are
expressed as percentage of maximal possible analgesia (%MPA).B: Data
are expressed as area under the response time curve (AUC), which was
obtained fromA (groups I, III and V). Values are mean (SD). Significant
differences from control group: **P,0.01. In A, Gp II, LAS1S; Gp IV,
UAS1S; and Gp VI, C1S are superimposed at approximately 0% (bottom
straight line).

effect which reached its maximum, on average, 2 h after
i.v. infusion (groups I, III and V) (Fig. 2A). In group V, the
analgesic effects of morphine decayed gradually for 2 h
after infusion. In groups I and III, the analgesic effects of
morphine decreased more slowly after reaching a maximum
level and were present for longer than in group V (Fig.
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Fig 3 Plasma concentrations of morphine. After i.v. infusion of morphine
(M) 2 mg kg–1 h–1, the plasma concentration of morphine reached a
pseudo-steady state between 2 and 8 h in all animals. Each point indicates
mean (SD). There were no significant differences between the morphine
and control groups (C) (using one-way analysis of variance). UAS and
LAS5Upper and lower abdominal surgery, respectively.

2A). AUC values in groups I and III were larger than that
in group V and AUC values in groups I and III were not
significantly different (Fig. 2B).

In the pharmacokinetic part of the study, plasma concen-
trations of morphine reached a pseudo-steady state after i.v.
infusion from 2 to 8 h (Fig. 3). There were no significant
differences between groups in plasma morphine concentra-
tions. This pharmacokinetic result suggests that the appear-
ance of acute morphine tolerance after i.v. morphine infusion
is not pharmacokinetic in nature.

Discussion
Nociceptive stimuli, such as formalin-induced pain and
adjuvant-induced arthritis, attenuate tolerance to morphine
antinociception.9–11 14–18In our study, we also demonstrated
that the appearance of surgical pain during administration
of morphine significantly attenuated the development of
acute tolerance to morphine antinociception.

Acute tolerance to the antinociceptive effect of morphine
may occur after a short period of morphine administration
in animals. For example, Abdelhamid and colleagues dem-
onstrated a three-fold increase in the ED50of the antinocicep-
tive effect of morphine, 4 h after s.c. injection of morphine
100 mg kg–1 in mice.19 Cox, Ginsburg and Osman20, Ling
and colleagues3 and Kissin and colleagues21 22 also found
that acute tolerance to morphine antinociception may
develop within 8 h after i.v. infusion in rats. We also
demonstrated that the antinociceptive effect of morphine
decayed rapidly after a 2-h morphine infusion. In contrast,
morphine tolerance may not occur in rats treated with
formalin injections into a paw9 10 or adjuvant injection into
a joint model.9 11 15Vaccarino and colleagues examined the
development of tolerance to morphine antinociception in
rats in the presence or absence of pain induced by s.c.
injection of formalin in paws.9 They found that tolerance
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to morphine did not occur after repeated injections of a
high dose of morphine in the presence of formalin-induced
pain. Using an animal model of Freund’s adjuvant or
vehicle-injected rats allowed to self-administer i.v. morphine
5 mg kg–1 on a 24 h/day schedule, Lyness, Smith and
Heavner demonstrated that arthritic rats self-injected signif-
icantly less morphine than pain-free animals.11

Clinically, opioids are used widely in the treatment of
acute and chronic pain. However, the development of
tolerance to the analgesic effect of opioids rarely occurs.
We found only one report on the possible occurrence of
acute opioid tolerance in humans after a large dose of
fentanyl (25µg kg–1) given before surgery.23 Other reports
stated that patients who receive morphine for persistent
pain do not develop marked tolerance.4 5 8 24–26 Also,
increased morphine doses during chronic pain management
may be caused by treatment events (such as surgery, invasive
exploration, etc.) or disease progression.8 24–26In our study,
we found that surgical pain significantly slowed the develop-
ment of morphine tolerance. This result is clinically valuable
as these animal models are directly analogous to clinical
postoperative patients; therefore, our results may also be
valuable in explaining some clinical phenomena.

In previous studies, there was no suitable animal model
to represent the natural course of clinical pain, especially
postoperative pain. Postoperative pain management is the
major work of the acute pain service; therefore, it is
important to develop suitable animal models which can
show the characteristics of clinical postoperative pain and
allow clinical, pain-related problems to be studied. As
animal models, such as formalin-induced pain and adjuvant-
induced arthritis, inadequately represent clinical pain, they
are not as well correlated with clinical conditions as our
animal model. First, formalin and adjuvant are not clinically
used and also they are not the causative agents of clinical
pain. Second, the natural course of formalin-induced pain
is only chemical-related and is not relevant to surgical pain.
Also, adjuvant-induced arthritis may only partly represent
clinical arthritis. Third, nociception of adjuvant-induced
arthritis is not strong enough and did not consistently
attenuate morphine tolerance in previous reports.10 27 Our
animal models of surgical pain are analogous to the clinical
patient with postoperative pain; therefore, they are different
from those of previous animal models and are more suitable
for use in studies of clinical pain-related phenomena.

The reason why surgical pain attenuates acute morphine
tolerance is not known. However, activation of the hypo-
thalamic–pituitary–adrenal (HPA) axis by stressful stimuli,
or direct treatment with ACTH (adrenocorticotropic hor-
mone) or corticosterone may attenuate the development of
morphine tolerance.28–31Surgical pain is a type of stressful
stimulus and, therefore, we speculate that it may attenuate
acute morphine tolerance via activation of the HPA axis.
The intensity of surgical pain may decrease with time and,
therefore, the endocrine responses to these painful stimuli
may also decrease. In our study, we also speculate that
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morphine tolerance may eventually develop completely in
all groups in a time-dependent manner, despite different
treatments. But within the 8-h observation period, we
found that surgical pain significantly attenuated morphine
tolerance.

In summary, using two animal models, upper and lower
abdominal surgery, we have explored the effect of postopera-
tive pain on the prevention of acute tolerance to morphine
antinociception in rats. We found that acute morphine
tolerance developed rapidly after i.v. infusion of morphine
alone and that co-treatment with upper or lower abdominal
surgery during morphine infusion significantly attenuated
the development of tolerance to morphine antinociception.
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