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Summary
Ataxia with ocular motor apraxia type 1 (AOA1) is an
autosomal recessive cerebellar ataxia (ARCA) associ-
ated with oculomotor apraxia, hypoalbuminaemia and
hypercholesterolaemia. The gene APTX, which encodes
aprataxin, has been identi®ed recently. We studied a
large series of 158 families with non-Friedreich progres-
sive ARCA. We identi®ed 14 patients (nine families)
with ®ve different missense or truncating mutations in
the aprataxin gene (W279X, A198V, D267G, W279R,
IVS5+1), four of which were new. We determined the
relative frequency of AOA1 which is 5%. Mutation car-
riers underwent detailed neurological, neuropsychologi-
cal, electrophysiological, oculographic and biological
examinations, as well as brain imaging. The mean age
at onset was 6.8 6 4.8 years (range 2±18 years).
Cerebellar ataxia with cerebellar atrophy on MRI and
severe axonal sensorimotor neuropathy were present in
all patients. In contrast, oculomotor apraxia (86%),
hypoalbuminaemia (83%) and hypercholesterolaemia
(75%) were variable. Choreic movements were frequent

at onset (79%), but disappeared in the course of the dis-
ease in most cases. However, a remarkably severe and
persistent choreic phenotype was associated with one of
the mutations (A198V). Cognitive impairment was
always present. Ocular saccade initiation was normal,
but their duration was increased by the succession of
multiple hypometric saccades that could clinically be
confused with `slow saccades'. We emphasize the pheno-
typic variability over the course of the disease.
Cerebellar ataxia and/or chorea predominate at onset,
but later on they are often partially masked by severe
neuropathy, which is the most typical symptom in
young adults. The presence of chorea, sensorimotor
neuropathy, oculomotor anomalies, biological abnormal-
ities, cerebellar atrophy on MRI and absence of the
Babinski sign can help to distinguish AOA1 from
Friedreich's ataxia on a clinical basis. The frequency of
chorea at onset suggests that this diagnosis should also
be considered in children with chorea who do not carry
the IT15 mutation responsible for Huntington's disease.
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Abbreviations: ARCA = autosomal recessive cerebellar ataxia; A±T = ataxia±telangiectasia; AOA = autosomal recessive

cerebellar ataxias with oculomotor apraxia; AOA1 = ataxia with oculomotor apraxia type 1; AOA2 = ataxia with

oculomotor apraxia type 2; APTX = gene encoding aprataxin; CMPA = compound muscle action potential; CVLT =

California Verbal Learning Test; ECD-SPECT = 99mTc technetium-ethyl cysteinate dimmer single-photon emission

computed tomography; HIT = histidine triad; HSMN = hereditary sensorimotor neuropathy; MADRS = Montgomery and

Asberg Depression Rating Scale; MDRS = Mattis Dementia Rating Scale; MMSE = Mini-Mental Status Examination;

OMA = oculomotor apraxia; PNKP = polynucleotide kinase-3¢-phosphatase; SCA = spinocerebellar ataxia; SCAN =

spinocerebellar ataxia with sensorimotor neuropathy; VOR = vestibulo-ocular re¯ex; WCST = Wisconsin Card Sorting

Test

Introduction
Autosomal recessive cerebellar ataxias (ARCA) are a

heterogeneous group of diseases. They include Friedreich's

ataxia that accounts for ~30% of ARCA in the Caucasian

population, as well as rarer disorders such as ataxia with

vitamin E de®ciency, autosomal recessive spastic ataxia of

Charlevoix±Saguenay, infantile early-onset spinocerebellar

ataxia and ataxia±telangiectasia (A±T) (Di Donato et al.,

2001). Recently, a subgroup of autosomal recessive cerebel-

lar ataxias associated with oculomotor apraxia (AOA) has

been distinguished. This group includes at least two different

genetic entities: ataxia with oculomotor apraxia type 1

(AOA1, also called early-onset ataxia with ocular motor

apraxia and hypoalbuminaemia) and ataxia with ocular

apraxia type 2 (AOA2).

AOA1 was initially described in Japanese families (Inoue

et al., 1971; Aicardi et al., 1988; Uekawa et al., 1992; Kubota

et al., 1995; Fukuhara et al., 1995; Hanihara et al., 1995;

Sekijima et al., 1998; Tachi et al., 2000). The phenotype is

characterized by early-onset cerebellar ataxia, oculomotor

apraxia, neuropathy and mental retardation in most families.

Hypoalbuminaemia and hypercholesterolaemia are often

associated. A similar phenotype was described in several

Portuguese families (Barbot et al., 2001) that enabled

mapping of the locus designated AOA1 to chromosome

9p13 (Moreira et al., 2001a), followed by identi®cation of

mutations in the APTX gene in both Japanese and Portuguese

families (Moreira et al., 2001b; Date et al., 2001). The APTX

gene encodes aprataxin, a histidine-triad (HIT) protein the

function of which is still unknown. However, aprataxin has a

zinc-®nger motif and a PANT (PNKP-aprataxin amino-

terminal) domain sharing some homology with polynucleo-

tide kinase-3¢-phosphatase (PNKP), which suggests it could

have a role in single-strand DNA break repair. All mutations

identi®ed so far are localized in exons 5, 6 and 7 which

encode the HIT domain of the protein (Moreira et al., 2001b).

The protein is widely expressed. In the nervous system it has

been found in cerebellum, basal ganglia, cerebral cortex and

spinal cord. Severe loss of Purkinje cells, degeneration of the

posterior columns, spinocerebellar tracts and anterior horn

cells of the spinal cord were observed post-mortem in one

patient (Sekijima et al., 1998). The AOA2 locus was

localized to chromosome 9q34 in Japanese and Pakistani

families with a clinical phenotype resembling AOA1, but

with elevated alpha-foetoprotein levels (Bomont et al., 2000;

Nemeth et al., 2000). The defective gene has not yet been

identi®ed. In addition, a mutation in the TDP1 gene encoding

a topoisomerase±DNA resolvase was found recently to cause

a similar phenotype in a Saudi Arabian family. The patients

had autosomal recessive cerebellar ataxia, sensorimotor

neuropathy (SCAN1), hypercholesterolaemia and hypoalbu-

minaemia, but no oculomotor apraxia (Takashima et al.,

2002).

The relative frequencies, mutational spectrum and pheno-

typic characteristics of AOA1, AOA2 and SCAN1 have not

yet been studied in detail. To evaluate the relative frequency

of AOA1, and to provide an accurate description of the

phenotype, we have screened a series of 227 patients with

cerebellar ataxia. We identi®ed 14 patients from nine families

with AOA1, and present the results of a clinical, neuropsy-

chological, oculographic and brain imaging study on this

cohort, the largest series of such patients analysed to date.

Methods and patients
Recruitment of families and molecular genetics
A series of 158 families (227 patients) with progressive

cerebellar ataxia including 75 multiplex families with ARCA

(144 patients) and 83 patients without family history were

selected after exclusion of Friedreich's ataxia by molecular

analysis (absence of a GAA expansion in the ®rst intron of the

frataxin gene). All index cases gave written informed consent

for the genetic study. They were mostly of French origin

(73%). Clinical data, albumin and cholesterol levels were

collected for all patients. In a subgroup of 48 families with

cerebellar ataxia associated with either oculomotor apraxia

and/or hypoalbuminaemia and/or hypercholesterolaemia, the

APTX gene was analysed by sequencing exons 5, 6 and 7 as

described previously (Moreira et al., 2001b).

Approval for the genetic study was given by the Ethics

Committee of the CCPPRB PitieÂ-SalpeÃtrieÁre.

Phenotypic characterization
All AOA1 patients underwent neurological examinations.

Motor disability was assessed by a seven-stage functional

scale: 0, normal; 1, mild modi®cations at examination; 2,

mild functional disability, able to walk and run; 3, walking

2762 I. Le Ber et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/126/12/2761/290306 by guest on 10 April 2024



without help <500 m, unable to run; 4, unilateral help to walk;

5, bilateral help to walk; 6, wheelchair-bound; 7, bedridden.

Oculomotor and electro-oculographic
examination: de®nitions and tests
Oculomotor apraxia
Oculomotor apraxia (OMA) is a rare oculomotor disturbance

that was initially de®ned by Cogan (1953) as the inability to

initiate horizontal saccades in the head-®xed condition. Head

rotation is usually necessary to initiate gaze shifts. The

oculographic pattern is characterized by increased latencies

and decreased amplitude of horizontal saccades. In contrast,

vertical saccades are reportedly normal (Cogan et al., 1953;

Zee et al., 1977; Leigh and Zee, 1999). Although the

oculomotor disturbance in AOA1 does not correspond

exactly to the de®nition of oculomotor apraxia (Cogan et al.,

1953; Leigh and Zee, 1999), we have chosen to keep this term

which was used in the initial description of the disease

(Barbot et al., 2001). Here, the term `oculomotor apraxia'

(OMA) refers to the inability to coordinate eyes±head

movements when the head turns toward a lateral target; the

head reaches the target before the eyes.

Bedside oculomotor examination
Eye movements were evaluated clinically in 12 patients.

Fixation, gaze holding, pursuit, vertical and horizontal

saccades (latency, velocity, amplitude), presence and nature

of nystagmus, vestibulo-ocular re¯ex (VOR), cancellation of

the VOR and synergic eyes±head movements in the head-free

condition were assessed.

Electro-oculographic recordings
Electro-oculographic recordings were performed in six

patients, including four with and two without clinical

OMA. The subject's head was immobilized and eye move-

ments were recorded in complete darkness by horizontal

direct-current electro-oculography with two temporal elec-

trodes. Visual cues were presented at a distance of 95 cm with

light-emitting diodes embedded in a curved ramp. All

quantitative results were compared with those of six age-

matched controls (mean age: 31 6 9 years). In the gap task,

the central point was switched off 200 ms (gap) before a

luminous lateral target appeared 25° to the right or to the left

of the central ®xation point. After 1 s, the lateral target was

switched off and the central ®xation point was switched on

simultaneously. The subject was instructed to ®xate the

central point, then to look at the lateral target as soon as it

appeared 25° randomly right or left and then to go back to the

central point. Left and right saccade latencies were calculated

for each subject by averaging 20 measurements in each

direction. The accuracy of centrifugal and centripetal

saccades was expressed as a gain (amplitude of the ®rst

saccade with respect to the position of the target). The mean

saccade velocity was determined for saccades with ampli-

tudes from 5° to 25° 6 2°. To study better the voluntary

component of horizontal saccades, a no-gap task was

performed in four patients, including two patients with and

two without oculomotor apraxia. The central point was

switched off and the lateral target was simultaneously

switched on; we measured the latency of the saccades. To

distinguish a pathological gaze-evoked nystagmus (inability

to maintain an eccentric gaze characterized by a centripetal

drift followed by a centrifugal corrective saccade) from a

physiological end-gaze nystagmus, the patients were asked to

®xate a target 25° from the centre for 1 s. To qualitatively

evaluate the VOR, the patients were asked to ®xate a central

point during active and passive head rotation with a total

amplitude of 40° and a peak velocity of 15°/s. Cancellation of

the VOR was determined while the patient ®xed a target

rotating sinusoidally at the same time as the head at a peak

velocity of 15°/s.

Neuropsychological tests
IQ was evaluated in 11 patients with the Raven 47 coloured

progressive matrices (PM47) (Raven, 1988). In addition, a

detailed neuropsychological study was performed in six

patients with normal or subnormal IQ to evaluate cognitive

ef®ciency, memory and executive functions. The patient

scores were compared with scores of normal population.

Global cognitive ef®ciency was evaluated by the Mini-

Mental Status Examination (MMSE) (Folstein et al., 1975)

and the Mattis Dementia Rating Scale (MDRS) (Mattis,

1988). Recent memory was assessed by the California Verbal

Learning Test (CVLT) based on word list learning and

recognition (French norms established by B. Deweer but not

published). This test evaluates memory performance both

quantitatively and qualitatively, perseverations, intrusions,

sensitivity to interference, capacities to initiate semantic and

serial clustering, consistency of recall and recognition (Delis

et al., 1987). Executive functions were evaluated with the

frontal score (Pillon et al., 1995) including the simpli®ed

version of the Wisconsin Card Sorting Test (WCST) (Nelson,

1976) and two 1-min verbal ¯uency tasks (words beginning

with letter `m' and names of animals) (Thuillard and Assal,

1991). Mood was evaluated with the Montgomery and Asberg

Depression Rating Scale (MADRS) (Montgomery and

Asberg, 1979).

Brain imaging
MRI, including T1- and T2-weighted sequences in sagittal,

coronal and transaxial sections, was performed in all patients.

In addition, brain perfusion was evaluated in three patients

(F1P1, F3P1, F3P2) by 99mTc technetium-ethyl cysteinate

dimmer single photon emission computed tomography (ECD-

SPECT).
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Biological investigations
In addition to albumin, protein electrophoresis, low density

lipoprotein, high density lipoprotein and total cholesterol,

triglycerides and alpha-foetoprotein were measured in 12

patients. Apolipoproteins A1 and B were measured in four

patients.

Other investigations
Motor and sensory nerve conductions were carried out in the

upper and lower extremities in 13 patients, as well as sensory

and motor evoked potentials. Twelve patients underwent

audiograms, brainstem auditory evoked potentials and

ophthalmological examinations including fundoscopy,

evoked visual potentials, visual ®eld, electroretinograms.

Sural nerve biopsy was performed for two patients (F6P2 and

F7P2).

Results
Molecular analysis
Fourteen patients (three women, 11 men) with mutations in

the aprataxin gene were identi®ed. Ten patients were from

®ve multiplex families; four had no family history of

cerebellar ataxia (Table 1). Seven families were of French

origin, one was Italian (family F7) and one Algerian (family

F9). Five mutations, four of which were new (A198V,

D267G, W279R, IVS5+1), were identi®ed in exons 5 and 6 of

the APTX gene in the nine families. All patients were either

homozygous or compound heterozygous for the APTX

mutations. As in the previously reported Portuguese families

(Moreira et al., 2001b), the most frequent mutation was the

837G®A mutation (exon 6) leading to the W279X nonsense

mutation, and a protein truncated at amino acid 279. Six

families were homozygous for this mutation. In family 1, a

homozygous 593C®T mutation was identi®ed in exon 5, that

led to the A198V missense variation in a highly conserved

region of the protein. Compound heterozygous mutations

were identi®ed in two families (W279R/IVS5+1 and W279X/

D267G). The 770+1±G®A mutation (IVS5+1) of the donor

splice site of exon 5 should result in the deletion of exon 5.

The absence of the A198V, W279R and D267G mutations

was con®rmed in 130 Caucasian controls.

Case reports
The two following case-reports are presented in detail to

illustrate the phenotypic variability of AOA1.

Case report 1 (patient F7P2)
This 38-year-old man was investigated at age 32 years. He

presented a history of foot deformities and staggering gait

with frequent fallings at age 4 years. The disease was slowly

progressive and he was unable to walk unaided at age 10

years. At age 19 years, he had loss of hand skilfulness, distal

motor de®cit and atrophy, truncal titubation, dysarthria and

was con®ned to a wheelchair. Upright stance became

impossible at age 32 years. The most prominent symptom

at age 32 years was a severe `Charcot±Marie±Tooth-like'

sensorimotor peripheral neuropathy with generalized are¯exia,

a severe distal motor de®cit, atrophy and deformities of hands

and feet (pes cavus). Vibration sense was abolished, but

super®cial sensory sense was less severely affected.

Cerebellar ataxia, hypotonia and dysarthria were evident.

Eye movements were abnormal with OMA and saccadic

pursuit. Electrophysiological studies con®rmed severe axonal

sensorimotor neuropathy. Nerve conduction studies showed

absent median and sural sensory action potentials, and non-

recordable compound muscle action potentials (CMPAs)

evoked by distal stimulation of the ulnar, peroneal and tibial

nerves. The median nerve was of low amplitude (4 mV,

normal < 5), with a reduced conduction velocity between

elbow and wrist (39 m/s, normal > 50). The sympathetic skin

response was normally evoked in the hand. Histological

examination of the sural nerve biopsy revealed severe loss of

small and large myelinated ®bres, but preservation of the

unmyelinated nerve ®bres (Fig. 1). Brain MRI showed severe

cerebellar atrophy. Biological investigations revealed hypo-

albuminaemia and hypercholesterolaemia. The patient's

brother had a similar phenotype. The diagnosis of hereditary

sensorimotor neuropathy (HSMN) was suspected. Mutations

in the PMP22 (peripheral myelin protein 22), Cx32

(connexin-32) and FRDA (Friedreich's ataxia) genes were

excluded by molecular analyses. A homozygous 837G®A

base change leading to a W279X truncating mutation was

identi®ed in exon 6 of the APTX gene.

Case report 2 (patient F1P1)
This 24-year-old man had no family history of cerebellar

ataxia. He was unsteady and had had diffuse choreic

movements since the age of 2 years. The diagnosis of

juvenile Huntington's disease was suspected. When he was 9

years old, he developed cerebellar ataxia and ocular abnor-

malities, but chorea was still predominant. Choreic move-

ments partially decreased with neuroleptic drugs. He became

con®ned to a wheelchair at the age of 21 years. At 24 years,

examination showed severe disability with severe choreic

movements, volitional dyskinesias of the limbs, hypotonia,

dysarthric speech and cerebellar signs. Severe pharyngolar-

yngeal dyskinesias were responsible for swallowing dif®cul-

ties. He had pes cavus, abolition of tendon re¯exes and a

severe distal motor de®cit with amyotrophy of the feet and

hands. Oculomotor examination revealed bilateral gaze-

evoked nystagmus and abnormal saccadic pursuit.

Horizontal and vertical saccades were hypometric. The

duration of horizontal saccades was remarkably prolonged.

The VOR was normally released, but VOR cancellation was

altered. Severe oculocephalic dysynergy was observed when

the patient was asked to look toward a lateral target with both
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eyes and head movements. The head ®rst turned toward the

target, whereas the eyes moved contralaterally before slowly

moving toward the target (Fig. 2). Biological investigations

revealed hypercholesterolaemia and hypoalbuminaemia.

Brain MRI showed severe cerebellar atrophy with vermian

predominance associated with moderate brainstem atrophy.

There were no trinucleotide repeat expansions in the IT15

(Huntington's disease), JPH-3 ( junctophilin-3) and FRDA

genes, but a homozygous 593C®T mutation, leading to an

A198V substitution in the protein, was detected in exon 5 of

the APTX gene.

Clinical characteristics
The clinical data of the 14 AOA1 patients are summarized in

Tables 1 and 2. Mean age at onset was 6.8 6 4.8 years (range

2±18) and mean disease duration 29.8 6 14.8 years (range 9±

51). The mean disease duration before con®nement to

wheelchair was 11.2 6 5.7 years (range 5±20, mean age:

18.4 years). The predominant sign at onset was gait ataxia in

eight patients (57%) and chorea or dystonia in seven (50%).

OMA was variable (86%) with a mean delay after onset of 8.7

years (range 4±16). Interestingly, chorea was noticed at onset

in 79% of cases, but persisted at the time of examination in

only 43%. Thus, chorea spontaneously disappeared with the

course of the disease in ®ve patients, after a mean disease

duration of 14.8 years. Severe disabling dyskinesias triggered

by movements were observed in 29% of patients. Neuropathy

became clinically evident in early adulthood (100%), leading

to rapid and severe disability. At examination there were

decreased re¯exes or generalized are¯exia (100%), a severe

distal motor de®cit (85%), severe atrophy (85%) with hand

and foot deformities, impaired vibration sense (100%) with

less severe super®cial sensory loss (92%). Fasciculations

Fig. 1 Nerve histology in patient F7P2. (A) Light microscopy analysis of a sural nerve biopsy from patient F7P2. A 1-mm-thick section of
the plastic-embedded specimen of a sural nerve biopsy specimen. Note the conspicuous reduction in the density of myelinated ®bres.
Thionine blue staining. Original magni®cation: 3630. (B) Electron micrograph of the sural nerve biopsy of patient F7P2. Besides the loss
of myelinated nerve ®bre this photograph shows the preservation of unmyelinated nerve ®bres. Uranyl acetate and lead citrate staining.
Original magni®cation: 35000.

Fig. 2 Eyes±head dissociation in head-free condition in patient F1P1 with AOA1. Dissociation of eyes±head movements when looking
toward a lateral target in the head-free condition (patient F1P1). A lateral head movement precedes the eye movements. The head ®rst
overshoots the lateral target (images 9 and 10), then returns to the target (image 12). Synkinetic blinking (images 3 and 7) is a strategy to
avoid ®xing images during eye rotation and to compensate for altered VOR cancellation.
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were noted in two patients. Limb oedema was noted in 46%

of patients, all of whom had long disease duration (>30 years)

and low serum albumin levels (<30 g/l). Electrophysiological

studies in 13 patients revealed unrecordable or severely

decreased amplitudes of sensory and motor potentials, and

mild to moderately decreased nerve conduction velocities. A

loss of myelinated ®bres without degeneration±regeneration

or onion bulb formations was observed on histological

examination in patients F6P2 and F7P2 (Fig. 1). The lesions

predominantly affected the large myelinated ®bres in the ®rst

patient, whereas all types of myelinated ®bres (small and

large) were affected in the second case. These features are

consistent with severe axonal sensorimotor neuropathy.

Oculomotor characteristics: bedside oculomotor
examination
Clinical examination revealed ®xation instability or square-

wave jerks, saccadic pursuit and gaze-evoked nystagmus in

all patients. OMA, as de®ned above, was noted in 86% of

patients. In addition to the eyes reaching the target after the

head, synkinetic blinking to compensate for the lack of VOR

Table 2 Frequency of symptoms in 14 AOA1 patients

Symptoms Frequency*

Sensorimotor neuropathy 100 (13)
Cerebellar ataxia 100 (14)
Deep sensory loss 90(11)
Oculomotor characteristics
Oculomotor apraxia 86 (14)
Gaze-evoked nystagmus 100 (14)
Fixation instability 100 (14)

Chorea 79 (14)
Dystonia 39 (14)
Cognitive impairment 100 (11)
Mental retardation 27
Dysexecutive syndrome 73

Pes cavus 55 (11)
Scoliosis 50 (12)
Limb oedema 46 (13)
Optic atrophy 17 (12)
Cerebellar atrophy on MRI 100 (14)
Hypoalbuminaemia 83 (12)
Hypercholesterolaemia 75 (12)

*The percentage value of the frequency is evaluated among the
fraction of patients analysed per symptom and noted in
parentheses.

Fig. 3 Oculographic recordings in AOA1 patient F8P1 and control. Horizontal saccades in a gap task. (A) Visually guided saccade task: 1,
schematic representation of the task (CF, central ®xation; RT, right target; LT, left target); 2, performance of a control subject; 3,
performance of the AOA1 patient in which the global duration of the saccade is prolonged stepwise, with multiple successive 5° saccades.
(B) VOR cancellation task: 1, schematic representation of the task (the patient is asked to follow a target moving sinusoidally at the same
time as the head) (R, right; L, left); 2, normal VOR cancellation in a control subject; 3, altered VOR cancellation in the AOA1 patient.
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cancellation was observed. Horizontal and vertical saccades

were hypometric.

Electro-oculographic observations (Fig. 3)
In one patient with OMA, saccade abnormalities and

attentional de®cit were so severe that saccade latencies and

velocities could not be assessed. He was unable to reach the

®rst target before the next target appeared. Three other

patients with OMA had normal horizontal saccades latencies,

when recorded, in the gap task (mean right saccade latency:

196 6 42 ms versus 185 6 31 ms in controls; mean left

saccade latency: 188 6 54 ms versus 164 6 32 in controls)

and in the no-gap task (mean right saccade latency:

245634 ms versus 227 6 41 ms in controls; mean left

saccade latency: 250 6 44 ms versus 220 6 37 in controls),

re¯ecting correct initiation of saccades. The saccades were

overall very hypometric, with a decreased mean gain in

amplitude (centrifugal: 0.58 6 0.4 versus 0.99 6 0.04

in controls; centripetal: 0.55 6 0.2 versus 0.97 6 0.04 in

controls). Furthermore, saccades were broken into multiple

successive saccades with a mean amplitude of ~5±15° that

gave a step-like appearance. When observed at the bedside,

they looked like slow saccades, although the short saccades

were normal (e.g. the mean velocity of 5° saccades was 130°/s

versus 153 6 50°/s in controls). The VOR was normally

released, whereas VOR cancellation was lost. Square-waves

during central ®xation and gaze-evoked nystagmus were

observed in all patients. Because of loss of frontal inhibition,

the percentage of errors increased in the anti-saccade task

(38.1 6 30% versus 4.3 6 7.6% in controls).

Neuropsychological test results
Mental retardation (MR) was evident in three patients (IQ

value: 63±73). Six patients had normal IQ values, but

neuropsychological testing revealed cognitive de®cit charac-

teristics of subcortical syndrome. A low score was noted at

the MMSE in four patients (range 19±26), and pathological

scores were obtained at the MDRS in nearly all the patients,

due to a de®cit in initiation subtest (Table 3). In the CVLT,

the patients performed signi®cantly less well than control

subjects on learning the ®rst list and tended to perform less

well on free recall and cued recall, but without loss of

information after a delay interval. Recognition score

exhibited a tendency of lower performance. A single patient

showed pathological perseverations. All patients had low

frontal scores, and most patients had disturbed WCST with

decreased ability to form concepts and reduced verbal

¯uency. These abnormalities were consistent with a sub-

cortical syndrome in all patients. Patients do not show

signi®cant scores on the MADRS.

Table 3 Results of neuropsychological testing in six AOA1 patients without mental retardation

Family/patients Mean score

F1/P1 F2/P1 F2/P2 F6/P1 F6/P2 F8/P1

Age at evaluation (years) 24 36 35 35 32 21 30.5 6 6.4
Education (years) 9 12 14 7 5 12 9.8 6 3.4
Global IQ (PM 47) (+) 0 0 0 0 (+) 0
MMSE (+) 0 0 + + + +
MDRS + (+) + +* +* + +
Initiation + (+) (+) +* +* + +
CVLT
Monday list ± total + + 0 + + (+) +
Short delay free recall (+) (+) 0 (+) (+) 0 (+)
Short delay cued recall + (+) (+) (+) (+) (+) (+)
Long delay free recall + 0 0 (+) 0 (+) (+)
Long delay cued recall + 0 0 (+) (+) + (+)
Correct recognitions + + 0 0 0 (+) 0
Intrusions 0 0 0 0 0 0 0
Perseverations 0 0 + 0 0 0 (+)

Frontal score (/60) +* (+) + +* +* (+) +
Fluency
Phonemic (M) + (+) (+) (+) + (+) (+)
Category + 0 0 + + (+) (+)
WCST
Correct criteria + 0 + 0 + 0 +

MDRS = Mattis Dementia Rating Scale; MMSE = Mini Mental Status Examination; CVLT = California Verbal Learning Test; WCST =
Wisconsin Card Sorting Test; 0 = normal score, (+) = the score differs by 1 standard deviation from the mean in an age-matched
population, + = abnormal score, which differs by 2 standard deviations from the mean age-matched population. *All subtests were not
evaluated because of motor disability.
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Brain imaging
Cerebellar atrophy was found on MRI in all patients,

predominantly in the vermis in most of them (62%) (Fig. 4).

Cerebellar hypoperfusion was seen in three patients who

underwent brain ECD-SPECT. In one of these patients,

moderate bilateral hypoperfusion in the caudate nuclei was

also seen (Fig. 5).

Biological tests
Hypoalbuminaemia was present in 83% of patients (Table 1).

Albumin levels were dramatically low in family F2.

Hypercholesterolaemia was noted in 75% of patients, with

elevated levels of low density lipoprotein cholesterol and low

levels of high density lipoprotein cholesterol (n = 8).

Apolipoprotein B was elevated and apolipoprotein A1 was

decreased (n = 4). Disease duration was positively correlated

with cholesterol (r = 0.72) and negatively correlated with

albumin (r = ±0.8) levels (Fig. 6). It is noteworthy that CPK

(creatine phosphokinase) levels were 1.2±9 times the normal

upper limit in 50% of the patients.

Other investigations
Fundoscopy revealed macular and retinal exudative lesions in

50% of the patients. Optic atrophy was noted in two patients

(17%). In the four other patients, fundoscopy, visual evoked

potentials and electroretinogram were normal (33%). In

contrast to Friedreich's ataxia, no hearing loss could be

evidenced and brainstem auditory evoked potentials and

audiogram were normal in 11 patients.

Discussion
We have described here the largest series of patients with

molecularly proven AOA1, recruited from among a large

series of 227 patients with progressive cerebellar ataxia after

exclusion of Friedreich's ataxia. The relative frequency of

AOA1 was 5.7% [95% CI (con®dence interval): 0.0264±

0.1054] in families with progressive cerebellar ataxia, but

without Friedreich's ataxia (7% of ARCA, 5% of ataxias

without family histories). However, if only patients with

cerebellar ataxia with onset before the age of 25 years are

considered, the frequency reaches 9.1%. This value is lower

than the 21% reported in a Portuguese population-based study

(Barbot et al., 2001) which was performed before the

identi®cation of the APTX gene. Mutations were subsequently

found in less than half of the families, reducing the frequency

to 7.5% (Barbot et al., 2001; Moreira et al., 2001a, b). AOA1

should therefore be considered as a possible diagnosis in all

patients with early-onset cerebellar ataxia with or without

familial histories, after exclusion of Friedreich's ataxia.

The most frequent AOA1 phenotype associates cerebellar

ataxia with cerebellar atrophy visualized by MRI, chorea,

axonal sensorimotor neuropathy and deep sensory loss as

previously described (Shimazaki et al., 2002; Tranchant et al.,

2003). OMA, which is the hallmark of the disease, is present

in most (86%), but not all patients. Two distinct phenotypic

stages can be distinguished: at onset cerebellar ataxia and

chorea are the most consistent symptoms, whereas OMA and

neuropathy are usually absent; later, the predominant symp-

tom is severe disabling neuropathy. In several families

(including one of ours), the severity of the distal motor de®cit,

atrophy and deformities suggested the diagnosis of hereditary

sensory motor neuropathy (Uekawa et al., 1992; Fukuhara

et al., 1995; Sekijima et al., 1998), which is consistent with

the marked loss of small and large myelinated ®bres on nerve

biopsies. The clinical course is rapidly progressive, with a

mean disease duration of 11.2 years (ranging from 5 to 20),

before the patients become wheelchair-bound. Our results

con®rm that hypoalbuminaemia parallels disease duration

after onset (Shimazaki et al., 2002), but we also demonstrate

that cholesterol levels increase with time. We emphasize the

need to repeat biological investigations since the abnormal-

ities are variable and the values ¯uctuate. In addition, the

pro®le of cholesterol and apolipoproteins suggests an

increased risk for atheromatosis that should be prevented.

Finally, the main clinical features distinguishing the 39

families who were selected for APTX gene screening, but did

not have mutations were a later mean age at onset (16.8 years)

and less frequent neuropathy (67%), cognitive impairment

(26%), dystonia (16%) and chorea (11%) than in AOA1

families (Table 4).

The most frequent mutation (W279X) was the same as in

Portuguese patients (Moreira et al., 2001b), but we identi®ed

four new mutations in our screen. Interestingly, the com-

pound heterozygous mutation (W279X/D269G) observed in a

single family (F3) was associated with a later age at onset (15

Fig. 4 Brain MRI of patient F8P1. Sagittal T2-weighted section
showing severe cerebellar atrophy predominantly in the vermis
(patient F8P1).
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and 18 years) and the absence of OMA in both patients,

suggesting that the D269G mutation leads only to a partial

loss of aprataxin function. The homozygous missense muta-

tion A198V was associated with predominant, severe and

persistent chorea. No phenotype±genotype correlations could

be established in this series between the different mutations

and mental retardation and severity or the course of the

disease. In addition, age at onset and disease progression

varies among the eight patients with homozygous W279X

nonsense mutation.

The oculomotor disturbances in AOA1 patients differ in

two respects from ocular apraxia described in congenital

oculomotor apraxia (Cogan, 1953): triggering of saccade is

normal and vertical saccades are altered. Oculographic

recordings in AOA1 patients reveal normal latencies (in

both the gap and no-gap tasks), but a dramatic increase in the

duration of horizontal saccades in the head-®xed condition

mimics slow eye movements. In fact, the velocity of the

saccades is almost normal, but they are broken into numerous

small saccades ~5±15° in amplitude. This decreased gain in

amplitude probably results from atrophy of the posterior

vermis, known to be involved in the control of saccade

accuracy in humans. Furthermore, VOR cancellation is

altered, increasing the eyes±head movement dissociation in

the head-free condition. Clinically, the oculomotor disturb-

ances in AOA1 resemble those observed in spinocerebellar

ataxia type 2 (SCA2), a form of autosomal dominant

cerebellar ataxia (Rivaud-Pechoux et al., 1998), in which

the appearance of gaze slowness and oculocephalic dis-

sociation is caused by a decrease in saccade velocity. In

addition to oculomotor abnormalities, fundoscopy showed

macular and retinal lesions in most patients, and optic atrophy

in two. These features of AOA1 had not been described

previously.

Chorea is remarkably frequent in our series, leading to

erroneous initial clinical diagnoses of juvenile Huntington's

disease, Sydenham's chorea or hereditary benign chorea in

®ve patients from three families. As in hereditary benign

chorea (de Vries et al., 2000), the evolution is favourable with

a progressive decrease in the choreic movements over time.

Although no morphological abnormalities in the basal ganglia

have been evidenced, caudate nucleus hypoperfusion was

detected in a single patient. Since aprataxin is expressed in

the caudate nuclei (Date et al., 2001), aprataxin mutations

might be hypothesized to compromise the function of this

brain structure. Our study establishes that cognitive changes

are a consistent ®nding in AOA1. Mental retardation,

however, was less frequent in our series than previously

reported in Japanese families (Tachi et al., 2000; Shimazaki

et al., 2002). Interestingly, all patients with normal IQ values

showed memory impairment characterized by disturbed

learning and retrieval information. These memory disturb-

ances were associated with executive dysfunction exhibited

by dif®culties in initiation, conceptualization, reduced verbal

¯uency and low frontal scores. The cognitive pro®le is

consistent with a subcortical syndrome that may result from

Fig. 5 Brain ECD-SPECT in patient F3P2. Arrows indicate cerebellar hypoperfusion in patient F3P2 (below) associated with moderate
bilateral hypoperfusion in the caudate nuclei (above).
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disruption of the fronto-cerebellar pathways. The frequency

of cognitive changes in our patients contrasts with previously

reported Portuguese patients whose cognitive status was

always considered normal (Barbot et al., 2001). This shows

that detailed neuropsychological testing can detect the subtle

neuropsychological de®cits characteristic of AOA1.

Although the age at onset may be similar, the absence of

oculo-conjunctival telangiectasias, chromosomal breakage

with predisposition to cancer and infection help to distinguish

AOA1 from A±T. Biological markers may also be useful,

since the serum alpha-protein level is normal in AOA1, as

well as cholesterol and albumin in A±T. In addition, we

con®rm that differential diagnosis between AOA1 and

Friedreich's ataxia can easily be made on clinical grounds

(Table 4). AOA1 patients do not have extensor plantar re¯ex,

cardiomyopathy, and peripheral neuropathy is sensorimotor,

but purely sensory in Friedreich's ataxia (Harding, 1981).

Conversely, chorea and OMA are absent in Friedreich's

ataxia as well as biological abnormalities (hypercholester-

olaemia, hypoalbuminaemia) and early cerebellar atrophy on

MRI (DuÈrr et al., 1996).

In conclusion, we would like to suggest that APTX

mutations are looked for in autosomal recessive or isolated

cases with progressive cerebellar ataxia after exclusion of

Friedreich's ataxia, and when onset occurs before the age of

25 years. At onset, characteristic features such as oculomotor

apraxia or biological abnormalities are often lacking, but the

presence of choreic movements is highly suggestive of

AOA1. Since the AOA1 phenotype at onset can resemble

other choreic disorders, early-onset choreic patients without

expansions in the IT15 and JPH3 genes (Stevanin et al., 2002)

should also be tested for APTX mutations.
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