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The exceptional levels of biodiversity found today in the American tropics are the outcome of tens of millions of years 
of evolution, shaped by the tumultuous geological history of the region, its heterogeneous habitats, climate change, 
ecological interactions and, in recent millennia, human influence. Although our understanding of diversity patterns 
and their underlying processes grows steadily in breadth and depth, Neotropical biodiversity is rapidly breaking 
down. Here, I contrast the long-term evolution of Neotropical biodiversity with its recent and rapid deterioration 
due to anthropogenic factors. I consider the impacts of the early arrival of humans to the region and the modern 
intensification of land-use change (primarily driven by agriculture) and other drivers of biodiversity loss, such as direct 
exploitation, invasive species and climate change. Together, these threats have led to 33% of all Neotropical species 
for which sufficient data are available being currently threatened with extinction. I outline emerging opportunities 
for conservation and restoration under the post-2020 Global Biodiversity Framework and call for urgent action from 
the biodiversity community, for the benefit of people and nature.

ADDITIONAL KEYWORDS:  conservation – evolution – extinction.

INTRODUCTION

There are two key features of Neotropical biodiversity: 
one is that it is astonishing and the other is that it is 
disappearing. It is astonishing because of the long-
term, complex and intricate ways by which the myriad 
life forms living today in the region evolved, building 
complex ecological interactions and resulting in 
enormous variation at the ecosystem, species, population 
and molecular levels. Today, Latin America contains 
more species of vascular plants, butterflies, amphibians 
and snakes than tropical Africa and Southeast Asia 
combined, and it has the highest richness among those 
three tropical regions also for breeding birds, ants, 
lizards and mammals (Raven et al., 2020). However, 
the rate at which Neotropical diversity is now breaking 
down is at an entirely different temporal scale, with 

potential large-scale consequences for ecosystem 
functioning, climate and people.

DEEP-TIME EVOLUTION

The exceptional biodiversity found today in the 
Neotropics is best explained as a result of the large 
area, diverse ecosystems, high environmental and 
climatic heterogeneity and deep evolutionary history 
of the region that are intrinsically linked with abiotic 
processes (e.g. geology, climate, catastrophic events) 
and biotic events (e.g. major phases of diversification 
including adaptive radiations, extinction, colonizations 
and range expansions) (Antonelli & Sanmartín, 2011; 
Rull, 2011; Hughes et al., 2013) (Fig. 1).

Some Neotropical lineages, such as freshwater fish 
and terrestrial geckos, began to diversify in South 
America following its separation from Africa some 
100 Mya (Lundberg et al., 1998; Antonelli et al., 
2010a). However, a broader major biotic turnover 
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took place as a result of the Cretaceous-Palaeogene 
meteorite impact 66 Mya, which led to a decline in 
plant morphotype diversity by 45% that took c. 6 
Mya to recover to previous diversity levels, albeit 
with angiosperm-dominated and stratified forests 
(Carvalho et al., 2021). The underlying mechanisms 
and timings of Andean orogeny remain disputed 
(Pérez-Escobar et al., in press), but it probably 
progressed at different times for different sections, 
starting in the Late Cretaceous but intensifying 
since the Miocene (Boschman, 2021). As the Andean 
cordilleras were formed, they drastically changed 
rainfall and drainage patterns, increasing soil 
heterogeneity and creating novel habitats at high 
and low elevations where speciation could take place 
(Hoorn et al., 2010, 2013). The closure of the Central 
American Seaway c. 13 Mya (Montes et al., 2015) and 
the subsequent terrestrial connection between South 
and Central America then led to widespread biotic 
interchange on land, ended gene flow across the warm 
parts of the Pacific and Atlantic (Bacon et al., 2015) 
and promoted the diversification of some lineages 
and the extinction, through competition, of others 
(Carrillo et al., 2020). The demise of predominantly 
wetland conditions in western Amazonia c. 12 Mya 
led to the extinction of a typical fauna of crocodilians 

and molluscs (Wesselingh et al. , 2010; Salas-
Gismondi et al., 2015), but it was followed by rapid 
diversification of rainforest trees in the lowlands 
from c. 10 Mya (Richardson et al., 2001; Erkens et al., 
2007) and rapid radiations in high-elevation Andean 
habitats in the last few million years (Madriñán et al., 
2013). Throughout this period, dispersals and range 
expansions across biomes contributed to the assembly 
of characteristic and diverse species communities 
(Antonelli et al., 2018b).

Climatic changes during the Cenozoic (Westerhold 
et al., 2020) of major biological significance for the 
Neotropics include the Palaeocene-Eocene Thermal 
Optimum at 56 Mya, which generated a peak in plant 
diversity (Jaramillo et al., 2010), and the maintained 
higher global temperatures (10 °C warmer than today) 
until the end of the Early Eocene Climate Optimum 
at 47 Mya; the Eocene-Oligocene cooling event, which 
led to the glaciation of Antarctica and a major drop in 
Neotropical plant diversity (Jaramillo et al., 2006); and 
the Miocene Climatic Optimum c. 17–14 Mya, which 
was followed by a cooling period that triggered the 
expansion of savannas and diversification of C4 grasses 
and several other clades (e.g. Antonelli et al., 2010b; 
Edwards et al., 2010; Arakaki et al., 2011). The onset of 
ice ages at c. 2.6 Mya, which in the Neotropics may have 

Figure 1. Selected abiotic and biotic events of relevance for the evolution of Neotropical biodiversity. Abiotic (red: climatic; 
others: green): A1: start of separation of South America and Africa; A2: asteroid impact off the coast of Yucatán in Mexico; 
A3: thermal maximum followed by sustained high temperatures; A4: rapid global cooling and glaciation of Antarctica; A5: 
global warming immediately followed by cooling; A6: closure of the Central American Seaway and gradual emergence of 
Panamanian land bridge; A7: onset of ice ages in the north and global climatic oscillations. The following events describe 
major uplift phases for the Andes: A8: Western Cordillera; A9: Western Puna; A10: Eastern Puna; A11: Altiplano; A12: Eastern 
Cordillera. Biotic (blue: speciation; purple: extinction; light blue: colonization): B1: early diversification of Gondwanan-
derived freshwater fish; B2: widespread extinction triggered by collision (asteroid) event; B3: taxonomic and vegetational 
recovery and turnover; B4: arrival of boreotropical plant lineages; B5: trans-Atlantic arrival of the ancestors of New World 
monkeys and caviomorph rodents from Africa; B6: diversification of succulents and C4 grasses; B7: extinction event in 
western Amazonian wetland fauna; B8: diversification of lowland terrestrial taxa; B9: radiation of highland Andean taxa 
and biotic rearrangements in speciation in the lowlands. See text for references; dates are indicative only. Inset images: 
public domain.
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led to an initial extinction of warm-adapted lineages 
(Silva et al., 2018), was followed by oscillatory changes 
in rainfall patterns, which probably contributed to 
rearrangements in taxonomic distributions (Rull, 
2005) and may have, in connection with further land 
emergence across the Isthmus of Panama, facilitated 
terrestrial dispersal (Bacon et al., 2016).

Probably disconnected from any geological event, 
but potentially linked to climatic changes, the 
arrival of immigrant lineages from other landmasses 
contributed to new radiations and interactions with 
the native South American biota. Notable examples in 
the Eocene include the arrival of multiple boreotropical 
plant lineages from North America (Davis et al., 
2002; Antonelli et al., 2009; Zhang et al., 2021) and 
the presumed rafting of New World monkeys and 
caviomorph rodents (comprising capybaras) from Africa 
(Defler 2019; Silvestro et al., 2019). A semi-continuous 
chain of islands (the Greater Antilles and Aves Ridge, 
often abbreviated to GAARlandia) has been repeatedly 
evoked to explain plant and animal dispersals between 
South America and the West Indies around the Eocene-
Oligocene boundary (34 ± 1 Mya). However, molecular 
and geological evidence for an emergent land bridge at 
that time has been increasingly contested (Ali, 2012; 
Nieto-Blázquez et al., 2017; Crews & Esposito, 2020), 
and recently rejected by Ali & Hedges (2021) based 
on novel geological surveys in the region (e.g. Cornée 
et al., 2021; Garrocq et al., 2021).

This exceedingly brief snapshot of Neotropical 
diversification attempts by no means to summarise 
the comprehensive reviews, comparative analyses 
and taxon-specific studies published on the topic (see 
e.g. Antonelli et al., 2009; Rull, 2011; Hughes et al., 
2013; Antonelli et al., 2018a). Instead, it is intended to 
provide the simple message that current Neotropical 
biodiversity is the outcome of manifold processes played 
out over long timescales, and to set the scene for the 
latest in a long series of events that have significantly 
affected the region’s biodiversity: the arrival of humans.

EARLY HUMAN IMPACTS

The timing of the arrival of Homo sapiens from Asia 
across the Bering Strait to North America, followed 
by colonization across the American continent, are 
matters of active research and intense debate. The 
earliest human presence in the Americas has been 
estimated to date back to c. 24 000 years before present 
(BP) in the region corresponding to Alaska, where 
humans were confined until after the Last Glacial 
Maximum when the Canadian ice sheet began to melt 
and opened a coastal corridor to the south (Goebel 
et al., 2008; Bourgeon et al., 2017; Moreno-Mayar 
et al., 2018). Stone artefacts dated to 19 000–18 000 

BP or older may represent the earliest presence in the 
northern Neotropics (Mexico) (Ardelean et al., 2020). 
Arrival to South America happened later under many 
scenarios, starting c. 14 000 BP, through several (two 
to four) independent waves and paths, including along 
the Andes, along eastern South America and perhaps 
through Amazonia, some reaching the southernmost 
margins of the continent (Moreno-Mayar et al., 2018; 
Posth et al., 2018). Puzzling anomalies exist in several 
colonization scenarios, such as a site dated to > 28 000 
BP in north-eastern Brazil that contains potentially 
human-made stone tools (Fariña et al., 2014).

The impact of early humans on Neotropical 
vegetation is becoming increasingly understood, 
thanks to the quantification of changes in pollen 
composition and charcoal deposits in lake sediments 
(Bush et al., 2004; Power et al., 2008). Ellis et al. (2021) 
compiled extensive data on historical land use and 
human populations, which indicate that by 12 000 BP > 
87% of Latin America and the Caribbean were already 
occupied by humans, even if at low human densities 
(Fig. 2). Of the land occupied by indigenous people, c. 
50% was in woodlands and c. 35% in drylands. Human 
occupancy at that stage was considerably higher than 
in North America, which was then inferred to have just 
> 50% of the land area unoccupied despite the earlier 
human colonization.

Humans cleared forests for agriculture through the 
use of fire, leaving rich deposits of charcoal that today 
enable the reconstruction of land use and, with pollen 
sediments, provide a window into past vegetation 
changes (Bush et al., 2021). The per capita use of land 
in South America was presumably higher than in North 
America and the Caribbean, with > 1.2 ha per person in 
Amazonia and slightly more in the Andes (Koch et al., 
2019). Besides their effect on vegetation cover, humans 

Figure 2. Changes in land occupancy and use over the last 
12 000 years in Latin America, in relation to population 
growth relative to today (red line). BCE = Before Common 
Era, CE = Common Era. Adapted from Ellis et al. (2021); see 
that reference for a description of all land use categories and 
the colour codes used, which are grouped here for simplicity.
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also actively dispersed useful plant species, such as 
food sources, leaving an imprint in current species 
distributions, diversity and abundance (Levis et al., 
2017; Maezumi et al., 2018; McMichael, 2021).

Human population sizes increased gradually through 
time until c. 1200 Common Era (CE), after which they 
began to decline, possibly as a result of levels reaching 
carrying capacity and/or changing dynamics between 
local cultures, diseases and warfare (Arroyo-Kalin 
& Riris, 2021; Bush et al., 2021). This decline led to 
the natural reforestation of large parts of Amazonia 
(Bush et al., 2021). A second and much greater decline 
happened in connection with the arrival of European 
colonizers, which over the course of a hundred years led 
to the ‘Great Dying’ event, the death of an estimated 56 
million humans, representing some 90% or more of the 
indigenous people (Koch et al., 2019), mainly through 
the spread of diseases such as smallpox, measles and 
the common cold, but also due to warfare and slavery.

The large-scale and brutal displacement of Native 
American people by European immigrants and enslaved 
African peoples was also associated with drastic 
changes in agricultural practice, which increasingly 
relied on large plantations and monoculture crops, as 
compared to a much more varied landscape (Fig. 3).

Despite increasing documentation of how humans 
influenced Neotropical ecosystems at a large scale, 
their potential impact on driving species extinctions 
is poorly understood. Early anthropogenic impacts 
following the arrival of humans to different land 
masses were assessed by Andermann et al. (2020), 
who modelled changes in extinction rates and species 
richness over time based on a comprehensive data set 
of fossil mammals. For North America, South America 
and the Caribbean, the study inferred substantial 
increases in extinction and relatively small (North 
and South America) to substantial (Caribbean) drops 
in species richness (Fig. 4). Those changes appear, 
at least to some extent, to be correlated with human 
arrival (a timing which remains debated, as previously 
mentioned). Climate as an alternative driver of those 
changes was strongly rejected by the model.

MODERN THREATS

The human population in Latin America and the 
Caribbean grew gradually until the 1900s, after 
which it increased at an unprecedented rate: from c. 
60 million in 1900 to > 652 million today. Although 

Figure 3. ‘Heart of the Andes’ (Frederic Edwin Church, 1859). This painting, from Ecuador, shows a landscape already 
altered by human influence, but much more heterogeneous than the current agricultural practice of predominantly large 
plantation fields. Species migrations across the landscape and elevation gradients, especially for non-flying animals and 
plants with low dispersal ability (such as those with large or mammal-dispersed seeds), were certainly far easier than in the 
current highly fragmented habitats separated by roads and urban environments (public domain).
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the yearly growth has slowly but steadily declined 
since the early 1960s (1960: 2.7%; 2020: 0.9%), the 
demographics and mortality rates under this period 
mean that the total population has increased linearly 
over the same period (https://www.worldometers.
info; accessed August 2021). The massive changes in 
population growth and human activities, including 
agricultural intensification and other recent land-use 
changes, beg the question: what is the modern human 
impact on Neotropical biodiversity?

As for the early influence of humans, there is again 
limited direct evidence of biodiversity losses but, in 
contrast, abundant circumstantial considerations. 
Let us take Amazonia as an example. Out of the 
16 000 native tree species estimated to occur in the 
region in ter Steege et al. (2013) (later revised to c 
15 000; ter Steege et al., 2020), 6000 were estimated 
to be represented by < 1000 individuals, reflecting the 
globally documented commonness of rarity for plants 
(Enquist et al., 2019). Even some seemingly abundant 
and widespread species may in fact represent multiple 
narrowly distributed species when densely sampled 
phylogenetically (Damasco et al., 2021). Rather than 
being concentrated in particular areas of Amazonia, 
such as its core or most humid segments, Zizka et al., 

(2018) found that these rare species have unpredictable 
distributions, in many cases far apart from each other. 
Plants seem no exception: fungi, for instance, are highly 
diverse in Amazonia and in many cases only known 
from single localities, as revealed by environmental 
DNA studies of soil and litter (Ritter et al., 2018, 
2019). Taken together, these lines of evidence suggest 
that any changes in Amazonian land use that leads to 
substantial habitat loss, e.g. agricultural expansion in 
southern Amazonia (Maeda et al., 2021), illegal mining 
(Sonter et al., 2017) or the flooding of large areas for 
hydroelectric dams (Fearnside 2006), are certain to 
be reducing genetic diversity, and very likely to be 
driving a large number of species to extinction, often 
unnoticeably.

Biodiversity loss in the Neotropics is exacerbated 
by the high degree of habitat fragmentation already 
inflicted. Even if deforestation were to stop immediately, 
many species in the remaining forest fragments of the 
Atlantic rainforest may still be doomed to disappear. 
This is mainly due to the ‘extinction debt’ effect, which 
can be calculated in different ways (Ridding et al., 
2021) but relies primarily on the strong and well-
studied species-area relationship (SAR) that can serve 
as a proxy for estimating species losses worldwide 

Figure 4. Changes in extinction rate (red) and species richness (grey) for mammals over the last 120 000 years across the 
Americas. For all regions, the early arrival of humans (approximated here by the green bars, but see text for discussion on 
uncertainties) appears to be associated with a first significant increase of extinction rates over the period surveyed. From 
Andermann et al. (2020) (Creative Commons).
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(Ellis et al., 2012). As compared to documented 
extinctions, they can be at least an order of magnitude 
higher (Wearn et al., 2012; Halley et al., 2014). 
Additional factors, such as edge effects (Murcia, 1995), 
are likely to further impact on the biodiversity of 
fragmented ecosystems. The negative effect of habitat 
fragmentation on biodiversity is now well established 
for the Atlantic rainforest (de Lima et al., 2020), and 
is likely to also be the case for most other Neotropical 
biomes.

CONSERVATION STATUS AND THREATS

To date, the global conservation statuses of 37 214 
Neotropical species across all taxonomic groups and 
environments have been assessed for the International 
Union for Conservation of Nature’s Red List of 
Threatened Species (hereafter Red List) and their 
partners (https://www.iucn.org; v.2021-1, accessed 
August 2021; filtered by Biogeographic Realm) (Table 1).

To estimate the proportion of Neotropical species that 
can be considered threatened, I applied the formulae 
in the reporting guidelines (IUCN, 2016) to calculate 
lower, middle and upper boundaries, depending on the 
assumption applied. The recommended statistic in 
those guidelines (the mid-point bound) indicates that 
as many as 33% of all Neotropical species are currently 
threatened (Table 2).

The statistics reported above could be potentially 
driven by one or a few species-rich groups and not be 
representative of other taxa. I explored this possibility 
by computing the proportion of threatened species 
in the 15 largest orders of the most species-rich 
organism group assessed to date: plants (Table 1). 
I found no systematic bias across those orders (Fig. 5). 
The average proportion of threatened species, at 37% 
(standard deviation 9%), is similar to a recent estimate 

for all vascular plants in the world (39%) which takes 
into account several quantitative biases such as the 
non-random nature with which groups and species are 
chosen for assessments (Nic Lughadha et al., 2020).

Red List assessments also contain important 
information on the documented or likely drivers of 
threat across different categories. Examination of 
assessment data for all Neotropical species shows 
that agriculture tops the list of threats, posing 
risks to 30% of all the species assessed (11 226 out 
of 37 214; Fig. 6) and 56% of the species currently 
classified as Critically Endangered, Endangered 
or Vulnerable (6009 out of 10 801 species). This is 
followed by unsustainable exploitation of species 
(including activities such as timber extraction, 
hunting, fishing and harvesting for illegal trade of 
species). Climate change, despite its massive global 
impact on societies, only comes in 7th position on the 
list of threats, although this needs to be considered in 
light of the relatively short time span against which 
threats are assessed (the coming 10 years or three 
generations, whichever is longer) and challenges in 
documenting the direct impact of climate change on 
individual species (Trull et al., 2018).

The threats to Neotropical biodiversity imposed by 
land use change (orange boxes, Fig. 6) in general and 
to agriculture in particular also present the greatest 
risks for global biodiversity (Díaz et al., 2019). However, 
these threats are assessed on a very immediate 
time frame [present conditions and next decade(s)], 
meaning that they do not inform on whether the risks 
identified are increasing with time or reflect a legacy 
of the changes that had already taken place in the last 
century. They also lack details on the geographical 
location of those changes.

To tackle this shortcoming and identify which 
Neotropical regions are most affected, I first 
estimated forest cover loss through time following 

Table 1. Number of Neotropical species for which the conservation status has been assessed to date by the IUCN and its 
partners, broken down by Red List category and major taxonomic group

IUCN category Plants Animals Fungi Brown algae Sum

EX - Extinct 26 88 0 0 114
EW - Extinct in the Wild 15 9 0 0 24
CR - Critically Endangered 1309 951 9 4 2273
EN - Endangered 2807 1399 15 1 4222
VU - Vulnerable 2937 1327 41 1 4306
LR/cd - Lower Risk: Conservation  

Dependent
33 10 0 0 43

NT or LR/nt - Near Threatened 990 974 16 0 1980
LC or LR/lc - Least Concern 9214 10 678 42 0 19 934
DD - Data Deficient 1497 2795 17 9 4318
Total assessed 18 828 18 231 140 15 37 214
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the methodology available through https://www.
globalforestwatch.org/ powered by the Google Earth 
Engine, based on high accuracy remote sensing data 
(Hansen et al., 2013) from Curtis et al. (2018) and 
subsequent updates (accessed May 2021). Between 
2001 and 2020, a polygon comprising the Neotropical 

region (Morrone, 2014) lost c. 10 million hectares of tree 
cover, equivalent to a 10% decrease. The regions with 
highest rates of loss were the Amazonian deforestation 
arc (i.e. the eastern and southern borders of Amazonia), 
extending south into Paraguay and Argentina, and 
parts of eastern Central America (Fig. 7A). These 

Table 2. Proportion and approximate numbers of Neotropical species that can be considered threatened, depending on 
the assumption applied (IUCN, 2016). The mid-point estimate, which is deemed closest to the true number, is highlighted 
in bold

Type of estimate Assumption Formula Percentage 
threatened (%)

Number of 
species

Lower bound No Data Deficient species is 
in fact threatened

(CR+EN+VU)/(assessed-EX) 29 10 834

Mid-point Data Deficient species 
are threatened in the 
same proportion as 
others

(CR+EN+VU)/(assessed-EX-DD) 33 12 261

Upper bound All Data Deficient species 
are in fact threatened

(CR+EN+VU+DD)/(assessed-EX) 41 15 165

Figure 5. Proportion of threatened species (mid-point estimates; see Table 2 for the formula used) in the 15 plant orders 
with the greatest number of species that could be assessed. The plot shows relative consistency in the proportion of 
threatened species for each order surveyed, except for two orders outside the standard deviation of this data: Asterales with 
61% and Ericales with 48% of threatened species. See Table S1 in the online Supporting Information for a full breakdown 
of these orders per Red List category. Data compiled from IUCN (v.2021-1, accessed August 2021).
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results show that deforestation rates, which are 
documented to have been high since satellite images 
came into widespread use in the 1970s, continue at 
alarming levels even today.

I then used the same platform described above to 
estimate the location of these changes and their main 
drivers, classified through the methodology described 
in Curtis et al. (2018) (Fig. 7B). Commodity production 
is the primary cause of deforestation across the South 
American Dry Diagonal, comprising most of the Cerrado 
and Chaco vegetation but also parts of Amazonia, the 
Caatinga and the Atlantic rainforest; most of this is 
currently for either cattle ranging or large-scale soy 
cultivation, a protein-rich crop mainly exported to 
China and the European Union for the industrial 
production of beef, poultry and pork (Godfray et al., 
2018). As databases on global supply chains improve, 
it is now becoming increasingly possible to connect 
habitat degradation in one region to the countries 
driving it through consumption (Moran & Kanemoto, 
2017). In contrast, shifting agricultural practices of 
small- and medium-scale agriculture characterize 
most changes related to forest loss in Central America, 
the tropical Andes and north-eastern Brazil. The 
relative impact of commodity production appears to be 
much larger than that of shifting agriculture: Ecuador, 
for instance, lost 4.6% of its territory in tree cover over 
the last two decades, whereas Paraguay shows a tree 
cover loss amounting to nearly six times more (26% 
of its territory) over the same period. Finally, forestry 

activities (primarily the logging of commercial tree 
plantations but also of some primary forests) is the 
primary driver in south-eastern Brazil. Urbanization 
has had only a minor direct impact over the period 
analysed, reflecting the fact that population growth 
is mainly happening in already crowded urban 
developments.

Current evidence is thus unequivocal in testifying to 
the massive impacts of human activities on Neotropical 
ecosystems, both historically and ongoing. Whether 
negative effects will be allowed to continue depends 
on our ability to identify and embrace the closing 
window of opportunities towards a more responsible 
stewardship of nature (Steffen et al., 2015).

EMERGING OPPORTUNITIES: ‘KEEPING’ 
AND ‘FIXING’

The post-2020 Global Biodiversity Framework under 
the Convention on Biological Diversity (https://www.
cbd.int/) may become the most decisive environmental 
agreement in human history, past and future. This is 
because if we are unable to halt biodiversity loss in the 
next few decades, it is likely that the damage incurred 
to many natural ecosystems would be so severe as to 
become irreversible (Leclère et al., 2020). At the time 
of writing, current drafts of the post-2020 Framework 
(to be concluded during the 15th Conference of the 
Parties in 2022) aim to halt biodiversity loss by 2030 

Figure 6. The ten major threats to the 37 214 Neotropical species assessed to date. Numbers within boxes indicate species 
considered to be affected by each threat. Colours indicate broad classes of threats: orange: activities primarily linked to land 
use change; blue: exploitation; green: pests and pathogens; red: environmental. One species can be threatened by more than 
one factor, leading the sum of individual threats to exceed the number of species assessed. Threat labels are simplified. Data 
compiled from IUCN (v.2021-1, accessed May 2021).
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and to achieve recovery by 2050. There are two key 
opportunities for the Neotropics: protecting and 
restoring.

Protecting what is left

It may feel dire that a great but unquantified number 
of species have probably already been lost in the 
Neotropics, both during its early colonization and 
modern agricultural and population expansions; 
however, we now need to focus primarily on the 
third of all Neotropical species that are threatened 
today, as well as the other facets of biodiversity at 
risk, from genes to functions and whole ecosystems. 
Extinction risks mean that species still have a chance: 
the conservation status for individual species can be 
improved, and extinction debts for whole ecosystems 
can be reverted (Mair et al., 2021).

Although terms such as ‘wild’ or ‘pristine’ may no 
longer be appropriate to describe ecosystems that have 
been impacted by human activities through centuries 
(Fernández-Llamazares et al., 2020; see also Fig. 2), 
the value of largely intact forests remains crucial for 
a large proportion of Neotropical species and in order 
to sustain their ecological processes and interactions 
(Watson et al., 2018). The advocacy of a ‘shared 
Earth’ between humans and other species is socially 
appealing, and there is ample evidence of sustainable 
use of natural resources by traditional communities 
(Obura et al., 2021). There are also calls for increasing 
the sustainable use of biodiversity through the 
development of bio-economies (Nobre & Nobre, 2018) 
and equitable exploration of species properties to 
develop nature-based solutions to global and regional 

challenges, as sources of food, carbon storage, medicines 
and much more (Seddon et al., 2019; Antonelli et al., 
2020; Ulian et al., 2020). However, given current levels 
of human pressure, and the sensitivity of many species 
to even low levels of disturbance, more research is 
needed to identify the right balance between full 
protection and shared space, with potentially large 
variations across the various Neotropical regions and 
ecosystems.

A crucial step in identifying priority areas for new or 
enhanced protection is to apply data-driven, objective 
methods (Margules & Pressey, 2000; Sacre et al., 2020). 
Otherwise, there is a substantial risk of setting aside 
the cheapest areas for protection (often termed ‘residual’ 
reserves) when pursuing specific area-based metrics, 
rather than protecting the optimal (and potentially 
more expensive) areas from a biodiversity perspective 
(Devillers et al., 2015; Vieira et al., 2019). Analyses using 
tools in the field of systematic conservation planning 
(also termed spatial conservation prioritization) have 
been applied to the Neotropics (e.g. Vieira et al., 2019), 
offering evidence-based information on expected 
protection effectiveness for threatened species. New 
advances in artificial intelligence, remote sensing, 
citizen science and environmental DNA analysis 
now offer powerful tools to scale up such work while 
considering the complexities of socio-biological systems 
and climate change (Silvestro et al., 2021).

restoring what is gone

Besides preventing further loss and fragmentation 
of ecosystems, global efforts are now focusing on the 
importance of ecosystem restoration as an equally 

Figure 7. Forest cover loss and its drivers from 2001–2020. A, c. 10% of forest cover was lost within the region outlined. 
B, drivers of forest loss. Data and analyses from https://www.globalforestwatch.org/. The maps show that forest loss is still 
happening at an alarming pace across the entire Neotropical region but is being driven by different regional pressures.
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critical step towards bending the curve on biodiversity 
loss (Leclère et al., 2020). This is why the United 
Nations have declared 2021–2030 the Decade on 
Ecosystem Restoration (www.decadeonrestoration.
org), with ambitious pledges being made by 
governments, corporations and other organizations 
around the world.

Fortunately, there are multiple co-benefits to be 
gained by carefully choosing the right places and 
habitats to restore, which could create corridors 
for wildlife, strengthen the long-term survival of 
currently threatened species and reduce a substantial 
proportion of imminent extinctions (Strassburg et al., 
2020; Mair et al., 2021). Habitat restoration is also 
likely to diminish the impact of climate change and 
other synergetic threats on species, in particular 
where those combined risks are projected to be highest 
over the course of this century, as in the Cerrado and 
eastern South America (Segan et al., 2016). Ecosystem 
restoration, including rewilding (Svenning, 2020) and 
reforestation, holds great promise to help tackling 
both the biodiversity and climate crises (Girardin 
et al., 2021), as long as it is properly designed and 
implemented (Di Sacco et al., 2021).

The Atlantic rainforest is one region which, after 
massive degradation and fragmentation triggered 
during colonial times, is now shifting from being a 
‘shrinking biodiversity hotspot’ to becoming a ‘hope 
spot’ (Rezende et al., 2018). Through community 
engagement and co-planning (de Siqueira et al., 2021), 
payments for ecosystem services and legislation that 
enforce landowners to restore riparian forests (Scarano 
& Ceotto, 2015), and voluntary protection of land 
Reservas Particulares de Patrimônio Natural (RPPNs) 
(Private Natural Heritage Reserves), forest cover could 
increase substantially in the coming decades, with 
manifold benefits for biodiversity, local communities 
(through clean water provision, cultural services and 
food production) and climate mitigation (through 
carbon storage, increased shade and local cooling 
effects). In many places, natural regeneration remains 
a viable and cost-effective option (de Rezende et al., 
2015). Restoration thus offers a powerful way to help 
protect the vanishing biodiversity of the Neotropics, 
but it should never be considered a replacement to 
protecting remaining, old-growth habitats.

CONCLUSIONS

Neotropical biodiversity has been in the making for 
at least 100 My, accumulating since the separation of 
South America from Africa. If that was our 24-hour 
watch to measure events against, the arrival of 
humans to the Neotropics took place only in the last 
15 seconds before midnight. Despite this, the events of 

those seconds have resulted in a massive change to all 
Neotropical ecosystems, most drastically in connection 
with the nearly exponential growth in the human 
population since the early 1900s, equivalent to 0.1 
seconds before midnight.

Despite all odds, there is still time to make peace 
with nature (Baste et al., 2021), both for the intrinsic 
values of nature and the manifold services and 
benefits we derive from it (Díaz et al., 2018). Protecting 
and restoring Neotropical biodiversity will require 
collective action by all sectors of society, a challenge 
that cannot be understated (Jagers et al., 2020), 
particularly for tackling seemingly unsurmountable 
problems such as Amazon deforestation (Bastos Lima 
et al., 2021).

As scientists, we have a special role to play. However, 
the knowledge we produce remains too often confined 
to the limits of academic journals and meetings. 
I therefore reiterate previous calls (Hendry et al., 
2010) for our community to engage more widely in 
public debate, providing knowledge and advice on the 
conservation of Neotropical groups or regions we know 
well. We also need to engage more broadly with non-
scientists (local groups, NGOs and local communities) 
learning from the rich but underappreciated wealth 
of traditional knowledge they hold (Albuquerque 
et al., 2021) in order to jointly identify sustainable 
ways to protect nature while safeguarding the 
well-being of people. The Brazilian Platform on 
Biodiversity and Ecosystem Services (BPBES) is 
one Neotropical example that has successfully built 
bridges across various stakeholders independently 
from, but in dialogue with, governmental authorities 
(Scarano et al., 2019). Finally, we must lead by 
example: our families, friends and societies look upon 
us as individuals to live our lives responsibly and 
sustainably. As long as biodiversity remains and we 
choose to act, there is hope.
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Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Table S1. Fraction of globally threatened species in the 15 largest orders of Neotropical plants. The fraction reported 
represented a mid-point between the lower and upper bound of threatened species for which sufficient data were 
available, and it was calculated following the formula Fraction threatened = (CR+EN+VU) / (assessed-[EX-DD])1. 
Data compiled from the International Union for Conservation of Nature (IUCN; accessed August 2021).This is 
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