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Glyptostrobus pensilis K. Koch, the only living species, is endemic to southern China. Epidermal structures of
G. pensilis have been studied on leaves collected from Guangzhou, southern China, the native locality of the species,
and from Hangzhou, eastern China, the cultivated locality. Leaves are linear, linear-subulate and scale-like. Epi-
dermal cells are rectangular and elongate parallel to the mid-vein on areas lacking stomata, and short, with rounded
corners, on intrastomatal areas. Stomatal bands lie parallel to the mid-vein on both surfaces of leaves. Commonly the
stomata have five or six subsidiary cells. Stomatal parameters (density and index) of the same surfaces of linear
leaves from Guangzhou and Hangzhou show no statistically significant differences (P > 0.05). Considering the sto-
matal parameters of the same surfaces of linear-subulate leaves between the two localities, the stomatal index of the
abaxial surfaces reveals no significant differences (P > 0.05), while the stomatal index of the adaxial surfaces and the
stomatal density of both surfaces exhibit significant differences (P < 0.05). Intra-individual variation in stomatal
index is smaller than that in stomatal density based on the coefficient of variability of stomatal parameters of the
same areas of leaves. When studying the correlation between stomatal parameters of G. pensilis and atmospheric
CO2 concentrations, the stomatal parameters of linear leaves are mostly significant, and stomatal index is more use-
ful than stomatal density. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004,
146, 153–162.
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INTRODUCTION

The conifer family Taxodiaceae traditionally includes
nine genera. They are widely distributed in north tem-
perate to subtropical regions of both the Old and New
Worlds, with only one genus in the Southern Hemi-
sphere (Page, 1990; Yu, 1994, 1995). Taxodium is dis-
tributed southwards from north-eastern USA to
Florida, Mexico and Guatemala; Cunninghamia occu-
pies southern China; Taiwania occurs in southern
China, including Taiwan, and northern Myanmar;
Cryptomeria occurs in China and Japan; Sequoia and
Sequoiadendron occur in western North America;
Glyptostrobus and Metasequoia grow in southern and

central China; Arthrotaxis is endemic to Tasmania. All
the genera in Taxodiaceae are either monotypic or con-
sist of small and closely related species-groups (e.g.
Arthrotaxis), and the geographical distribution of gen-
era is one of considerable disjunction.

As an endemic Chinese genus, Glyptostrobus has a
unique living species, G. pensilis K. Koch, which is
naturally distributed within the Chinese provinces of
Guangdong, Guangxi, Fujian and Yunnan (Fig. 1; Ying
& Zhang, 1994). Trees of G. pensilis are also cultivated
in the provinces of Jiangxi, Hunan, Sichuan, Jiangsu,
Zhejiang, Anhui, Henan, Shandong, Shanghai, Hong
Kong, Taiwan (Xu & Li, 1959; Jiangsu Institute of Bot-
any, 1977; Zheng & Fu, 1978; Xu & Yu, 1980; Chen,
1992; Liu, Lu & Ou, 1994; Ying & Zhang, 1994;
Huang, 1995; Yu, 1995; Chen, Yu & Miao, 1997; Han
et al., 1997; Ru et al., 1999; Li & Zhang, 2001).
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In the fossil record of Glyptostrobus, G. europaeus
(Vickulin et al., 2003), G. lineatus (Alvin & Boulter,
1974), G. nordenskioeldii (Chandrasekharam, 1974;
Christophel, 1976), G. comoxensis (Rouse, 1967), and
G. vachrameevii (Sveshnikova, 1967) have been com-
mon in North America, continental Europe and east-
ern Asia since the Late Cretaceous period (Florin,
1963; Sveshnikova, 1963, 1967; Becker, 1969; Doro-
feev, 1974; Christophel, 1976; Schneider, 1990; Mai,
1995; Yu, 1995). They are generally preserved as frag-
ments of foliar shoots. In China, compression fossils of
leaves and shoots, identified as G. europaeus, and the
wood of G. pensilis were found from Upper Cretaceous
to Upper Tertiary rocks in the provinces of Jilin, Xin-
jiang, Heilongjiang, Liaoning, Yunnan and Hubei (Edi-
torial Group on Cenozoic Plants from China, 1978;
Guo & Li, 1979; Shenyang Institute of Geology & Min-
eral Resources, 1980; Guo et al., 1984; Li & Yang,
1984; Tao & Xiong, 1986; Xiong, 1986; Guo & Chen,
1989; Yang et al., 1996; He & Tao, 1997; Guo, 2000).

The extent of intraspecific variation is relatively
high in the macromorphology of leaf and branch struc-
tures in several genera of Taxodiaceae (Liu, Li &
Wang, 1999; Ma & Gu, 2000; Ma et al., 2000a; Stockey,
Rothwell & Falder, 2001; Ma & Li, 2002a, b). To a cer-
tain extent, leaf epidermal characters are reflected in
the structural pattern of the cuticle (Alvin, 1970;
Boulter, 1970, 1971; Alvin & Boulter, 1974; Cutler,
Alvin & Price, 1982) and the cuticle is the standard
source of valuable cellular information in leaf-
compression fossils (Kerp & Krings, 1999). Thus, epi-
dermal features might offer additional and decisive
insights into taxonomic parameters.

A few papers have described simple epidermal
structures of G. pensilis (Florin, 1922, 1931; Sveshni-
kova, 1963; Zheng & Fu, 1978; Yao & Hu, 1982;
Vickulin et al., 2003). In this paper, the epidermal
characters of three kinds of leaves of G. pensilis were
observed under both scanning electron microscopy
(SEM) and light microscopy (LM). Statistical analyses
were performed to check the differences in stomatal
parameters between the abaxial and adaxial surfaces
of the same type of leaves from the same localities, and
also to check the differences in stomatal parameters
for the same kind of leaves in Guangzhou and Hang-
zhou. The coefficient of variabilities (CV) of stomatal
density and index were compared and show that the
intra-individual variation in the stomatal index is
smaller than that in the stomatal density. The new
data obtained from this study will provide reference
material for reconstructing palaeoenvironments using
the ‘Nearest Living Relatives’ approach (Woodward,
1987; McElwain & Chaloner, 1995; Sun, Chen & Li,
1999; Li, Wang & Sun, 2001).

MATERIAL AND METHODS

Some of the leaves investigated in this study were col-
lected from G. pensilis specimens in the arboretum of
Guangzhou (23∞11¢N, 113∞22¢E), Guangdong Province
in January 2002. The remaining leaves were studied
from a mature tree in the arboretum of Hangzhou
(30∞15¢N, 120∞06¢E), Zhejiang Province in November
2000 and August 2002 (Fig. 1). All the leaves were
macerated in >30% hydrogen peroxide (H2O2) and 99%
glacial acetic acid (CH3COOH) at a ratio of 1:1. Epi-

Figure 1. The natural distributions of Glyptostrobus pensilis (based on map 6 in Ying & Zhang, 1994). The arrows show
the localities from which the specimens were collected.

Hangzhou

Guangzhou
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dermal photographs were taken under SEM (Hitachi
S570) and LM (Olympus BX50).

The sizes of stomata were measured on both the
abaxial and adaxial surfaces of linear, linear-subulate
and scale-like leaves (N = 50 on each surface). The
numbers of subsidiary cells of a stoma were deter-
mined for 200 stomatal apparati. Stomatal density is
the number of stomata per unit area of the leaf
surface. Stomatal index = 100S/(E + S), where S =
number of stomata per unit area and E = number of
epidermal cells of the same unit area. The areas used
for calculating stomatal density and index were
0.5 ¥ 0.3 mm2 in linear leaves and 0.5 ¥ 0.2 mm2 in lin-
ear-subulate leaves. One hundred measurements of
such areas were made on each of the abaxial and adax-
ial surfaces of linear and linear-subulate leaves. The
values of stomatal size and parameters (mean ± SD)
were obtained from the leaves collected from Guang-
zhou and Hangzhou, and also from these populations
combined. Statistical analyses (independent-samples
t-test) were performed using SPSS v.10.0 software.
Statistically significant differences were assumed
when a two-tailed P-value was <0.05. The values of CV
(CV = SD/mean) of stomatal density and index were
obtained in order to compare intra-individual varia-
tion between stomatal density and index.

LEAF DESCRIPTION AND COMPARISON

Trees of G. pensilis are semi-evergreen and monoe-
cious. Their inflorescences develop in February to
March, and seeds mature in October to November.
Leaves are spirally arranged and comprise three mor-
photypes: linear, linear-subulate and scale-like. The
linear leaves are flat, thin and two-ranked on annual
branchlets of young trees and budding branchlets of
mature trees (Fig. 2A). The linear-subulate leaves are
quadrangular in cross-section and radially spreading
on annual branchlets of mature trees (Fig. 2B). The
branchlets with linear and linear-subulate leaves
often fell off as a unit in winter. The scale-like leaves,
relatively thick and persistent for 2–3 years, are
distributed radially on main, perennial and fertile
branches (Fig. 2C).

The epidermal structures on both the abaxial and
adaxial surfaces of the three morphotypes are very
similar, which defines the leaves as amphistomatic.
The epidermal cells are elongated within the non-sto-
matal areas, while they are rectangular with slightly
rounded cell-corners on the intrastomatal zones
(Figs 3, 5, 6). Pits can be seen clearly in the walls of
epidermal cells both on non-stomatal areas (Fig. 4)
and on intrastomatal zones (Figs 7, 8). In linear
leaves, epidermal cell length in non-stomatal areas is
131.6 ± 31.1 mm (Guangzhou 129.3 ± 25.0 mm, Hang-
zhou 134.0 ± 36.4 mm) and width is 31.6 ± 5.4 mm
(Guangzhou 31.1 ± 5.6 mm, Hangzhou 32.0 ± 5.1 mm),
with the ratio of length to width (L:W) varying from
1.7:1 to 13.5:1 (on average 4.2:1). The statistical dif-
ference in epidermal cell size between Guangzhou and
Hangzhou is not significant (P > 0.05). The shape and
size of epidermal cells on the stomatal areas are irreg-
ular in comparison with those of non-stomatal areas
(Figs 3, 5, 6). The shape and size of epidermal cells in
an area of high stomatal density are more irregular
than in an area of lower stomatal density (Figs 7, 8).

Stomata on both the abaxial and adaxial surfaces of
the three morphotypes of leaves are very similar in
structure, and are also  similar  on  the  inner  surfaces
of  both  the  abaxial  and  adaxial  epidermis.  On
linear leaves, stomata are 45.2 ± 3.5 mm long and
22.8 ± 2.6 mm wide on their abaxial surface, and
45.9 ± 3.3 mm long and 23.0 ± 2.1 mm wide on their
adaxial surface. On linear-subulate leaves, stomata
are  47.7 ± 4.0 mm  long  and  23.7 ± 1.9 mm  wide  on
their abaxial surfaces, and 47.5 ± 3.9 mm long and
24.0 ± 2.1 mm  wide  on  their  adaxial  surfaces.  On
scale leaves, stomata are 47.5 ± 3.4 mm long and
24.4 ± 3.2 mm wide on their abaxial surface, and
47.2 ± 3.2 mm long and 24.0 ± 3.4 mm wide on their
adaxial surfaces (Table 1). Stomata pores are elliptical
(Figs 7, 8, 11). The long axes of stomatal pores are
mostly parallel to the mid-vein in linear and linear-
subulate leaves (Figs 3, 6), but most stomata are
oblique or perpendicular to the mid-vein in scale-like
leaves (Fig. 5). Guard cells have thickened walls, espe-
cially on outer margins. The thickened outer margins
of cell walls are banana shape (Figs 7, 8). The thick-
ened walls of guard cells form polar lamellae that pro-
duce protruding and curved ends at the two poles of
the stomata (Figs 7, 8, 13). Commonly the stomata
have five (49.5%) or six (32%) subsidiary cells, some-
times four (15%) and occasionally seven (3.5%). For
Guangzhou and Hangzhou, respectively, 51% and 48%
of the stomata have five subsidiary cells, 33% and 31%
have six, 14% and 16% have four, and 2% and 5% have
seven (Figs 7, 8, 12).

Stomata are located on each side of the mid-vein
and distributed on both the abaxial and adaxial sur-
faces of leaves (Figs 3, 5, 6). The numbers of stomata

Figure 2. Leaves of Glyptostrobus pensilis. A, linear
leaves; B, linear-subulate leaves; C, scale-like leaves.
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on the abaxial surface are greater than those on the
adaxial surface in linear leaves, as the stomatal band,
about 0.3 mm in width, on the abaxial surfaces com-
prises 7–10 lines of stomata on each side of the mid-
vein (Fig. 3, left), while the band on the adaxial sur-
face has only 1–3 lines of stomata (Fig. 3, right). On
each surface of the quadrangular linear-subulate
leaves, the numbers and distribution of stomata are
almost the same. The stomatal band comprises 4–6
lines of stomata and occupies about 0.2 mm in width
(Fig. 6). There are 2–5 lines of stomata in each sto-

matal band on both the abaxial and adaxial surfaces of
scale-like leaves (Fig. 5).

In the stomatal area, the stomatal density of linear
leaves is 136 ± 24 mm-2 on the abaxial surface and
46 ± 14 mm-2 on the adaxial surface and that for lin-
ear-subulate leaves is 118 ± 26 mm-2 on the abaxial
surfaces and 112 ± 24 mm-2 on the adaxial surfaces.
The stomatal index of linear leaves is 13.88 ± 1.81 on
the abaxial surface and 8.99 ± 1.81 on the adaxial sur-
face, and for linear-subulate leaves 13.32 ± 2.32 on the
abaxial surfaces and 13.06 ± 2.14 on the adaxial sur-

Figures 3–6. Epidermis of leaves of Glyptostrobus pensilis. Fig. 3. Epidermis of linear leaf collected from Guangzhou: left,
abaxial surface; right, adaxial surface. Scale bar = 10 mm. Fig. 4. Epidermal cells of linear-subulate leaf collected from
Hangzhou. The arrows show the pits. Scale bar = 30 mm. Fig. 5. Epidermis of scale-like leaf collected from Guangzhou. The
middle part of the figure is the abaxial surface. Scale bar = 10 mm. Fig. 6. Epidermis of linear-subulate leaf collected from
Hangzhou. The middle part of the figure is the abaxial surface. Scale bar = 10 mm.

3 4
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faces (Table 2). The results of a t-test indicate that the
statistical differences of stomatal parameters between
the abaxial and adaxial surfaces of linear leaves from
the same localities are significant (P < 0.05, Table 3).
The statistical differences in stomatal density

between the abaxial and adaxial surfaces of linear-
subulate leaves from Guangzhou are significant
(P < 0.05, Table 3), but those from Hangzhou are not
significant (P > 0.05, Table 3). The statistical differ-
ences of stomatal index between the abaxial and adax-

Figures 7–8. Stomata from linear-subulate leaves collected from Hangzhou. Arrows indicate pits. Scale bars = 30 mm.

7 8

Table 1. Stomatal size of Glyptostrobus pensilis

Linear leaves Linear-subulate leaves Scale leaves 

Abaxial surface Adaxial surface Abaxial surface Adaxial surface Abaxial surface Adaxial surface

Stomatal length 45.1 ± 3.2 (G) 45.5 ± 3.3 (G) 45.4 ± 3.7 (G) 46.1 ± 3.2 (G) 46.0 ± 2.9 (G) 46.2 ± 2.2 (G)
(mm) 45.3 ± 3.8 (H) 46.2 ± 3.3 (H) 49.9 ± 2.9 (H) 48.9 ± 4.1 (H) 49.1 ± 3.1 (H) 48.3 ± 3.6 (H)

45.2 ± 3.5 (C) 45.9 ± 3.3 (C) 47.7 ± 4.0 (C) 47.5 ± 3.9 (C) 47.5 ± 3.4 (C) 47.2 ± 3.2 (C)

Stomatal width 22.9 ± 2.1 (G) 22.9 ± 1.7 (G) 23.1 ± 1.6 (G) 22.8 ± 1.5 (G) 21.9 ± 1.3 (G) 22.0 ± 1.4  (G)
(mm) 22.6 ± 3.1 (H) 23.2 ± 2.6 (H) 24.3 ± 2.0 (H) 25.1 ± 1.9 (H) 27.0 ± 2.3 (H) 26.0 ± 3.6 (H)

22.8 ± 2.6 (C) 23.0 ± 2.1 (C) 23.7 ± 1.9 (C) 24.0 ± 2.1 (C) 24.4 ± 3.2 (C) 24.0 ± 3.4 (C)

G, Guangzhou, South China; H, Hangzhou, East China; values obtained from 50 leaf surface samples. C, combined
Guangzhou and Hangzhou results obtained from 100 leaf surface samples.
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ial surfaces of linear-subulate leaves from the same
localities are not significant (P > 0.05, Table 3). The
differences in stomatal parameters of the same sur-
faces of linear leaves between Guangzhou and Hang-
zhou are not significant (P > 0.05; Table 4). The
statistical differences of stomatal density of the same
surfaces of linear-subulate leaves between Guangzhou
and Hangzhou are significant (P < 0.05; Table 4). The
statistical differences of stomatal index of the abaxial
surfaces of linear-subulate leaves between Guangzhou
and Hangzhou are not significant (P > 0.05, Table 4),
but those of the adaxial surfaces of linear-subulate
leaves are significant (P < 0.05; Table 4). The values of
CV of stomatal index are lower than those of stomatal

density from the same areas on each surface of the
same type leaves from the same localities, which
indicate that the stomatal index shows a lower intra-
individual variation and hence is more useful for
palaeoecological reconstruction than stomatal density
(Figs 9, 10). 

Table 2. Stomatal density and index of Glyptostrobus pensilis

Linear leaves Linear-subulate leaves 

Abaxial surface Adaxial surface Abaxial surface Adaxial surface

Stomatal density 138 ± 25 (G) 45 ± 15 (G) 112 ± 24 (G) 104 ± 19 (G)
(mm-2) 135 ± 23 (H) 47 ± 13 (H) 125 ± 27 (H) 119 ± 25 (H)

136 ± 24 (C) 46 ± 14 (C) 118 ± 26 (C) 112 ± 24 (C)

Stomatal index 13.94 ± 2.07 (G) 9.12 ± 1.99 (G) 13.02 ± 2.20 (G) 12.52 ± 2.07 (G)
13.82 ± 1.53 (H) 8.86 ± 1.61 (H) 13.62 ± 2.41 (H) 13.60 ± 2.09 (H)
13.88 ± 1.81 (C) 8.99 ± 1.81 (C) 13.32 ± 2.32 (C) 13.06 ± 2.14 (C)

G, Guangzhou, South China; H, Hangzhou, East China; values obtained from 100 leaf surface samples. C, combined
Guangzhou and Hangzhou results obtained from 200 leaf surface samples.

Table 3. Statistical analyses of differences in stomatal parameters between the abaxial and adaxial leaf surfaces of
Glyptostrobus pensilis from Guangzhou and Hangzhou

Abaxial and adaxial
surfaces of:

Guangzhou Hangzhou

Stomatal density Stomatal index Stomatal density Stomatal index

Linear leaves P < 0.05 P < 0.05 P < 0.05 P < 0.05
Linear-subulate leaves P < 0.05 P > 0.05 P > 0.05 P > 0.05

Figure 9. Coefficients of variability (CV) for stomatal den-
sity (�) and stomatal index (�) of abaxial (ABL) and adax-
ial (ADL) surfaces of the linear leaves, and abaxial (ABS)
and adaxial surfaces (ADS) of linear-subulate leaves col-
lected from Guangzhou.
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Table 4. Statistical analyses of differences in stomatal
parameters of Glyptostrobus pensilis from Guangzhou and
Hangzhou

Leaf type Surface
Stomatal
density

Stomatal
index

Linear Abaxial P > 0.05 P > 0.05
Adaxial P > 0.05 P > 0.05

Linear-subulate Abaxial P < 0.05 P > 0.05
Adaxial P < 0.05 P < 0.05
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DISCUSSION

In genera of Taxodiaceae, some morphological features
of branches, leaves and cones are similar (Stebbins,
1948; Chaney, 1951; Christophel, 1976; Ma & Gu,
2000). It is thus important to compare the epidermal
structures of fossil species with their ‘Nearest Living
Relatives’ (McElwain & Chaloner, 1995) in an attempt

to identify fossil leaf-compressions accurately. In order
to distinguish fossil specimens of these genera, there
is a need to study characters of both epidermal cells
and stomata of leaves in living Taxodiaceae.

Previous descriptions of stomata of G. pensilis were
very brief and solely for the abaxial surfaces of linear
leaves (Zheng & Fu, 1978). Stomata of G. pensilis were
also shown on both abaxial and adaxial surfaces of
leaves  (amphistomatic)  with 4–7 subsidiary  cells
(Yao & Hu, 1982). Sveshnikova (1963) reported that
G. pensilis has two types of leaves, subulate (or needle-
like) and scale-like, both amphistomatic and with 4–6
(7) subsidiary cells. Florin (1922, 1931) recognized that
the stomata have 4–6 subsidiary cells. In a recent com-
parative study on fossil Glyptostrobus, cuticular micro-
papillae were also found on cuticle of G. pensilis. These
details of cuticle micromorphology are considerably
better expressed in a fossil species in comparison with
the living species G. pensilis (Vickulin et al., 2003).
According to the present work on G. pensilis, stomata
are located on each side of the mid-vein and distributed
on both the abaxial and adaxial surfaces of the three
types of leaves. The number of stomata on the adaxial
surface are fewer than those on the abaxial surface in
linear leaves, but they are approximately the same on
the different surfaces of the other two kinds of leaves.
Most commonly the stomata have five or six subsidiary
cells, and sometimes also four or seven.

Stomatal guard cells in G. pensilis have thickened
walls. The lignified thickenings of guard cells were not

Figure 10. Coefficients of variability (CV) for stomatal
density (�) and stomatal index (�) of abaxial (ABL) and
adaxial (ADL) surfaces of the linear leaves, and abaxial
(ABS) and adaxial surfaces (ADS) of linear-subulate leaves
collected from Hangzhou.
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Figures 11–13. SEM images of stomata. Scale bars = 50 mm. Fig. 11. Stomata of outer surface of a linear leaf collected
from Hangzhou. Figs 12, 13. Stomata of inner surface of linear leaves collected from Hangzhou.
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described in detail by previous researchers, exceptions
being Boulter (1970, 1971) and Ma & Li (2002a, b),
presumably because the thickenings were removed to
some extant by the different maceration procedures
(Isherwood, 1965; Alvin & Boulter, 1974; Kerp, 1990;
Vickulin, 1999; Ma et al., 2000b; Ma & Li, 2002a, b).
Thickened walls of guard cells were also observed in
Sequoia (Chaturvedi, 1993; Ma & Li, 2002a), Metase-
quoia (Liu et al., 1999; Leng et al., 2001; Ma & Zhang,
2003), Taiwania (Chaturvedi, 1993), Taxodium
(Chaturvedi, 1993) and Cryptomeria, Sequoiaden-
dron, Arthrotaxis (Boulter, 1970).

Recently, the authors (Vickulin et al., 2003) have
studied G. europaeus leafy shoots collected from the
early Miocene Kaydagul Formation, central Kazakh-
stan. The shoots have two kinds of leaves, needle-like
ones similar to the leaves of Cryptomeria and squa-
mate ones similar to cupressoid forms. The former
leaves are equivalent to linear-subulate leaves while
the  latter  ones  are  described  as  scale-like  leaves
in this paper. No linear leaves were found in
G. europaeus. The two kinds of leaves in the fossil are
amphistomatic, with similarly organized epidermal
cells and stomata on both the abaxial and adaxial sur-
faces of leaves. The epidermal cells are quadrangular,
with the ratio L:W being 1–3 in G. europaeus. The
ratio L:W of epidermal cells on non-stomatal areas of
linear leaves of G. pensilis is on average 4.2. The sto-
matal structures of G. europaeus are the same as
those of the living species of G. pensilis. Stomata usu-
ally have five subsidiary cells and very rarely four or
six in G. europaeus, but very often five or six in
G. pensilis. Stomatal pores are randomly orientated
coaxial or at a slight angle towards the leaf axis, but
very rare orthogonal orientation in G. europaeus,
while the long axes of stomatal pores are mostly par-
allel to the mid-vein in linear and linear-subulate
leaves, and oblique or perpendicular to the mid-vein in
the scale-like leaves of G. pensilis. Similar stomatal
patterns were also found in Eocene specimens of
G. europaeus from Fushun, Liaoning Province, China
(Florin, 1922; Editorial Group on Cenozoic Plants
from China, 1978). There are no further details of leaf
epidermis in fossil Glyptostrobus for comparison with
those of living G. pensilis (Sveshnikova, 1963, 1967;
Rouse, 1967; Alvin & Boulter, 1974; Chan-
drasekharam, 1974; Zhilin, 1974, 1989; Christophel,
1976; Stuchlik et al., 1990; Worobiec, 1995; Vikulin &
Zhilin, 1998).

Considering stomatal parameters and atmospheric
CO2 concentrations, a rise in CO2 concentrations is cor-
related with a decline of stomatal parameters; thus,
stomatal parameters can be used as an indication of
ambient CO2 concentrations (Woodward, 1987; Sun
et al., 1999). Stomatal density and index are equally
likely to be inversely related to CO2 concentration, but

the latter is not the only factor that influences the sto-
matal density and index. Stomatal density varies with
changes in solar radiation, temperature and water sta-
tus (Beerling, 1999). Stomatal index, in contrast, is
sensitive only to factors affecting cell initiation, of
which CO2 appears to be one. Thus, even if stomatal
density and stomatal index show similar responses for
a given species, stomatal index should yield more accu-
rate estimates of CO2 levels (Royer, 2001).

The variation of stomatal parameters of linear
leaves is smaller than that of linear-subulate leaves of
G. pensilis, according to t-test results of stomatal
parameters between Guangzhou and Hangzhou
(Table 4). The variation of stomatal index of the abax-
ial surfaces is smaller than that of the index of the
adaxial surface, and also is smaller than that of the
density of the abaxial and adaxial surfaces in linear-
subulate leaves according to t-test results (Table 4).
Thus, in considering a correlation between stomatal
parameters of G. pensilis and atmospheric CO2 con-
centrations, the stomatal parameters of linear leaves
should be selected.

Intra-leaf variations of stomatal density and index
are present in many species (Royer, 2001). As we
obtained the values of stomatal density and index of
G. pensilis from the same areas of leaves in the
present paper, the intra-individual variation of sto-
matal index is smaller than that of the density by com-
paring the CV of stomatal density with the CV of index
(Figs 9, 10).
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