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Summary
Stroke is a leading cause of adult motor disability. Despite

recent progress, recovery of motor function after stroke is

usually incomplete. This double blind, Sham-controlled,

crossover study was designed to test the hypothesis that

non-invasive stimulation of the motor cortex could

improve motor function in the paretic hand of patients

with chronic stroke. Hand function was measured using

the Jebsen–Taylor Hand Function Test (JTT), a widely
used, well validated test for functional motor assessment

that reflects activities of daily living. JTT measured in the

paretic hand improved significantly with non-invasive

transcranial direct current stimulation (tDCS), but not

with Sham, an effect that outlasted the stimulation

period, was present in every single patient tested and

that correlated with an increment in motor cortical

excitability within the affected hemisphere, expressed as

increased recruitment curves (RC) and reduced short-

interval intracortical inhibition. These results document

a beneficial effect of non-invasive cortical stimulation on a

set of hand functions that mimic activities of daily living in
the paretic hand of patients with chronic stroke, and

suggest that this interventional strategy in combination

with customary rehabilitative treatments may play an

adjuvant role in neurorehabilitation.
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Introduction
Stroke is the leading cause of long-term disability among

adults in industrialized countries, and is responsible for

2–4% of total health-care expenses (Turney et al., 1984;

Whisnant, 1984; Jongbloed, 1986; Broderick et al., 1989;

Dobkin, 1995; Taylor et al., 1996). More than 60% of

stroke survivors suffer from persistent neurological deficits

(Gresham et al., 1975) that impair activities of daily living

(i.e. dressing, eating, self-care and personal hygiene)

(Gresham et al., 1975; Carod-Artal et al., 2000; Clarke

et al., 2002), underlining the need for development of

new neurorehabilitative treatments (Nudo et al., 1996;

Nudo, 2003).

Recent studies have demonstrated that non-invasive brain

stimulation enhances the beneficial effects of motor training

on cortical plasticity (Butefisch et al., 2004), visuo-motor

coordination (Antal et al., 2004a, b), implicit motor learning

(Nitsche et al., 2003c), probabilistic classification learning

(Kincses et al., 2004) and analogic reasoning (Boroojerdi

et al., 2001b) in healthy volunteers. In animal models, pre-

liminary reports suggested that cortical stimulation could

facilitate motor function in animals with focal brain lesions

involving the primary motor cortex (Adkins-Muir and Jones,

2003; Kleim et al., 2003; Plautz et al., 2003; Teskey et al.,

2003). Thus, it is possible that cortical stimulation could
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facilitate performance of skilled motor tasks in human stroke

patients (Brown et al., 2003; Hummel and Cohen, 2005).

Transcranial direct current stimulation (tDCS) (Nitsche

et al., 2003a; Paulus, 2003) is a non-invasive, painless cortical

stimulation technique (Nitsche and Paulus, 2000, 2001) that is

well tolerated, does not elicit auditory or somatosensory per-

ceptions beyond the initial minute of application (thereby

facilitating the design of Sham interventions) (Priori et al.,

1998; Nitsche and Paulus, 2000; Nitsche et al., 2003b, c;

Hummel et al., 2004) and exerts facilitatory effects on learn-

ing processes in healthy volunteers (Nitsche et al., 2003c;

Kincses et al., 2004). In this study, we investigated the

hypothesis that non-invasive, painless cortical stimulation

(tDCS) delivered to the motor cortex of the affected hemi-

sphere could improve performance of motor tasks that mimic

activities of daily living in patients with chronic stroke.

Material and methods
Patients
Six patients with a history of a single ischaemic cerebral infarct

(Table 1) aged 38–84 years (mean6 SE, 62.26 7.56 years; two

of them females, all but one right-handed) participated in the

study. All gave written informed consent to each experiment

according to the Declaration of Helsinki [http://www.wma.net/e/

policy/b3.htm (1997)] and the NINDS Institutional Review Board

approved the study protocol. Patients were tested at least 1 year after

the stroke (3.7 6 1.1 years, range 1.9–8.9; Table 1). All patients had

single ischaemic subcortical strokes leading to initial severe upper

arm motor paresis (MRC grade <2) that over time recovered to the

point of being able to perform the required motor tasks. Modified

Ashworth Scale for Grading Spasticity (Bohannon and Smith, 1987)

ranged from 0–2 and upper arm Fugl-Meyer scale ranged from 91%

to 99% (Fugl-Meyer et al., 1975). Mini-Mental State Examination

(MMSE) ranged between 28 and 30 (Folstein et al., 1975) in both

groups. Patients with severe depression, history of severe alcohol or

drug abuse, severe language disturbances, particularly of a receptive

nature, or serious cognitive deficits (MMSE <23/30 points) were not

enrolled in the protocol.

Experimental design
tDCS and behavioural testing

Initially, all patients participated in a familiarization session

(Session 1) in which they practised the Jebsen–Taylor Hand

Function Test (JTT) (the endpoint measure of the study) 10 times,

sufficient to reach stable motor performance in all individuals.

Subsequently, they moved on to the double-blind crossover portion

of the study consisting of two (Sessions 2 and 3) counterbalanced

sessions (tDCS and Sham) separated by 10.3 6 2.06 days (mean 6

SE). Half of the patients did tDCS first and half did Sham first. All of

the patients participated in Sessions 1–3, during which the

behavioural measurement (JTT) was determined. Finally, five out

of six patients participated in an additional session that tested the

effects of tDCS, as administered in the crossover section of the study,

on motor cortical excitability to transcranial magnetic stimulation

(TMS) (Session 4). Each session started with a questionnaire (see

below) followed by the three measurements of baseline JTT

(JTT1–3), intervention (tDCS or Sham) and follow-up JTT

measurements, with one JTT measurement during (JTT4) and two

more after (JTT5–6) the intervention (Fig. 1). On average, JTT6

was tested 26.5 6 3.4 min (mean 6 SE) after the end of each

intervention. Additionally, JTT was tested �10 days after each

intervention (JTT7).

All patients described their level of attention toward the task (range

1–7;1 =noattention, 7= highest levelofattention) and theirperception

of fatigue (range 1–7; 1 = highest level of fatigue, 7 = no fatigue;

see Q1–4 in Fig. 1) four times in each session, and their sense of

discomfort/pain after each session ended (range 1–10; 1 = no

discomfort/pain, 10 = maximal discomfort/pain) using visual

analogue scales that have good internal consistency, reliability and

objectivity (Folstein and Luria, 1973; Gracely, 1999; Chibnall and

Table 1 Patient data

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Mean 6 SE

Age (years) 41 72 38 72 66 84 62.2 6 7.56
Sex M F F M M M
Time after stroke
(months)

48 34 31 23 23 107 44.3 6 13.1

Lesion site R frontal operculum,
putamen, corona
radiata and insula

R basal
ganglia

L subcortical
frontal lobe

L subcortical
centrum
semiovale,
basal ganglia

R thalamus L basal
ganglia

Handedness (EDS) Left (12/50) Right (46/50) Right (49/50) Right (46/50) Right (49/50) Right (47/50)
MMSE 30/30 29/30 29/30 30/30 28/30 29/30 29.2 6 0.31
Motor function:
MRC 4.8 4.8 4.9 4.7 4.9 4.8 4.8 6 0.03
FMS (%) 95 96 99 91 95 96 95 6 1.0
Abil-Hand 0.86 0.88 1 0.84 0.94 0.97 0.92 6 0.03
ASS 2 0 0 1+ 0 0

F = female; M = male; R = right; L = left; ASS = Ashworth Spasticity Score; EDS = Edinburgh Handedness Scale; FMS = Fugl-Meyer Scale;
MMSE = Mini-Mental State Examination; MRC = scale to determine strength by the Medical Research Council (mean MRC value of the
tested muscles).
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Tait, 2001; Reisine et al., 2003; Floel et al., 2004). Additionally, after

the completion of the study, patients were asked to identify in which

session they received ‘real’ cortical stimulation (tDCS). Instructions

to the patients were identical for Sessions 2 and 3 (tDCS and Sham).

Jebsen-Taylor Hand Function Test
The JTT is a widely used assessment of functional hand motor skills

(Jebsen et al., 1969). It has good validity and reliability, and norm-

ative data are available for different ages and both genders (Jebsen

et al., 1969; Hackel et al., 1992). We included in this study six of the

seven JTT subtests: turning over cards, picking up small objects and

placing them in a can, picking up small objects with a teaspoon and

placing them in a can (mimicking a feeding function), stacking

chequers, moving large light cans, and moving heavy cans

(Fig. 1B). Since some patients were unable to perform writing

tasks (the seventh JTT subtest) due to dominant hemisphere strokes,

we excluded this particular subtest from the study. Patients were

instructed to perform the tasks as rapidly and accurately as possible

according to written standardized instructions in the testing set

(Jebsen et al., 1969; Stern, 1992). Total JTT time and partial subtest

JTT times (except for the writing task, which was not included) were

recorded for analysis. Feedback on task performance was not pro-

vided. Dropping of an object (cards, ‘small objects’, cans) was

counted as an accuracy error and analysed off-line.

Non-invasive cortical stimulation
tDCS was delivered through two gel-sponge electrodes (TransQE;

IOMED1, Salt Lake City, UT, USA; surface area 25 cm2) embedded

in a saline-soaked solution. The anode was positioned on the pro-

jection of the hand knob area (Yousry et al., 1997) of the primary

motor cortex of the affected hemisphere on the patient’s scalp, and

the cathode on the skin overlying the contralateral supraorbital

region. The hand knob area of the motor cortex was first identified

on each patient’s MRI and then co-registered to the scalp using a

frameless neuronavigation system (Brainsight1; Rogue Research

Inc., Montreal, Canada). Stimulating electrodes were centred on

the projection of this anatomical site on each patient’s scalp. Anodal

tDCS was delivered for 20 min in the tDCS session and for up to 30 s

in the Sham session using a Phoresor1 II Auto (Model No. PM850;

IOMED1). At the onset of both interventions (tDCS and Sham),

current was increased in a ramp-like fashion (Nitsche et al., 2003a)

eliciting a transient tingling sensation on the scalp that faded

over seconds, consistent with previous reports (Nitsche et al.,

2003c). Current (1 mA) remained on for 20 min in the tDCS

session and for up to 30 s in the Sham session. In both sessions,

currents were turned off slowly over a few seconds, a procedure that

does not elicit perceptions (Nitsche et al., 2003c) and that was

implemented out of the field of view of the patients. The investigator

testing motor function (JTT) and the patients were blind to the

intervention (tDCS or Sham), which was administered by a separate

Fig. 1 (A) Experimental design. Patients participated in three sessions. In the first session, they familiarized themselves with the JTT
and reached a stable level of performance. The second and third sessions started with questionnaires followed by baseline
determinations of JTT (JTT1–3), cortical stimulation (tDCS) or Sham in a counterbalanced double-blind design and later by
post-intervention JTT (JTT4–6), with JTT4 determined during stimulation and JTT5–6 after stimulation. Questionnaires (Q) in which
patients characterized (self-report on visual analogue scales) level of attention and fatigue during the experiment were given at four
different times in each session. A fourth session was included later to test the effects of tDCS on motor cortical function tested with TMS.
(B) Subtests of the JTT (Jebsen et al., 1969) included: turning over cards, picking up small objects and placing them in a can, pick up beans
with a tea spoon, placing them in a can (mimicking a feeding function), stacking chequers, moving large light cans, and moving heavy cans.
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investigator who did not participate in motor testing or data

analysis.

tDCS and corticomotor excitability
In session 4, we evaluated the effects of application of tDCS on

measures of corticomotor excitability including motor thresholds

(MT), recruitment curves to TMS (RC), short-interval intracortical

inhibition (SICI) and intracortical facilitation (ICF) (Kujirai et al.,

1993; Cohen et al., 1998; Chen, 2000). Measures of corticomotor

excitability were obtained immediately before (baseline), immedi-

ately after (TMS1) and 25 min following the end (TMS2) of tDCS

(post). TMS was delivered from a Magstim 200 (Magstim Co.,

Whitland, UK) through a figure-of-eight shaped 70-mm coil.

Motor evoked potentials (MEP’s) were recorded from the first

digital interosseus muscle (FDI) of the paretic hand. The optimal

coil position for stimulation was determined by moving the coil in

1-cm steps on the scalp to identify the optimal spot for activation of

the FDI in the paretic hand. The magnetic coil was held tangentially

to the scalp at an angle of 45� to the midline with the handle back-

wards. Resting MT was defined as the lowest stimulus intensity

evoking a MEP of 50 mV in five of 10 trials in the relaxed FDI

(Rossini et al., 1994). SICI and ICF were measured using the paired-

pulse technique (Kujirai et al., 1993). In brief, a suprathreshold test

stimulus adjusted to a MEP amplitude of �1 mV (TS; mean 129% 6

3.3 MT) was preceded by a subthreshold conditioning stimulus (CS;

80% MT) at interstimulus intervals of 3 and 10 ms, sampling inhib-

itory (3 ms, SICI) and excitatory (10 ms, ICF) windows, respectively.

Ten stimuli were applied at each interval in a randomized order.

MTs were determined separately before and after tDCS; as

they did not change, it was not necessary to adjust stimulus

intensities. For RC, the stimulation intensity was changed

systematically in steps of 10% of the individual’s motor threshold,

between 100% and 150% MT. For analysis of the RC, MEP

amplitudes obtained at different stimulus intensities (100–150%

MT) were expressed relative to the MEP amplitude at 100% MT

(e.g. RC at 150% MT = MEP amplitude150%MT/MEP

amplitude100%MT 3 100).

Data analysis
Data were normally distributed as evaluated by Kolmogorov–Smirnov

test. Repeated measures ANOVA(RM) was used to evaluate the effects

of TIMEBaseline,post and INTERVENTIONtDCS,Sham on total JTT time

and the effects of TIMEbaseline,post, INTERVENTIONtDCS,Sham and

SUBTESTcards,objects,feeding,chequers,lightcans,heavycans on subtest JTT

time. Additionally, we evaluated the effects of TIMEbaseline,post and

INTERVENTIONtDCS,Sham on JTT tasks grouped according to

predominant reliance on fine distal or more proximal arm function

MOTOR CONTROLfine distal,proximal and the effects of INTER-

VENTIONtDCS,Sham on attention (TIME-QUESTattention(Q1,Q2,Q3,Q4))

and fatigue (TIME-QUESTfatigue(Q1,Q2,Q3,Q4)). Paired t-tests were

used to evaluate the effect of INTERVENTIONtDCS,Sham on

discomfort/pain. To evaluate the effects of tDCS on motor cortical

excitability, ANOVARM with factors TIMEbaseline,post and TMS

INTENSITY110%,120%,130%,140%,150% MT was used to compare RC.

Paired t-tests were used to evaluate the effect of tDCS on SICI and

ICF. Conditioned on significant F-values (P < 0.05), post hoc

testing was performed and corrected for multiple comparisons

(Bonferroni). JTT changes in percentage and net changes in

percentage were calculated according to the following equations

(see Table 3):

Change in % ¼ JTT4�6=JTT1�3 3 100�100

Net changes in% ¼ change in %tDCS � change in %Sham stimulation

All data are expressed as mean 6 SE.

Results
Psychophysical data
ANOVARM did not show significant differences of factors

TIME-QUEST, INTERVENTIONtDCS,Sham or TIME-

QUEST 3 INTERVENTIONtDCS,Sham interaction on either

attention [F(3,16) = 1.11; not significant (ns)] or fatigue

[F(3,16) = 1.25; ns] (Table 2A). Discomfort/pain was

negligible ranging between 1 and 2 out of 10, and it was

comparable in the tDCS and Sham sessions (paired

t-test, ns) (Table 2B). All patients were unable to

distinguish the tDCS from the Sham session.

Table 2A Fatigue and attention

tDCS Sham Statistics
ANOVARM

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Fatigue (1–7)
(mean 6 SE)

5.2 6 0.3 4.9 6 0.5 5.2 6 0.8 5.0 6 0.3 5.1 6 0.4 4.7 6 0.4 5.1 6 0.4 4.8 6 0.5 ns

Attention (1–7)
(mean 6 SE)

5.0 6 0.3 4.6 6 0.3 4.7 6 0.3 5.0 6 0.4 4.9 6 0.3 4.8 6 0.4 4.4 6 0.5 4.7 6 0.5 ns

See timing of questionnaires (Q) in Fig. 1. Fatigue scale (1–7; 1 = highest level of fatigue; 7 = no fatigue). Attention scale (1–7; 1 = no
attention; 7 = highest level of attention to the task). ns = not significant.

Table 2B Pain/discomfort

tDCS Sham

Patient 1 1 1
Patient 2 1 1
Patient 3 1 1
Patient 4 1 1
Patient 5 2 1.5
Patient 6 1 1
Mean 6 SE 1.17 6 0.1 1.08 6 0.5

Pain/discomfort scale (1–10; 1 = no pain; 10 = strongest
imaginable pain).
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Effects of non-invasive cortical stimulation
on JTT time
Total JTT time improved initially, reaching stable levels in all

patients and subtests during the initial familiarization session

(Fig. 2). After the familiarization session, baseline total JTT

time was comparable immediately preceding both the tDCS

and the Sham sessions (Fig. 2A and B). Error rates were

comparable (paired t-test, ns) during Sham (2.78 6 1.90%)

and tDCS (4.63 6 1.71%). ANOVARM revealed a significant

interaction TIMEbaseline,Post 3 INTERVENTIONtDCS,Sham on

total JTT time [F(1,10) = 10.87; P < 0.01]. Post hoc testing

showed that tDCS significantly reduced total JTT time (from

43.57 6 2.36 s at baseline to 39.72 6 2.15 s post-stimulation;

P < 0.05; Fig. 2A, asterisk) in the absence of changes with

Sham (from 41.87 6 2.5 s baseline to 43.27 6 2.19 s post-

stimulation; ns; Fig. 2B). Additionally, tDCS led to more

prominent reductions in JTT time relative to baseline than

Sham (–6.19 6 7.81 s, �4.78 6 5.05 s and �4.03 6 6.11 s for

JTT4, JTT5 and JTT6, respectively; mean 6 SD). Therefore,

performance improvements were already evident at the

measurement of JTT4 (during tDCS) and outlasted the

stimulation period by at least 25 6 2.9 min (Fig. 2A, inset).

Retesting 11.3 6 4.1 days later showed values comparable to

those identified at the end of the familiarization session and at

the beginning of the tDCS session (Fig. 2A). Improvements

in total JTT time with tDCS were identified in every single

patient (Fig. 3).

The interaction TIMEbaseline,post 3 INTERVEN-

TIONtDCS,Sham 3 SUBTESTcards,objects,feeding,checkers,light cans,

heavy cans was not significant [F(5,60) = 1.28, ns), indicating

that there was no detectable differential effect of tDCS on the

different individual subtests (Table 3). However, tests that

require finer motor control (turn over cards, pick up small

objects by hand and spoon: fine distal tasks) tended to

improve more than those requiring more proximal arm

motions (stacking chequers, moving light and heavy cans:

proximal tasks). ANOVARM showed a significant

interaction TIMEbaseline,post3 INTERVENTIONtDCS,Sham

[F(1,68) = 9.79; P < 0.01] and a trend for a interaction

TIMEbaseline,post 3 INTERVENTIONtDCS,Sham 3 MOTOR

CONTROLfine distal,proximal [F(1,68) = 2.91;P = 0.09; Table 3].

Post hoc testing showed a significant difference between

tDCS-induced improvements in JTT for fine distal tasks

versus proximal tasks (P < 0.05). tDCS-induced

performance improvement in fine distal tasks/proximal

tasks ratio correlated well with MRC scores (r2 = 0.70;

P = 0.039) and showed a correlation trend with

Fugl-Meyer scores (r2 = 0.61; P = 0.068).

Fig. 2 Effects of tDCS/Sham on motor performance. JTT total time in the familiarization session (displayed in both A and B for
comparison), at baseline (JTT1–3), during and following (JTT4–6) and >9 days after tDCS (A) and Sham (B). Note that patients reached
stable JTT performance during the initial familiarization session that was comparable to JTT1–3 baseline levels in Sessions 2 and 3.
Additionally, half of the patients did tDCS first and half did Sham first. tDCS (A, asterisk) but not Sham (B) resulted in shorter total times
(JTT4–6) relative to baseline (JTT1–3). Performance improvements that appeared during tDCS, persisted beyond the stimulation period for
at least 25 min (A, inset) and returned to baseline levels days later (JTT7).
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Effects of non-invasive cortical stimulation
on motor cortical excitability
In Session 4 MT did not change with tDCS (from 46 6 2.6%

to 45 6 1.9%, ns). On the other hand, ANOVARM showed a

significant effect of TIMEbaseline,post [F(1) = 13.69; P < 0.001]

and a trend for a significant effect of TMS INTENS-

ITY110%,120%,130%,140%,150% MT [F(4) = 2.39; P = 0.08], in

the absence of a significant interaction TIMEbaseline,post 3

TMS INTENSITY110%,120%,130%,140%,150% MT [F(1,4) =

0.22; P = 0.92], indicating an overall increase of RC with

tDCS (Fig. 4A). The tDCS-induced enhancement in RC

slope correlated well with tDCS-induced improvements in

JTT (r2 = 0.78; P < 0.05; Fig. 4B). tDCS led to a change

of SICI (from 57.17 6 7.97% to 68.13 6 6.36% of the test

unconditioned MEP) reflecting reduced inhibition, which

was more prominent immediately after the end of tDCS

(P < 0.05; Fig. 4C, TMS1), and to a non-significant

increase in ICF (from 145.11 6 4.12% to 175.12 6

15.99% of the test unconditioned MEP; P = 0.19). TS

MEP amplitude was 1.1 6 0.11 mV at baseline and 1.33

6 0.12 mV at post.

Discussion
The main finding of this double-blind, crossover study was

that non-invasive cortical stimulation in the form of tDCS

applied to the motor cortex of the affected hemisphere

resulted in functional improvement in the paretic hand of

chronic stroke patients that outlasted the stimulation period

and was present in every patient tested.

The JTT assesses functional hand motor skills (Jebsen et al.,

1969), has good validity and reliability (Jebsen et al., 1969;

Hackel et al., 1992), and has been extensively studied in

rehabilitative settings (Spaulding et al., 1988; Kraft et al.,

1992; Neistadt, 1994; Alon et al., 2003). Subcomponents of

the JTT mimic activities of daily living that require skilled

hand and arm motor function. Performance of these motor

tasks is conducted through fast cortico spinal projections

(Muller and Homberg, 1992) originated in the primary

motor cortex (Jancke et al., 2004). While some of these sub-

tests rely predominantly on skillful control of distal hand

function, as, for example, picking up small objects, others

rely predominantly on more proximal arm control like moving

light or heavy cans (Jebsen et al., 1969). In previous studies,

Fig. 3 Effects of (A) tDCS and (B) Sham on total JTT time in individual patients. Note shortening of total JTT time with tDCS
in all patients.

Table 3 Effects of tDCS and Sham on JTT subtests

tDCS Sham Net changes
in %

Baseline (JTT1–3) JTT4–6 Change in % Baseline (JTT1–3) JTT4–6 Change in %

Cards 5.65 6 0.47 4.78 6 0.35 �15.4 5.4 6 0.41 5.23 6 0.35 �3.15 �12.25
Objects 10.63 6 0.87 9.86 6 0.77 �7.24 10.31 6 0.83 10.32 6 0.64 0.1 �7.34
Feed 12.08 6 0.69 11.43 6 0.68 �5.38 11.86 6 0.7 13.31 6 1.12 12.23 �17.61
Chequers 5.69 6 0.38 5.12 6 0.32 �10.02 5.35 6 0.35 5.18 6 0.29 �3.18 �6.82
Light cans 4.77 6 0.18 4.38 6 0.2 �8.18 4.61 6 0.27 4.61 6 0.2 0 �8.18
Heavy cans 4.75 6 0.19 4.41 6 0.2 �6.17 4.65 6 0.26 4.62 6 0.2 �1.08 �5.09

All values are mean 6 SE. Change in % = (JTT4–6/JTT1–3 3 100–100). Net changes in % = change in %tDCS – change in %Sham stimulation.
Negative values indicate a reduction in total JTT time and consequently performance improvement.
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improvement in JTT correlated well with functional gains

during rehabilitative training after stroke (Kraft et al.,

1992; Alon et al., 2003; Wu et al., 2004). Therefore, JTT

is a valid measure of hand function in the recovery process

following a brain lesion such as stroke.

Our results document that non-invasive stimulation of motor

regions of the affected hemisphere in patients with chronic

stroke results in functional gains in motor function of the

paretic hand. This finding is consistent with previous studies

showing that direct stimulation of a motor cortical

representation in rodents elicits cortical reorganization

(Nudo et al., 1990), while non-invasive cortical stimulation

in humans influences motor cortical excitability (Chen et al.,

1997; Pascual-Leone et al., 1998; Nitsche and Paulus, 2000,

2001). Additionally, non-invasive cortical stimulation can

facilitate cortical plasticity elicited by motor training

(Butefisch et al., 2004) and ischaemic nerve block (Ziemann

et al., 1998b), and induce behavioural gains in the form of

enhancement of implicit motor learning (Nitsche et al.,

2003c), visuo-motor processing (Antal et al., 2004a, b),

probabilistic learning (Kincses et al., 2004) and analogic

reasoning (Boroojerdi et al., 2001b) in healthy human

volunteers. These findings raised the hypothesis that non-

invasive cortical stimulation could contribute to recovery of

motor function in stroke patients, a proposal that gained

support from preliminary reports of improvements in motor

function in brain-lesioned rodents and primates (Adkins-

Muir and Jones, 2003; Kleim et al., 2003; Plautz et al.,

2003; Teskey et al., 2003) and in one patient with stroke

(Brown et al., 2003) with stimulation delivered through

epidural electrodes.

In our experimental design geared to test this hypothesis,

patients initially familiarized themselves with the task and

reached a stable performance level in the first session. Base-

line levels (JTT1–3) measured days apart in the following two

counterbalanced sessions (tDCS and Sham) were comparable

to those determined at the end of the familiarization session,

demonstrating test reproducibility over time (Fig. 2). JTT

improvements in the tDCS condition (see inset in Fig. 2A)

persisted for more than 25 min after the stimulation ended and

returned to baseline levels when retested �10 days later, but

we do not know the precise duration of the effect. The fact that

discomfort/pain (at minimum levels of 1–2 out of 10),

attention and fatigue were comparable in tDCS and Sham

sessions, together with the finding that patients were unable

to distinguish the tDCS from the Sham session, as well as the

lack of side-effects and the stratified design by which

intervention and testing were performed by different

investigators are consistent with success of an experimental

design geared to blind both patients and investigators. The

finding that error rates were comparable in both sessions

supports the view that improvements in JTT did not

originate in a change of speed accuracy trade-off. The

magnitude of tDCS-induced improvement in JTT, while

modest (�12%), was robust since it was documented in

every single subject tested (Fig. 3), supporting the proposal

Fig. 4 Effects of tDCS on corticomotor and intracortical
excitability. (A) Recruitment curve (RC). Data for different
stimulus intensities (100% to 150% MT) were calculated and
displayed in percentage of the MEP amplitude elicited by the test
stimulus at 100% MT (e.g. RC at 150% MT = MEP amplitude
150% MT/MEP amplitude 100% MT 3 100; y-axis) before
(baseline, grey lines) and after (post, black lines) tDCS. Insets
display raw data in one individual. (B) The abcissa displays the
tDCS-induced increase in RC slope calculated as the ratio of the
RC slope before (RC-slopebaseline) and after tDCS (RC-slopepost),
corresponding to the equation RC-slopepost/RC-slopebaseline

(values >1 indicate larger RC with tDCS, while values <1 reflect
decreases in RC with tDCS). The ordinate displays tDCS-induced
improvement in JTT measured as the average percentage
improvement for all subtests in each individual. Note the
significant correlation between tDCS-induced increase in RC
slope and tDCS-induced improvement in JTT. (C) Intracortical
inhibition (SICI). Magnitude of SICI expressed as percentage of
test MEP amplitude before (black bar) and after (white bar) tDCS.
TMS1 and TMS2 display measurements obtained immediately and
�25 min after the end of tDCS, respectively. Note the decrease of
SICI that was more prominent immediately after the end of
tDCS (*P < 0.05).
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that cortical stimulation combined with motor training could

enhance functional gains in stroke patients beyond levels

reported in this investigation with tDCS alone. Consistent

with this proposal are recent reports showing that cortical

stimulation applied in synchrony with motor training

enhanced training-dependent plasticity in healthy human

volunteers (Butefisch et al., 2004) and increased functional

recovery in animals with focal motor cortical lesions

(Adkins-Muir and Jones, 2003; Teskey et al., 2003). The

finding of slightly longer JTT in three patients after Sham

(Fig. 3) could reflect mild fatigue in these individuals,

insufficient to reach overt perception in analogue scales.

This result underlines the beneficial effect detected in the

tDCS session, leading to clear improvements in every

single subject.

While our results are suggestive of differential effects of

tDCS on different JTT subtests, it remains to be determined

whether functional improvements elicited by this form of

stimulation are more prominent for tasks that involve fine

distal hand movements than for those involving more prox-

imal functions. In our patients with chronic subcortical stroke,

severe weakness right after the ictal event, and relatively good

motor function at the time of testing, the magnitude of tDCS-

induced improvement in JTT (11.75 + 3.61%) was similar to

that elicited by the same intervention in age-matched healthy

volunteers (10.96 + 2.75%) (Hummel et al., 2004), suggesting

a comparable ability for neuroplastic changes in the motor

system, possibly contributing to successful recovery. It

remains to be determined whether the beneficial effects of

tDCS of the affected hemisphere on JTT performance are

mediated through stimulation of primary motor cortex

alone (Nudo et al., 1990; Werhahn et al., 2003; Murase

et al., 2004) or in combination with ipsilesional dorsal

premotor cortex (Liu and Rouiller, 1999; Fridman et al.,

2004), both regions closely located and actively involved

in recovery of motor function after stroke. The dimension

of tDCS electrodes does not allow at this time more focal

stimulation, an issue that could be addressed specifically using

focal TMS (Siebner et al., 2001; Johansen-Berg et al., 2002;

Fridman et al., 2004).

Interventional tDCS is easy to apply, painless, presents

advantages for the design of Sham controls and can influence

motor cortical function for up to 90 min (Nitsche and Paulus,

2001). tDCS effects on motor cortical function appear to rely

to some extent on increased efficacy of NMDA receptor

activity (Liebetanz et al., 2002; Nitsche et al., 2004a, b), a

mechanism that also influences recruitment curves and intra-

cortical inhibition (Ziemann et al., 1998a; Schwenkreis et al.,

1999; Stefan et al., 2002). Therefore, our finding of enhanced

recruitment curves that correlate with tDCS-induced

performance improvements and of reduced short-interval

intracortical inhibition suggest the involvement of NMDA

(Liebetanz et al., 2002; Nitsche et al., 2004a, b) and

possibly GABA (Boroojerdi et al., 2001a; Chen, 2004)

receptor-dependent mechanisms on JTT improvements

identified in this study. tDCS did not affect motor

thresholds in our patients (which were comparable to MT

reported in healthy volunteers; Peinemann et al., 2001;

Jancke et al., 2004), but elicited a non-significant trend for

increase in intracortical facilitation, both consistent with

previous studies in healthy volunteers (Nitsche et al.,

2004b, c). Overall, association between increases in motor

cortical excitability and performance improvements in motor

function or motor learning have been also described in healthy

subjects (Muellbacher et al., 2001; Garry et al., 2004) and

patients with brain lesions (Traversa et al., 1997; Liepert et al.,

1998), but cause-effect links between both remain to be

demonstrated. Finally, it is conceivable that factors such as

lesion site, size, location, time after the ictal event or

impairment levels (Fridman et al., 2004; Wu et al., 2004)

influence functional results of cortical stimulation.

In summary, this study demonstrates that non-invasive

cortical stimulation of motor regions of the affected

hemisphere can beneficially influence skilled motor

functions of the paretic hand in patients suffering from

chronic stroke. This finding supports the hypothesis that

non-invasive cortical stimulation combined with motor

training could represent a useful adjuvant to traditional

interventions in neurorehabilitation.
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