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Abnormal phase-amplitude coupling between b and broadband-c activities has been identified in recordings from the cortex or

scalp of patients with Parkinson’s disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of

Parkinson’s disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in

Parkinson’s disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at

rest in 19 patients with Parkinson’s disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected

onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using

independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson’s disease patients was

enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference

being statistically significant in the hemisphere contralateral to the clinically more affected side. b and c signals involved in gener-

ating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely

reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between

the b and c signals from identical components as opposed to those from different components (originating from distinct spatial

locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor sever-

ity as indexed by part III of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale. Correlations with parkin-

sonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex,

but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling dem-

onstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude cou-

pling in Parkinson’s disease patients originates from the coupling between distinct neural networks in several brain regions

involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not

exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only

the coupling between b and c signals from different components appears to have pathophysiological significance, suggesting that

therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting

phase-amplitude coupling per se.
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Introduction
Over the past decade, exaggerated phase-amplitude coupling

(PAC) between b and broadband-c activities has been

detected in subthalamic nucleus (STN), motor cortex, and

interactions between the two regions of patients with

Parkinson’s disease via subdural electrocorticography

(ECoG) and local field potential (LFP) recordings (de

Hemptinne et al., 2013; Kondylis et al., 2016). It has also

been shown that enhanced PAC, as well as parkinsonian

bradykinesia, can be reduced by dopaminergic therapy

(Miller et al., 2019) or through STN deep brain stimulation

(DBS) (De Hemptinne et al., 2015; van Wijk et al., 2016;

Malekmohammadi et al., 2018), suggesting that abnormally

enhanced PAC might represent a neural circuit abnormality

that is close to the causative pathophysiological mechanism

underlying parkinsonian bradykinesia. Recently, two EEG

studies have shown that even non-invasive techniques can be

used to differentiate between patients and healthy individu-

als, and that the state of drug-induced improvement of mo-

bility in patients with Parkinson’s disease can be

differentiated from the akinetic state by means of PAC

(Swann et al., 2015; Miller et al., 2019).

However, two issues related to abnormal PAC cannot yet

be satisfactorily addressed using data recorded at EEG sen-

sors: (i) the spatial localization of the brain regions from

where the pathological coupling originates is incompletely

explored. EEG sensor signals are poor in localizing the brain

areas generating the underlying neuronal activity, because

each signal represents a mixture of differently weighted con-

tributions from numerous brain areas. This issue is import-

ant as the spatial distribution of abnormal PAC informs

about its possible origin within anatomically segregated

loops of the basal-ganglia-thalamocortical circuit (BGTC),

which may relate to distinct motor and non-motor functions

(DeLong and Wichmann, 2010); and (ii) the origin of PAC-

involved b and c activity at a local scale and its relationship

with the pathophysiology of parkinsonian motor impairment

remain unclear. Both slow and fast activities could originate

from a single oscillator, in which slow and fast rhythms are

nested and tightly phase-coupled (Gast et al., 2020).

Alternatively, slow and fast activities may originate from rela-

tively independent neural circuits co-located in the same brain

region, in which b and c networks are only weakly coupled.

In this scenario, the b-signal would only modulate the gain of

the c network, resulting in PAC without phase-phase coupling

(Schroeder and Lakatos, 2009). However, although the spa-

tial distributions of these two oscillators would be different, it

is not a priori clear that they can be distinguished within the

methodological limits of scalp EEG. Each of these different

scenarios may have important implications for the mecha-

nisms of PAC and its pathophysiological significance.

EEG source localization techniques, based on detailed and

individual biophysical head models, offer the possibility to

reconstruct the original source signals and thereby reveal the

spatiotemporal architecture of the underlying brain activity.

Here we used advanced source analysis to more precisely lo-

cate PAC in distinct regions of individual brains. To differ-

entiate the fine spatial structure of the involved oscillators

within each region, we used independent component analysis

(ICA). ICA separates spatiotemporal independent subnet-

works linearly mixed in the original signals, and thus pro-

vides a unique spatial signature for every separated

subnetwork. These techniques helped us to investigate which

spatiotemporal properties of regional PAC may be most rele-

vant for the parkinsonian motor dysfunctions. Our findings

provide new evidence on the pathophysiological mechanisms

of PAC in Parkinson’s disease. Obtaining such information

by non-invasive EEG may have implications for the develop-

ment of neurostimulation techniques.

Materials and methods
The study protocol was approved by the local Ethics Committee
(reference number: 147/18-ek).

Participants

Twenty-one patients with Parkinson’s disease, according to the
current diagnostic criteria (Postuma et al., 2015), were recruited
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from the outpatient clinic of the Department of Neurology,

University of Leipzig Medical Center. Motor function of all

patients was assessed before the experiments, using the

International Parkinson and Movement Disorders Society Unified

Parkinson’s Disease rating scale part III (MDS-UPDRS III) (Goetz

et al., 2008). Twenty-three age- and sex-matched healthy control

subjects were recruited through various media. All participants

were right-handed as confirmed by the Edinburgh Handedness

Inventory (Oldfield, 1971). Written informed consent was

obtained from all study participants. Exclusion criteria and infor-

mation on individual structural MRI for all participants are

described in the Supplementary material. Two patients were

excluded from the cohort because of serious tremor activity inter-

fering with the EEG recording in one patient and failure to obtain

an MRI in the other. One healthy subject was excluded from the

analysis because of an abnormal finding in MRI.

EEG signal recording and

preprocessing

Signals were recorded using a 64-channel EEG system

(eegoTMmylab, ANT Neuro) with 24-bits resolution and

sampled at 2000 Hz. Vertical electrooculography and bipolar

EMG of the first dorsal interosseous (FDI) muscle were also

recorded. In patients, EMG was recorded from the hand side

that was prominently affected by the disease, as indicated by the

bradykinesia MDS-UPDRS III hemibody scores. In healthy con-

trols, the side of FDI-EMG recordings was pseudorandomly

chosen to eventually match the respective subsample sizes of

patients. During the experiment, patients were in a practically

defined ‘OFF medication’ state, after overnight withdrawal (at

least 12 h) of parkinsonian medication. Prior to the EEG record-

ing, the positions of the EEG electrodes and fiducial markers

were acquired by a 3D optical digitization system (EEG

Pinpoint, Localite). Recordings comprised 5 min of rest followed

by several movement tasks. Only the data from the resting

period were analysed for this report. For resting state record-

ings, subjects were asked to relax and fixate on a white cross

displayed at the centre of a black computer screen 80 cm in

front of them.

EEG signals were processed using the EEGLAB toolbox

(Delorme and Makeig, 2004) and custom MATLAB scripts.

Signals were first detrended and then high-pass filtered at

0.5 Hz (eegfilt.m in EEGLAB with FIR default settings).

Channels with poor data quality were excluded either based on

visually detected artefacts (long-term large spiking-like activities)

or if their power spectra failed to follow the canonical 1/f pat-

tern (Miller et al., 2009). Components containing eye movement

artefacts, channel noise, 50 Hz line noise, and heart beating

were detected using ICA and subsequently removed. Artefacts

from transitory muscle activity in EMG or EEG signals, or other

environmental noise, were visually detected and marked in the

continuous raw data. If more than 50% of data were contami-

nated by artefacts, the whole dataset was excluded from later

analysis. Through this procedure, two healthy control subjects

were excluded from the analysis. There were no significant dif-

ferences between patients and controls regarding the data vol-

ume after removing all artefacts (P = 0.474). Afterwards, all

data were re-referenced to the average of all electrodes.

Region of interest-based source
analysis

The procedure for source analysis is displayed in Fig. 1A. It
mainly relies on functions from the Fieldtrip toolbox
(Oostenveld et al., 2011), EEGLAB toolbox, and custom
MATLAB scripts. First, we constructed a lead-field matrix for
each subject, which maps potential source activities on the cor-
tex to electrical potentials at the EEG sensors (Supplementary
material). A spatial filter was then constructed by using a least-
square minimum variance beamformer (Van Veen and Buckley,
1988) based on the covariance matrix of artefacts-removed EEG
signals and on the lead-field matrix.

Source signals were then selected corresponding to particular
cortical regions of interest defined by the Human Connectome
Project atlas, which is based on multi-modal cortex parcellation
(Glasser et al., 2016). In the atlas, 180 cortical areas are defined.
Because abnormal cortical PAC of Parkinson’s disease has been
previously reported in recordings from C3 and C4 EEG electro-
des (Swann et al., 2015; Miller et al., 2019), which only broadly
reflect neuronal activity originating from sensorimotor brain
regions, we aimed at further spatial specification of PAC particu-
larly focusing on the regions involved in motor control. Thus,
we kept a fine resolution in the regions ‘somatosensory and
motor cortex’ and ‘paracentral lobular and mid cingulate cortex’.
Specifically, as described by Glasser et al. (2016), the region
‘somatosensory and motor cortex’ contained three (sub)regions,
namely primary motor cortex (M1), primary somatosensory cor-
tex and primary somatosensory complex, and the region ‘para-
central lobular and mid cingulate cortex’ contained three
(sub)regions, namely cingulate motor area, supplementary motor
area, and area 5. For all other parts of the brain we retained the
coarser resolution of 20 regions as defined by Glasser et al.
(2016) to avoid statistical power issues. As a result, 26 regions
of interest were defined covering the whole brain.

For the signals in each region of interest, we derived spatio-
temporal patterns by using a combination of principal compo-
nent analysis (PCA) and ICA (Jonmohamadi et al., 2014;
Jonmohamadi and Jones, 2016). Specifically, PCA was applied
to reduce the noise by keeping the main components, which can
explain 95% of the data variance. To detect statistically inde-
pendent stationary sources, we applied ICA to the PCA-trun-
cated source signals for each region of interest separately (PCA
and ICA were computed by runica.m in EEGLAB with the rank
of 95% data variance). Then, we applied the beamformer
weights and PCA-ICA weights calculated from the artefact-
removed EEG signals to the artefact-marked signals, to generate
continuous, breakpoint-free data, required for the PAC analysis.
The sizes of the 26 regions of interest, as indexed by the average
numbers of dipoles across subjects, and the average numbers of
ICA components for patients and controls in all 26 regions of
interest, are presented in Supplementary Table 1. None of the
26 regions of interest showed significant differences in the num-
ber of ICA components between patients and controls (two-
tailed Wilcoxon rank-sum test, P40.05).

Phase-amplitude coupling
calculation

We calculated PAC both on sensor and source signals by means
of the Kullback-Leibler-based modulation index (KL-MI)
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(Tort et al., 2008). We computed KL-MI values in phase-ampli-

tude signal pairs in which the frequencies of phase signals range

from 4 to 40 Hz in 2-Hz steps, and that of amplitude signals

from 32 to 200 Hz in 4-Hz steps. The details for PAC calcula-

tion are described in the Supplementary material.

In sensor space, we calculated KL-MI values for each sensor

signal separately. To enhance the spatial specificity of the sensor

signals, we applied the current source density procedure

(Supplementary material) before computing PAC.

At the source level, we calculated KL-MI values in ICA com-

ponent pairs within each region of interest, that is, we not only

calculated the KL-MI values for each component separately, but

also investigated the coupling between different components

within the same region of interest.

Next, a single KL-MI value of each sensor or component pair

was computed by averaging the KL-MI values over the a priori

defined phase frequency range of 13–30 Hz, and the a priori

defined amplitude frequency range of 50–150 Hz (Swann et al.,

2015). This yielded, for a region of interest with n components,

n � n KL-MI values, as a pairwise PAC matrix shown in

Fig. 1B.

Finally, for comparison between groups, we computed a sin-

gle PAC value for each region of interest of each subject. This

was obtained by averaging across the n � n KL-MI values.

Considering the different contributions of the ICA components

to the original source signals, they were weighted by the per-

centage of variance (pvar) (Supplementary material) for each

component pair before averaging.

Figure 1 Workflow for analysis on the source level. (A) Workflow of region of interest (ROI)-based EEG source analysis. We first used in-

dividual MRI images and electrode positions to create forward models, which describe the geometry and electrical properties of the head tissues

and map the electrical brain activity to the electrical potentials at the EEG electrodes. The model is displayed as a brain outline (head model in

light pink and source model in dark pink) with sensors (green dots) (top left). Using the HCP atlas information, we created the region of interest

lead-field matrix. After preprocessing of EEG sensor signals artefacts-removed and artefacts-marked EEG datasets were prepared for further ana-

lysis. A data covariance matrix was computed using artefacts-removed EEG signals. We applied beamformer techniques to project artefacts-

removed EEG signals from sensor to source space. PCA-ICA was applied to artefacts-removed source signals of each region of interest to obtain

the ICA weighting matrices. We then implemented PCA-ICA weighting matrices on artefacts-marked EEG signals to obtain artefacts-marked

time series data of ICA source components. (B) For each subject, we computed single KL-MI values (average KL-MI values in the phase frequency

range from 13 to 30 Hz and amplitude frequency range from 50 to 150 Hz) to create a pairwise PAC matrix among ICA components. Each col-

umn represents the KL-MI values when each component provided the b-phases. Each row represents the KL-MI values when each component

provided the c-amplitudes.
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Power spectral density

We used the MATLAB function ‘pwelch’ to calculate the power
spectral density (PSD). The window was set to Hamming win-
dow in 2000 ms with 50% overlap. We then computed the nor-
malized log PSD values for each ICA component.

Waveform analysis for phase-locking
estimation

When estimating the strength of phase-phase coupling between
b and c activities, the common method is computing the n:m
phase-locking value in which the phases of b and c activities
and the ratio between phases are directly defined (Ermentrout,
1981; Langdon et al., 2011). However, the direct phase defin-
ition of the broadband-c activity is not available as it is com-
posed of many different frequencies with different phases. Thus,
to test whether some of the c-phases are indeed locked to the
b-phase, we defined the phase-phase coupling between b and
broadband-c activities as correlation of the c signal with
b-phase across b-cycles. Therefore, we applied the method of
waveform analysis as described below.

To examine whether the PAC-involved c-activities were also
phase-phase coupled to b-activities, we generated averaged
waveforms for c-activities (50–150 Hz, z-score normalized)
time-locked to the b-phase (13–30 Hz, z-score normalized, then
Hilbert transformed) zero crossings. We also averaged the enve-
lopes of c-activities (from Hilbert transformation), time-locked
to the b-phase. For calculating the averaged waveforms, we
extracted epochs of 160 ms (a period of around two cycles at
13 Hz) from both signals centred at the b-peak. To avoid over-
lapping, we used only every second epoch. If all phases of the
broadband-c activity were identical in each epoch (which would
require phase reset), the amplitude of averaged c oscillations
would be identical to the average (over b-cycles) of the enve-
lopes. Otherwise, it would be reduced. The maximum ampli-
tudes of the averaged waveforms in a b-cycle were identified as
the phase-locked amplitude (PLA) to b-phase. The mean PLA of
component pairs represented the PLA for each subject. The
PLAs of c oscillations were defined as PLAosci, while those of c
envelopes were defined as PLAamp. By comparing PLAosci and
PLAamp within subjects, and between groups, we examined to
what degree abnormal PAC in Parkinson’s disease is accompa-
nied by phase-phase coupling.

The contributions of ICA
components to phase-amplitude
coupling

For each PAC value of a component pair, one ICA component
provides the b-phase and another (or the same) component pro-
vides the c-amplitude. The overall contribution of a particular
component to the b-phase information or c-amplitude informa-
tion in PAC of a region of interest can then be quantified by
summing all PAC values that involve that component as a
b-contributor or as a c-contributor, respectively. For each region
of interest, the values can be arranged in a matrix, as illustrated
in Fig. 1B. In that matrix, the sum of each column represents
the cumulative contribution of b-phases by the respective com-
ponent, while the sum of each row represents the cumulative
contribution of c-amplitudes by the respective component. To

obtain the relative contributions of a component to the b-phases
and c-amplitudes, respectively, these values were normalized to
the sum of the entire PAC matrix of the region of interest.

Finally, to estimate the inequality of the relative contributions
of ICA components to b-phases and c-amplitudes of the
observed PAC in a region of interest, a Gini coefficient (Farris,
2010) was calculated in each case. A high Gini coefficient indi-
cates that most contribution to the PAC comes from a few com-
ponents, while a low Gini coefficient means that there are no
such prominent contributors. By comparing the Gini coefficients
between two groups, we circumvented the problem that ICA
components differ between subjects and this approach enabled
us to investigate whether in patients with Parkinson’s disease
some subnetworks in the same region of interest stand out
among others with regard to their contribution to the b-phases
and c-amplitudes involved in the observed PAC.

Phase-amplitude coupling weighted
ICA topography

Each ICA source component defines an independent network
with a unique spatiotemporal pattern (Chen et al., 2013) on the
individual cortical surface. For each ICA component, we com-
puted the topography as the spatial distribution of the absolute
values of the ICA weights. To characterize the topographic dis-
tributions of the sources contributing to b-phases and coupled
c-amplitudes for each subject, we computed the average ICA
topographies (as ‘b-topography’ and ‘c-topography’, respective-
ly) by averaging the topographies of all ICA components after
weighting them according to their relative contributions to
b-phases and c-amplitudes, respectively. To compare the ICA
topographies of the left or right hemisphere across subjects, they
were mapped and morphed to the left hemisphere of a template
source model from ‘fsaverage_sym’. Absolute Spearman correl-
ation coefficients were calculated for each subject to compare
the spatial similarity between the b- and c-topography, and also
between subjects to estimate the spatial similarity of the topog-
raphies across subjects.

Statistical analysis

We defined ‘contralateral’ hemisphere for patients as the hemi-
sphere contralateral to the clinically more affected hemibody,
and for controls as the hemisphere contralateral to the selected
hand side for EMG recording (see above). For statistical com-
parison, we applied non-parametric statistical tests. Specifically,
the two-tailed Wilcoxon ‘rank-sum’ test was used for compari-
sons between groups and the two-tailed Wilcoxon ‘sign-rank’
test for comparisons within subjects. For correlation analysis,
we applied Spearman correlation analysis to investigate the rela-
tionship between PAC and other features including PSD, PLAs,
and clinical scores. To deal with multiple comparisons, we
applied false discovery rate (FDR) correction to the P-values
(FDR P-values 5 0.05).

Data availability

Personal data are protected by data privacy statements signed
by all subjects. The data can be made available upon specific re-
quest taking into account the opinion of the local data privacy
board.
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Results

Characteristics of participants

After exclusion of five participants (see ‘Materials and meth-

ods’ section), data from 19 patients (six females, age:

60.9± 10.8 years) and 20 healthy controls (eight females,

age: 62.6± 7.9 years) were included in the analysis. Clinical

characteristics of the patients are detailed in Table 1. The

‘contralateral’ hemisphere was the right hemisphere in 10

patients and the left hemisphere in nine patients correspond-

ing to their more affected body side. Accordingly, in con-

trols, the ‘contralateral’ hemisphere was the right

hemisphere in 10 subjects and the left hemisphere in 10 sub-

jects. There was no significant age difference between

patients and controls (P = 0.527). On average, patients had

been diagnosed with Parkinson’s disease 5.3± 4.5 years be-

fore the current investigation.

Phase-amplitude coupling is

enhanced in multiple cortical

sources

b-c PAC as computed by the KL-MI method in 26 brain

regions (see ‘Materials and methods’ section) showed a mark-

edly inhomogeneous distribution across the brain, which was

similar between patients and controls. However, comparison

between patients and controls revealed specific regional differ-

ences as illustrated in Fig. 2. First, we analysed the differences

in PAC by pooling the homologous regions of both hemi-

spheres (Fig. 2A). In patients, b-c PAC was enhanced, relative

to controls, in six regions of interest comprising inferior front-

al cortex (IFC, FDR P = 0.034, Z = 2.80), dorsolateral pre-

frontal cortex (DLPFC, FDR P = 0.034, Z = 2.88), premotor

cortex (PMC, FDR P = 0.023, Z = 3.33), M1 (FDR

P = 0.037, Z = 2.63), primary somatosensory cortex

[Brodmann area (BA)3, FDR P = 0.037, Z = 2.68], and pri-

mary somatosensory complex (BA1,2, FDR P = 0.034,

Z = 2.80). Z-statistic was highest for PMC. Because of the

asymmetry in clinical parkinsonian motor symptoms, we also

separately considered the hemispheres located contralaterally

and ipsilaterally to the clinically more affected hemibody. In

the contralateral hemisphere of patients, five regions of inter-

est including DLPFC (FDR P = 0.035, Z = 2.99), PMC (FDR

P = 0.035, Z = 3.25), M1 (FDR P = 0.035, Z = 2.80), BA3

(FDR P = 0.035, Z = 2.77), BA1,2 (FDR P = 0.035, Z = 2.74)

showed higher PAC than in control subjects (Fig. 2B). The

differences did not reach statistical significance in the ipsilat-

eral hemisphere although we did not explicitly find significant

differences of PAC between contralateral and ipsilateral hemi-

spheres in either patients or controls. The comodulograms of

the median KL-MI values in all five regions shows enhanced

PAC in patients (Fig. 2B). PAC from temporal regions of

interest (i.e. lateral temporal cortex, FDR P = 0.172,

Z = 1.62; medial temporal cortex, FDR P = 0.412, Z = 0.96)

did not differ between patients and controls, suggesting that

the enhanced PAC in patients was unlikely to be driven by

muscle artefacts from pericranial muscles. As we did not find

any differences in the number of ICA components between

patients and controls in any of the 26 regions of interest, the

PAC differences between patients and controls are unlikely to

be caused by differences in the number of components.

Moreover, we applied a Pearson correlation test to estimate

Table 1 Characteristics of Parkinson’s disease patients

ID Sex Age, years Disease

duration,

years

Clinically more affected

body side/ MDS-UPDRS III

hemibody scores

Total MDS-UPDRS III

(medication OFF)

L-DOPA

equivalent

dose, mg/day

01 Male 57 4 Right/7 15 310

02 Female 46 1 Left/5 6 210

03 Male 54 1 Left/10 22 400

04 Female 65 3 Left/6 10 152

05 Male 55 1 Left/8 12 500

06 Male 49 4 Right/10 30 735

07 Male 67 12 Right/12 20 683

08 Female 74 11 Left/11 24 400

09 Male 75 3 Left/10 30 525

10 Male 76 2 Right/5 12 100

11 Female 78 4 Left/13 32 300

12 Female 58 6 Left/7 19 955

13 Male 71 12 Left/11 35 1395

14 Male 56 2 Right/6 11 355

15 Female 57 3 Left/15 26 930

16 Male 63 6 Right/10 20 400

17 Male 61 17 Right/12 29 1185

18 Male 38 2 Right/13 21 520

19 Male 57 6 Right/8 14 930
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Figure 2 PAC observed at source and sensor levels. (A) Analysis of PAC distribution across 26 regions of interest of the whole brain anat-

omy when averaging PAC from two hemispheres. Left: Regions marked as red showed significant differences between patients and controls after

FDR correction [inferior frontal cortex (IFC), DLPFC, PMC, primary motor cortex (M1), primary somatosensory cortex (BA3), primary som-

atosensory complex (BA1,2)]. Right: Box plot showing the PAC of the six regions of interest that presented significant differences between

patients and controls (marked by asterisks). (B) Analysis of PAC distribution across 26 regions of interest of the whole brain anatomy in the

contralateral hemisphere. Top left: Five regions marked as red showed a significant difference between patients and controls after FDR correction.

Top right: Box plot showing the PAC of the five regions of interest that presented significant difference (marked by asterisks). Bottom: Group

comodulograms showing the median of single KL-MI across subjects in each group in the five regions of interest. (C) Analysis of PAC on sensor

level. Left: Electrodes F3, F4; FC3, FC4; C3, C4; CP3, CP4, which are related to frontal and motor-sensory areas, were selected for comparison

to the results at source level. Right: Box plot showing the PAC extracted from the four electrodes on the contralateral hemisphere of both

patients and control subjects. None of the differences reached statistical significance. To refer collectively to the electrodes relating to the

patients’ most affected hemispheres we used a notation with a forward slash (e.g. F3/4), because the most affected hemispheres varied between

patients. For instance, F3/4 refers either to F3 or F4, depending on the patient’s dominantly affected side.
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the correlation in each region of interest between the number

of components and PAC values for 39 subjects. It showed no

significant correlation in any of the 26 regions of interest

(FDR P40.2).

Previous studies reported enhanced PAC in Parkinson’s dis-

ease patients when PAC was directly computed from signals of

C3 and C4 electrodes (Swann et al., 2015) located over motor

regions. However, in our study, patients and controls did not

differ when analysis was performed on signals recorded by C3/

C4 electrodes (contralateral: P = 0.126; ipsilateral: P = 0.267),

or on signals from other electrodes, including F3/F4 (FDR,

contralateral: P = 0.438; ipsilateral: P = 0.693), FC3/FC4

(FDR, contralateral: P = 0.178; ipsilateral: P = 0.747), CP3/

CP4 (FDR, contralateral: P = 0.178; ipsilateral: P = 0.693),

which are related to frontal and sensorimotor areas (Fig. 2C).

Even when sensors from both hemispheres were collectively

considered (FDR, F3,4 P = 0.553, FC3,4 P = 0.177, C3,4

P = 0.177, CP3,4 P = 0.177), no difference was present be-

tween patients and controls.

We examined the possibility that enhanced PAC may be

driven by altered spectral power in either the b or c band in

patients. In M1 (Fig. 3A), b power differed significantly be-

tween patients and controls in contralateral (FDR,

P = 0.040) and ipsilateral hemispheres (FDR, P = 0.019).

Figure 3 Relationship between power spectral density (PSD) and PAC in M1. (A) Left: Box plots of spectral power in the b frequency

range (13–30 Hz) in patients and control subjects. Right: Box plots of spectral power in the c frequency range (50–150 Hz). Significant differences

between patients and controls are marked by asterisks. (B) Left: Non-significant correlation between power peak frequency at b range and peak

PAC frequency for phase. Right: Non-significant correlation between power peak frequency at c range and peak PAC frequency for amplitude.

(C) Three examples of comodulograms of PAC and the related b and c power from patients. Left: Phase and amplitude frequency of the largest

PAC are related to the b and c power peak. Middle: Lack of PAC even when there is a clearly discernible b power peak. Right: The phase fre-

quency and the amplitude frequency of the largest PAC are not related to the b and c power peaks.
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Furthermore, c power differed significantly in the contralat-

eral hemisphere (FDR, P = 0.011), but not in the ipsilateral

one (FDR, P = 0.093). The other four regions of interest

showed similar results (Supplementary Fig. 1).

We calculated the Spearman correlation between PAC and

b and c power for each region of interest of each hemisphere

(Supplementary Table 2). We found no relationship between

b power and PAC in any of the five regions of interest.

While c power was not significantly correlated with PAC in

either DLPFC, PMC or M1, both metrics were correlated in

BA3 and BA1,2. As power was not correlated with PAC in

any of the three regions exhibiting the largest PAC difference

between patients and controls (DLPFC, PMC or M1), the en-

hancement of power is unlikely to underlie the enhancement

of PAC in patients. Moreover, we compared the frequencies

at which the largest PAC value was noted with the frequen-

cies where the largest b or c power was detected. A correl-

ation test applied on each signal pair in M1 showed no

correlation between the peak PAC frequency and the power

peak frequency in either the b or c band (Fig. 3B). Similar

results were obtained in the other four regions of interest

(data not shown). Three examples from the dataset of

patients are displayed in Fig. 3C. Together, the above find-

ings indicate that the detected PAC enhancement in patients

was unlikely to be driven by differences in spectral power.

The preceding analysis has dealt with the macroscopic dis-

tribution of abnormal PAC. In the following section, we in-

vestigate the mechanisms of enhanced PAC in Parkinson’s

disease at a mesoscopic scale. We perform detailed analyses

regarding the composition and origin of the signals abnor-

mally coupled in patients. To enhance the clarity of presen-

tation and to enable comparison with previous reports on

PAC recorded from ECoG of M1, we first present results of

M1. Findings from the other regions (DLPFC, PMC, BA3

and BA1,2) harbouring abnormal PAC are also reported.

Neural circuits contributing to
abnormal phase-amplitude coupling

While PAC indicates coupling between c-amplitude and b-

phase, its presence does not imply nor exclude the possibility

of additional phase-phase coupling. Therefore, we addressed

this issue separately. The phase-phase coupling between b
and c activity can be distinguished when c activity is aver-

aged across epochs centred at a specific b-phase. This idea is

illustrated in Fig. 4A, which shows two cases. In both cases

the amplitude of high-frequency oscillation (HFO) is coupled

to the phase of the low-frequency oscillation (LFO), but

only in one case was there additional phase-phase coupling

between HFO and LFO. The average waveform of HFO in

the non-phase locked case results in a relatively flat wave-

form compared with that of the envelope of HFO, while in

another case the HFO was retained. Therefore, the largest

amplitude of the averaged waveform, termed PLA, can be

used for estimating the phase relationship between PAC-

involved activities. The results in M1 revealed that the

PLAamp was larger than PLAosci both in the contralateral

(Fig. 4B, left) and ipsilateral hemisphere for each subject,

which rules out that the c activities were completely phase-

phase coupled to b-phase in both patients (FDR P5 0.001)

and controls (FDR P5 0.001). In addition, in the contralat-

eral hemisphere (Fig. 4B, left), we found no significant differ-

ence of PLAosci between patients and controls (FDR

P = 0.399), but a significant difference in PLAamp (FDR

P = 0.005). In the ipsilateral hemisphere, we found no sig-

nificant difference between the two groups in either PLAosci

(FDR, P = 0.189) or PLAamp (FDR, P = 0.479). Correlation

analysis revealed no significant correlation between PAC

and the PLAosci (Fig. 4B, middle) in patients (FDR

P = 0.278) and controls (FDR P = 0.456) in the contralateral

hemisphere, but a significant positive correlation between

PAC and the PLAamp (Fig. 4B, right), both in patients (FDR

P5 0.001, R = 0.80) and controls (FDR P = 0.016,

R = 0.58). The results for DLPFC and PMC were similar to

M1, but slightly different for somatosensory areas (Fig. 4C).

However, even in somatosensory areas, the PLAosci values

were still lower than PLAamp values (FDR P5 0.001). These

findings demonstrate that the PAC-involved b and c activ-

ities are not completely phase-phase coupled, and the PAC

between b and c activities that are not strictly phase-phase

coupled becomes stronger in the pathological state.

We also characterized abnormal PAC further by investi-

gating whether the enhanced PAC of patients could be

caused by b and c activities from different ICA components.

We segregated the KL-MI values of phase-amplitude pairs

originating from two different components (PACinter) and

those from the same components (PACiden). Compared with

controls, in the contralateral hemisphere of patients

(Fig. 5A), significantly enhanced PACiden was found in

DLPFC (FDR P = 0.018), PMC (FDR P = 0.006), M1 (FDR

P = 0.016), BA1,2 (FDR P = 0.026), and BA3 (FDR

P = 0.074), where the difference was marginally significant.

In addition, we found a significant difference of PACinter be-

tween patients and controls in all five regions of interest

(FDR, DLPFC P = 0.001, PMC P = 0.001, M1 P = 0.001,

BA3 P = 0.001, BA1,2 P = 0.001). Although the KL-MI val-

ues were relatively higher when phase-amplitude pairs were

from identical components, we also found the coupling be-

tween different components to be enhanced in patients com-

pared with controls. This result indicates that the PAC-

involved b and c activities could be generated from different

subnetworks, which provides support for our conclusion

that abnormally enhanced coupling comprises distinct sub-

networks in at least five brain regions of patients.

To examine the relationship between PAC and the severity

of motor impairment of patients with Parkinson’s disease,

we computed the correlation between the PAC values in

contralateral and ipsilateral hemispheres with total MDS-

UPDRS III hemibody scores. The correlations between PAC

and clinical scores in all five regions of interest are shown in

Fig. 5B, and the correlation coefficients and P-values are pre-

sented in Table 2. We found the overall PAC (no segregation

between component pairs within a given region) to be
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Figure 4 Waveform estimation of PLA. (A) Simulation of phase-locked and non-phase locked conditions on PAC-involved oscillations. Left:

Two oscillatory signals in which the amplitude of the high-frequency oscillation (HFO, red) is coupled to the peak of the low-frequency oscillation

(LFO, black). In the top case, the phase relation between both signals varies over time, whereas in the bottom case, the HFO is phase-phase

coupled to the LFO. Middle: The varying phase relation (top) results in a relatively flat average waveform (red) of the LFO, when compared to the

average of the instantaneous envelope of HFO (blue). In contrast, in the bottom part, the HFO is retained when it is phase-phase coupled to the

LFO. Right: In both cases the KL-MI values are identical. (B) Experimental results on PLA in M1 on the contralateral hemisphere. Left: Paired plot

showing that PLAosci (PLA of c oscillations) were always lower than PLAamp (PLA of c envelopes) within subjects. Furthermore, PLAamp were sig-

nificantly larger in patients than in control subjects. Significant differences are marked by asterisks. Middle: No significant correlation of PLAosci

with mean PAC in patients and controls. Right: Significant correlation of PLAamp with mean PAC in patients (red line) and controls (black line).

(C) Experimental results on PLA in BA3 in the contralateral hemisphere. Left: Paired plot showing that PLAosci was always lower than PLAamp in

patients and controls. Furthermore, PLAamp was significantly larger in patients than in controls. Significant differences between patients and con-

trols are marked by asterisks. Middle: Significant correlation of PLAosci with mean PAC in patients (red line) but not in control subjects. Right:

Significant correlation of PLAamp with mean PAC in patients (red line) and controls (black line). Lines are only displayed if the correlation was stat-

istically significant.
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significantly correlated with MDS-UPDRS III hemibody

scores in M1, but not in the other four regions of interest.

We also computed the correlation between clinical scores

and PACinter as well as PACiden. The PACinter showed a sig-

nificant correlation with UPDRS hemibody scores in PMC,

M1, BA3, and BA1,2. However, we did not find a signifi-

cant correlation between clinical scores and PACiden in any

of these regions of interest. Moreover, we did not find any

significant correlation between PAC values from DLPFC

and clinical scores.

Figure 5 PAC computed fromidentical or different ICA components. (A) Box plots show PAC differences for all regions of interest be-

tween patients and controls from interactions between different (left) or identical ICA components (right), in the contralateral hemisphere.

Significant differences between patients and controls are marked by asterisks. (B) Correlation between PAC and clinical scores in the five regions

of interest (black lines designate statistically significant correlations). Left: Correlation between mean PAC on the overall pairwise matrix with

MDS-UPDRS III hemibody scores. Middle: Correlation between mean PAC from the interaction between different components (PACinter) with

MDS-UPDRS III hemibody scores. Right: Correlation between mean PAC from identical components (PACiden) with MDS-UPDRS III hemibody

scores.
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Multiple abnormal couplings

between spatially distributed

different sources

Since PACinter was correlated with the clinical severity, we

asked whether the enhanced PACinter in patients resulted

from the abnormal enhancement of all or just a few domin-

ant components. As the ICA components are generally dif-

ferent between subjects, this question cannot be examined

directly. However, the pathological dominance of a subset

of components in patients can be inferred indirectly by com-

paring the distribution of relative contributions of compo-

nents to PAC between groups. An abnormal contribution of

only a subset of components in patients would be likely, if

the relative contributions of components were more uneven-

ly distributed in patients than in controls. By contrast, if

there were no outstanding contributors to the PAC enhance-

ment in patients, the contributions of ICA components to

the b-phases or c-amplitudes of PAC would likely be similar-

ly distributed in patients and control subjects. The evenness/

unevenness of the distribution can be estimated by the Gini

coefficient, a metric widely used in social statistics (see

‘Materials and methods’ section). Since the enhanced PAC in

patients was stronger in the contralateral hemisphere, this

analysis was done on this hemisphere.

Gini coefficients in M1 (Fig. 6A, left) were significantly

different between patients and controls suggesting that the

contributions of different ICA components to the b-phases

(FDR, P = 0.005) and c-amplitudes (FDR, P = 0.044)

depended on the disease state. Results were similar in the

other four regions of interest (Supplementary Fig. 2). This

finding indicates that, compared with relatively equivalent

contributions of subnetworks to PAC in control subjects, a

few subnetworks in prefrontal and sensorimotor areas of

patients contribute b-phases or c-amplitudes to exaggerated

PAC. Besides, both in patients and controls, we found sig-

nificant correlations between PAC strengths and Gini coeffi-

cients for b-phases and c-amplitudes of PAC in M1

(Fig. 6A, middle and right) and in the other four regions of

interest (Supplementary Table 3). Those findings indicate

that the enlarged PAC was related to enhanced contributions

from a few subnetworks.

Finally, we examined the question of how the networks

contributing to b-phases and c-amplitudes involved in

PACinter were spatially organized on a local scale. We

studied the ‘b-topography’ and ‘c-topography’ for each sub-

ject in the contralateral hemisphere as introduced in the

‘Materials and methods’ section. The b-topography and c-

topography in a local region represent the averages of the

spatial distributions of the ICA components, after weighting

them by their respective contributions to the PAC in terms

of b-phases and c-amplitudes. Figure 6B illustrates examples

of b-topographies and related c-topographies of the five

regions of interest. The example shows a similar but not

identical spatial pattern between both topographies within

each region of interest.

For statistical estimation of the spatial similarity between

b- and c-topographies within each subject in M1, we com-

puted the absolute Spearman coefficient for each subject,

which is displayed in the histogram (Fig. 6C). This showed

that the b- and c-topographies for each individual were

highly spatially correlated, both in patients (R = 0.96± 0.03)

and in control subjects (R = 0.98± 0.02). However, there

was a strong tendency for the b-c topographic similarities of

patients to be reduced compared to controls (Wilcoxon

ranksum test, P = 0.051). This observation indicates that ab-

normally enhanced interactions became more prevalent be-

tween a few spatially distinct subnetworks in patients than

in control subjects. The lower spatial similarity within

patients was also observed in BA1,2 (P = 0.026), but not in

the other three regions of interest (Supplementary Fig. 3).

Moreover, the b-c topographic similarities in M1 were nega-

tively correlated with the Gini coefficients for component

contributions to c-amplitudes (FDR P5 0.001, R = –0.64),

as well as to b-phases (FDR P5 0.001, R = –0.58)

(Fig. 6C). The other four regions of interest showed similar

results (Supplementary Fig. 4).

Furthermore, when estimating the topographic similarity

across subjects, the median values of absolute Spearman co-

efficient histogram (Fig. 6D) were low in the similarities of

b-topographies among patients (median R = 0.30) and con-

trols (median R = 0.25), and c-topographies among patients

(median R = 0.30) and controls (median R = 0.24). The

other four regions of interest showed similar results. These

findings indicate that there was no consistent spatial pattern

of b-c PAC across subjects.

Discussion
Using source localization techniques, the present study has

comprehensively characterized enhanced PAC in scalp EEG

recorded from patients with Parkinson’s disease, providing

novel insights into abnormal brain synchronization on dif-

ferent anatomical scales.

The present study has localized abnormal PAC in DLPFC,

PMC, M1 and somatosensory areas (including BA3, BA1,2),

and thus to more regions of the brain than previously

known. Direct ECoG recordings have revealed abnormal

Table 2 Correlation between PAC and MDS-UPDRS III

hemibody scores

ROI Overall PAC PACinter PACiden

DLPFC P = 0.491, R = 0.12 P = 0.407, R = 0.21 P = 0.940, R = 0.01

PMC P = 0.088, R = 0.28 P = 0.004*, R = 0.49 P = 0.707, R = 0.15

M1 P = 0.027*, R = 0.36 P = 0.007*, R = 0.46 P = 0.135, R = 0.30

BA3 P = 0.169, R = 0.22 P = 0.033*, R = 0.39 P = 0.499, R = 0.19

BA1,2 P = 0.065, R = 0.30 P = 0.003*, R = 0.49 P = 0.252, R = 0.25

P-values were corrected (for each region of interest, ROI). *P-values (FDR P5 0.05).

PACiden = phase-amplitude coupling from the same components; PACinter = phase-

amplitude coupling between different components.
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Figure 6 Correlation analysis for PAC weighted topography estimation in the contralateral hemisphere. (A) Left: Box plot of Gini

coefficients in M1. Comparison between patients and controls. Middle and right: Gini coefficients of contributions to b-phases and c-amplitudes

were correlated with PAC values. (B) Examples of weighted average b-topographies and the corresponding c-topographies in each of the five

regions of interest. ICA weights were z-score normalized. The spatial patterns are similar but not identical between b- and c-topographies in

each region of interest. (C) Top: Histogram of spatial similarity coefficients as indicated by absolute Spearman correlation coefficients of M1

showing raw correlation values between b- and c-topographies for patients and controls (the dashed lines represent the median coefficients of

each group). Bottom: Significant correlation between b-c topographic similarity and the Gini coefficient of component contributions to b-phases

and c-amplitudes (red and black lines indicate statistically significant correlations). (D) Histogram of Spearman correlation coefficient of weighted

average topographies in M1 across subjects. Note the large variability of similarities of topographies across subjects. Black dashed lines represent

the median coefficient of each distribution, and show low similarity among subjects. Topo = topography.
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PAC in patients with Parkinson’s disease in signals from

subdural electrodes overlying the precentral gyrus, thus

probably reflecting activity in PMC/M1 (de Hemptinne

et al., 2013). Although ECoG has superior spatial resolution

compared to EEG (Buzsáki et al., 2012), its spatial coverage

is limited by the small size of the electrode strip that can be

placed through a burr hole. Enhanced PAC in patients with

Parkinson’s disease has also been observed in signals from

EEG electrodes overlying the sensorimotor region (Swann

et al., 2015; Miller et al., 2019). Using advanced source lo-

calization algorithms, the present findings appear to be the

first to provide non-invasive evidence of abnormal PAC

located in the DLPFC and somatosensory areas.

The contribution of somatosensory area is noteworthy as

recordings were done at rest, which implies minimal activity

of reafferent signals from contracting muscles. Furthermore,

it has been hypothesized that the ‘hyperdirect’ cortico-sub-

thalamic pathway is essential for generating PAC (de

Hemptinne et al., 2013). Somatosensory areas do not mono-

synaptically project to STN, which receives its monosynaptic

excitatory input mainly from neurons located in M1 as well

as from the supplementary motor area (Nambu et al., 1996)

and prefrontal regions (Haynes and Haber, 2013; Bruni

et al., 2018). Therefore, the presence of PAC in the somato-

sensory area indicates that abnormal PAC at rest is unlikely

to exclusively involve brain regions connected by the hyper-

direct tract, but may also comprise other BGTC circuits or

cortico-cortical connections. A similar conclusion has been

reached based on recordings from globus pallidus internus

(GPi) (Connolly et al., 2015; Malekmohammadi et al.,

2018). Although the spatial resolution of scalp EEG is lim-

ited even with advanced source localization, our findings

strongly suggest that abnormal PAC in Parkinson’s disease,

apart from M1, is present in a variety of cortical regions

involved in motor control, even at rest.

PAC was clearly abnormally enhanced in DLPFC of

patients with Parkinson’s disease. However, its magnitude

was not correlated to MDS-UPDRS III. As MDS-UPDRS III

exclusively captures motor symptoms of Parkinson’s disease,

the lack of correlation in DLPFC, on the one hand, is readily

explained by the fact that DLPFC is predominantly involved

in associative BGTC circuits, which are implicated in execu-

tive and other cognitive dysfunctions rather than motor

functions (DeLong and Wichmann, 2015; Magrinelli et al.,

2016). On the other hand, as executive dysfunction is part

of the clinical characteristics in Parkinson’s disease,

enhanced PAC in DLPFC suggests that abnormal brain syn-

chronization may also have a role in behavioural domains

outside of motor control (Oswal et al., 2013). As the

DLPFC has direct connections to the basal ganglia network

and the functional activity in DLPFC can be altered through

STN DBS (Boertien et al., 2011; DeLong and Wichmann,

2015), it will be interesting to see whether PAC may be cor-

related with cognitive symptoms in Parkinson’s disease and

how responsive it is to different clinical interventions.

Previous reports have examined the relationship between

the magnitude of PAC and clinical severity of parkinsonian

bradykinesia. Correlation between PAC and clinical scores

has been noted in LFP recordings from human STN (López-

Azcárate et al., 2010; van Wijk et al., 2016; Ozturk et al.,

2020), GPi (Tsiokos et al., 2017), or in ECoG from PMC/

M1 (Malekmohammadi et al., 2018). In our study, correla-

tions between PAC and clinical motor scores were noted in

all regions with enhanced PAC, except DLPFC. While previ-

ous work has demonstrated a correlation of therapy-induced

changes in PAC derived from EEG with therapy-induced

changes in clinical severity (Miller et al., 2019), our study

demonstrates a direct relationship between the strength of

native PAC computed from scalp EEG and clinical severity

scores in the OFF medication state. This observation not

only enhances the validity of our findings, but may addition-

ally underline the pathophysiological significance of

enhanced PAC in cortical sources.

PAC was statistically significantly enhanced only in the

clinically more affected hemisphere, which agrees with previ-

ous reports (Shreve et al., 2017). In animal models of

Parkinson’s disease, PAC did not appear before advanced

parkinsonian stages (Connolly et al., 2015; Devergnas et al.,

2019). As previous ECoG have been performed in patients

undergoing DBS (de Hemptinne et al., 2013), advanced

stages of Parkinson’s disease are implicated. In contrast, the

majority of patients in the present study were at relatively

early stages of the disease. Therefore, PAC may have been

expressed more weakly in the present patients and hence

may have been too low to be detectable reliably in the less

severely affected hemisphere. This could also explain why

we failed to find the PAC abnormality in EEG sensor sig-

nals. As we applied commonly used procedures for record-

ing, preprocessing, and PAC calculation, which were similar

to those used in previous studies (Swann et al., 2015;

Miller et al., 2019), it seems unlikely that the differences be-

tween the results obtained in previous studies and in the pre-

sent study could result from methodological details. Rather,

we suggest that for PAC to be detectable in sensor signals

(Miller et al., 2019), patients may need to be in more

advanced stages of the disease. The fact that application of

realistic head modelling and inverse solutions were required

for PAC detection from EEG signals suggests that advanced

signal processing technology may be required if PAC should

be used more widely in future non-invasive closed-loop para-

digms. Our results emphasize that the transformation of

EEG sensor signals to source signals may be important to

enhance the sensitivity of the biomarker. Moreover, a more

precise location of abnormal PAC could help to find a more

effective neuromodulation target for specific symptoms.

Our analyses also provide insight into the potential mech-

anism of enhanced PAC in patients with Parkinson’s disease

on a mesoscopic scale. Using waveform analysis, we ruled

out that the PAC-involved b and c activities of patients are

completely phase-phase coupled. This finding specifically

renders the possibility unlikely that PAC arises because a re-

current (cortical) network, which physiologically oscillates in

the c range (Ray et al., 2008), is strongly driven by the out-

put of an enhanced (subcortical) b-oscillator (Spiegler et al.,
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2011). Our findings suggest, instead, that PAC arises to a

significant extent through the activity of two physiologically

distinct oscillators which likely correspond to two spatially

distinct cortical substrates. This conclusion also has implica-

tions for another hypothesis about PAC, which was devel-

oped through time-domain analysis of b oscillations in

ECoG (Cole et al., 2017) or scalp EEG recordings (Jackson

et al., 2019). According to this hypothesis, the non-sinusoid-

al wave shape of the b oscillations is a consequence of over-

synchronization of local firing of action potentials in the cor-

tex (De Hemptinne et al., 2015; Voytek and Knight, 2015).

In principle, PAC could result from excessively synchronized

neural activity in the BGTC loop (Cole et al., 2017) and

may still be correlated with clinical motor impairment.

Nonetheless, our results suggest that attenuation of PAC by

decorrelating excessive synchrony through DBS (Voytek and

Knight, 2015) might fail to break up PAC across spatially

separated circuits, which might represent a pathophysio-

logically more relevant target.

Our conclusion, assuming the existence of spatially and

physiologically distinct oscillators contributing to PAC, was

substantiated by further investigation of ICA components.

We found enhanced PAC when phase-amplitude pairs were

composed of b and c signals from identical, but also from

distinct components. Importantly, PAC was only correlated

with the clinical severity scores when computed between dif-

ferent components. Because ICA is not suited to distinguish

between temporally independent components if they origin-

ate from exactly the same cortical patch, pathological cou-

pling across distinct components implies coupling between

different cortical columns. However, despite the fact that the

electric activity was generated in the cortex, our findings do

not contradict a model in which one or both of the cortical

oscillators are driven by activity from subcortical nuclei. The

nature of the coupling could even be routed entirely in dis-

tinct subcortical projections driving independent cortical

oscillations (Pasquereau and Turner, 2011; Shimamoto

et al., 2013; Belluscio et al., 2014).

We found that Gini coefficients were higher in patients

than in controls. This finding indicates that some compo-

nents contributed much more to PAC in Parkinson’s disease

than others. This result provides additional support for the

assertion that synchronization between the activities of spa-

tially distinct neuronal circuits was of greater pathophysio-

logical relevance than that between the activities of the same

topographical origin. Our conclusion was further corrobo-

rated when the spatial organization of ICA components was

explicitly tested. In M1 and BA1,2, where b- and c-topogra-

phies were generally similar for each individual, this similar-

ity was reduced in patients. Moreover, we found that the

higher the Gini coefficients, the greater the spatial discrep-

ancy between the source distributions of b and coupled-c
activities. The implication is that the abnormal enhancement

of PAC in Parkinson’s disease reflects the abnormal domin-

ance of a relatively small number of coupled subnetworks.

Animal experiments have shown that the loss of dopamine

impairs the directionality and hierarchical organization of

normal b and c propagation through different BGTC path-

ways (West et al., 2018). Against this background, we sug-

gest that in the parkinsonian state the dopamine depletion

may disrupt the regular operation of the BGTC loops by

reinforcing and altering the connectivity between subnet-

works so that the physiological segregation of certain feed-

back loops in basal ganglia circuits is lost. This may then

lead to more widespread coupling between diverse circuits.

Coupling of circuits with similar intrinsic frequencies will be

evident as abnormal synchronization and reduction of

dimensionality in the EEG signals, whereas coupling of cir-

cuits with different frequencies will be evident as enhanced

PAC. PAC-weighted topographies in patients did not display

a uniform parkinsonian pattern, but differed considerably

interindividually. This finding indicates a pathophysiological

heterogeneity which may reflect different clinical motor phe-

notypes as well as the variability of the disease stage. This

further implies that pathophysiologically based future treat-

ment of Parkinson’s disease by non-invasive brain stimula-

tion may need to be highly individualized and dynamically

adjusted.

Because all analyses were done on recordings while the

patients were at rest, our findings do not allow us to estab-

lish a direct link between physiological abnormalities and

the clinical phenotype. As certain properties of PAC derived

from EEG were correlated with the parkinsonian motor

symptoms, it appears likely that abnormal PAC, even if

derived from the cortex, is more than a marker for the par-

kinsonian state. However, future studies will have to explore

abnormal cross-frequency coupling during motor behaviour

and to investigate the effect of treatment interventions such

as dopamine replacement therapy and DBS on cross-fre-

quency coupling. In the present study, patients with marked

rest tremor were excluded and all recordings were done in

patients in early to moderate disease stages. Therefore, the

generalizability of our findings to tremulous or more severe

parkinsonian phenotypes remains unclear. Larger variability

of clinical severity and a larger number of patients may

allow more robust assessments of the nature of the correl-

ation between pathological synchronization and individual

items of the clinical phenotype.
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