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In brain-age modelling, a machine learning model is trained

on a normative, usually healthy group of individuals to pre-

dict chronological age from neuroimaging data. This model

is then applied to new data and the difference between pre-

dicted and chronological age—termed the brain-age gap

(BAG)—is taken as a measure of deviation from ‘normal

ageing’. This new area of research has generated large inter-

est over the last decade and accelerated ageing has been

associated with many different disorders and pathologies

(Franke and Gaser, 2019).

In contrast to this common practice, Bashyam et al.

(2020) advocate the use of brain-age models with subopti-

mal performance (i.e. higher errors) rather than models opti-

mized for predictive accuracy in a normative sample. The

hope underlying this idea is that larger model errors might

not be a random deviation, but a better approximation to

biological age and thus more related to variables of interest.

Considering that a perfect brain-age model would result in

an error of zero, rendering it useless as random BAGs can-

not be associated with any variable of interest, the authors’

suggestion to fit the model less accurately to generate larger,

but not yet random model errors, seems intuitively reason-

able. With their proposal the authors address fundamental,

but thus far neglected implications of model performance in

brain-age modelling. In particular, the large training sample

size and the diversity of disorders investigated in their data-

set provide a highly valuable contribution to the field.

However, despite the intuitive appeal of ‘loose fitting’,

suboptimal model training (i) violates the conceptual

foundation of brain-age modelling; and (ii) is highly prob-

lematic from a methodological point of view and might lead

to results that are uninterpretable. In the following, we first

address the fundamental conceptual issue arising from ‘loose

fitting’. Then, we provide evidence showing that, in contrast

to the authors’ report, higher discriminative power for loose-

ly fit models cannot be shown in their own data as well as

under the most favourable of settings. Finally, we provide an

analysis based on the decomposition of uncertainty compo-

nents to show how suboptimal model fitting may lead to in-

valid results driven by increased epistemic uncertainty.

To understand the conceptual problem of ‘loose fitting’,

consider that brain-age modelling aims at learning the ‘nor-

mal’ trajectory of ageing by selecting a group of individuals

whom we define as ‘normal’. The key to brain-age model-

ling—and normative modelling in general—is that normal

ageing is defined as the trajectory observed in this normative

(i.e. healthy) sample. Thus, fitting a more accurate, tighter

predictive model directly translates into a more exact

approximation of normal ageing. In turn, this enables us to

interpret deviation from the model (i.e. larger model errors)

as ‘non-normal ageing’. It follows logically that the case of

zero model error outlined above (i) is not problematic, but

desirable for the normative population; and (ii) can, by def-

inition, not occur for individuals deviating from the

normal trajectory of ageing as inferred from the normative

sample. From this point of view, brain age modelling can be

understood as an anomaly detection approach. The more ac-

curately normative samples can be modelled, the more
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power these models have to detect anomalies (i.e. deviant

ageing trajectories). It is also important to keep in mind that

the selection process is a key to normative modelling. A ran-

domly chosen population sample reflects the disease burden

(prevalence of diseases of interest) in the general population,

which might vary between regions and countries. Selection

of a group of individuals without known diseases, so-called

supercontrols, in contrast will enhance any difference in ab-

normality compared to a group of patients with diseases of

interest.

The authors justified the use of suboptimally fitted models

with the assumption that the probed normative population

(i.e. the healthy controls) was not in fact ‘normal’. Indeed,

the authors’ argument that ‘the deep learning model might

focus on imaging features and patterns that are not affected

by pathologies, in an effort to match brain age and chrono-

logical age in individuals with such pathologies’ implies just

this. Note, however, that in the framework of brain-age

modelling, the algorithm—by definition—would never see

an individual with ‘pathologies’ in the sense of a deviation

from normality. Therefore, it could never make ‘an effort to

match brain age and chronological age in individuals with

such pathologies’. This shows that the authors’ line of argu-

ment can be sound only if the normative sample contains

features affected by pathologies related to the deviation we

later aim to discriminate. Conceptually, however, this is a

direct violation of the normative principle underlying brain-

age modelling as well as anomaly detection. In contrast to

the authors, we thus conclude that the tighter the model fits

the normative sample, the better we can discriminate

deviants.

Based on this, we reanalysed the increase in effect size due

to ‘loose fitting’ reported by Bashyam et al. (2020).

Specifically, we tested whether the difference in observed ef-

fect size (Cohen’s d) values for tightly and moderately fit

models observed by the authors could be due to chance

alone. With the sampling variance of d approximated by:

v ¼ 1

n1
þ 1

n2
þ d2

2ðn1 þ n2Þ
: (1)

we can test whether ?1 = ?2 (where ?1 and ?2 denote the true

d values for tight and moderate fitting, respectively) by

computing

z ¼ d1 � d2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v1 þ v2
p (2)

which follows approximately a standard normal distribu-

tion. Contradicting the authors’ report, the difference in ef-

fect sizes between the tight and moderately fit model for

Alzheimer’s disease is d1 – d2 = 1.26 – 1.16 = 0.10 for

n = 353 controls and n = 353 patients (data drawn from

Fig. 1, and Table 1 in Bashyam et al., 2020), which corre-

sponds to z = 0.86 (P = 0.27). This indicates that ‘loose fit-

ting’ did not yield an above-chance increase in discriminative

power as compared to ‘tight fitting’. Note that all other

differences in effect sizes shown in Bashyam et al. (2020) are

not tested because they are even smaller.

As outlined above, the authors’ line of argument entails

that loose fitting should be particularly beneficial if the nor-

mative sample contains features affected by pathologies

related to the deviation we later aim to discriminate.

Therefore, loose fitting, while not providing above-chance

improvement in their own data, might still be helpful under

conditions of high heterogeneity in the training set. To test

this, we trained a neural network on n = 10 691 samples

from the German National Cohort and applied it to a valid-

ation sample comprising n = 1986 individuals from the

Marburg-Münster Affective Disorders Cohort Study

(Vogelbacher et al., 2018). Note that the German National

Cohort is intended as a population sample and does there-

fore contain a closer-to-normal spectrum of disorders and

pathologies. If ‘loose fitting’ indeed increases discriminative

power by avoiding fitting characteristics related to path-

ology, it should be most visible with this normative sample.

Specifically, we tested healthy controls against four disor-

ders, namely patients suffering from major depressive dis-

order (n = 822), bipolar disorder (n = 131), schizophrenia

(n = 66), and schizoaffective disorder (n = 43) across six

degrees of ‘loose fitting’ implemented by early stopping of

neural network training controlling for age in analogy to

Bashyam et al. We found no significant increase of discrim-

inative power for any degree of ‘loose fitting’ in any of the

four comparisons between healthy controls and patients (all

z5 0.73, P40.307) with the impact of mean absolute error

on effect size appearing rather random (Fig. 1).

Now that we have established the lack of utility of ‘loose

fitting’, we will consider its impact on model uncertainty.

Note that BAGs are the sum of deviant ageing and model

uncertainty, i.e. a person may have a large BAG not only

due to actual changes in the brain, but also due to properties

of the underlying machine learning model, which arise from

Figure 1 Impact of ‘loose fitting’ (indicated by mean abso-

lute error) on effect sizes of four group comparisons. Note

that no systematic effect is evident.
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characteristics of the training data such as data density and

variability. Whether a given BAG should be considered a

large deviation or a chance-level fluctuation is thus not only

determined by the absolute deviation, but also by model un-

certainty. Failing to properly model both epistemic and alea-

tory uncertainty may lead to spurious results which depend

on properties of the model, which are produced by peculiar-

ities in the training data rather than on the underlying asso-

ciation of a variable with brain-age difference (Marquand

et al., 2016). Loose fitting specifically increases so-called epi-

stemic uncertainty, i.e. uncertainty about the model weights

(Kendall and Gal, 2017). Recognizing this issue, more recent

publications aimed to explicitly model uncertainty (Palma

et al., 2020); however, neglecting epistemic uncertainty. To

show the impact of uncertainty, we trained a Monte Carlo

composite quantile regression (MCCQR) neural network

brain-age model on the German National Cohort sample

and applied it to the MACS dataset (Vogelbacher et al.,

2018). Figure 2 shows the effect of suboptimal fitting on epi-

stemic uncertainty. Note that epistemic uncertainty as the

percentage of total uncertainty decreases with longer train-

ing, rendering BAGs most confounded for the ‘loosely fitted’

model. Seemingly higher discriminative power might there-

fore arise from artificially increased epistemic uncertainty

due to ‘loose fitting’.

In summary, we addressed an important conceptual issue aris-

ing from ‘loose fitting’, precluding its use in an anomaly detec-

tion framework such as brain-age modelling. Next, we showed

that, in contrast to the authors’ report, higher discriminative

power for loosely fit models can neither be shown in their own

data nor under the highly favourable circumstances of a hetero-

geneous normative sample. Finally, the analysis of epistemic un-

certainty illustrates how suboptimal model fitting leads to higher

epistemic uncertainty, resulting in BAGs confounded by data

density and model weight distribution. To increase

discriminative power, we thus suggest a careful selection of the

normative sample and correction for aleatory and epistemic un-

certainty in brain-age studies using algorithms capable of high-

quality uncertainty estimation such as MCCQR regression.
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