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There is a wide range of age at initial symptom onset in amyotrophic lateral sclerosis despite a mean age of 65 years in

population-based studies. ‘Young-onset’ amyotrophic lateral sclerosis typically refers to patients younger than �45 years and

accounts for about 10% of cases in contemporary series. A review of published cases of amyotrophic lateral sclerosis from 1850

to 1950 revealed a far higher proportion of cases with young onset (450%), with a steady decline to the contemporary figure.

It is possible that this is not solely explained by increases in life expectancy. While there is still a rich variation in phenotypes

among cases of young-onset amyotrophic lateral sclerosis, bulbar onset was found to be significantly under-represented in

analysis of a large patient database, with implications for age-related vulnerabilities pertaining to focality of symptom onset.

The timing of initiating pathological processes in relation to the emergence of symptoms is discussed, including the potential

role of very early development and the interaction of epigenetic and environmental factors.
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Introduction
Epidemiological studies of amyotrophic lateral sclerosis (ALS) pub-

lished since the mid-1970s indicate that the mean age of disease

onset is �65 years but suggest that above the age of 75 years

there may be a decline in incidence (Armon, 2003; McGuire and

Nelson, 2006; Logroscino et al., 2010; Huisman et al., 2011).

Similar observations have been made in Alzheimer’s disease,

where distinction has then been made between ‘age-related’

(occurring within a specific age range) and ‘ageing-related’

(a result of the ageing process itself) (Ritchie and Kildea, 1995).

In one urban study, the lifetime risk of ALS continued to rise in

the elderly (Johnston et al., 2006).

In a model that assumes ALS is a single disorder, if disease is

a function of time-dependent exposure to a risk factor, then

young-onset ALS cases might reflect a major exposure at an earlier

age (Sabatelli et al., 2008). There are both empirical and theoret-

ical evidences that this is the case for genetic risk factors. In highly

inbred families with familial ALS, individuals with homozygosity

for dominant SOD1 mutations have been observed to have an

aggressive phenotype of ALS, suggesting a gene–dose effect

(Boukaftane et al., 1998; Hayward et al., 1998; Kato et al.,

2001; Zinman et al., 2009). In apparently sporadic ALS, the

threshold liability model of polygenic disease predicts that because

this is a disease of older age groups, those affected at a younger

age must carry a higher genetic burden of risk (Falconer, 1967).
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Thus, changes in age of onset might have interesting biological

implications in terms of neurodegeneration.

‘Juvenile’ versus ‘young-onset’
amyotrophic lateral sclerosis
‘Juvenile ALS’ refers to those with symptom onset consistently

before age 25 years, typically in association with a positive

family history and slow progression (Orban et al., 2007). Early

reports highlight the diagnostic difficulty in children and the

distance from our current genetically defined understanding of

such disorders (Gordon and Delicati, 1928; Lelong et al., 1932).

Three genotypes of juvenile ALS have now been described. ALS2

[alsin-mediated ALS or infantile ascending hereditary spastic para-

paresis (Hadano et al., 2001)] shows autosomal recessive inherit-

ance with very slow progression associated with a loss of function

of the gene alsin, and to date nine different mutations have been

identified (Li et al., 2011; Otomo et al., 2011). There is early

onset of limb and facial muscle weakness accompanied by

bulbar or pseudobulbar symptoms and upper motor neuron fea-

tures predominate. The disease becomes static and is not asso-

ciated with decreased long-term survival. ALS4 is associated with

mutations in SETX, which codes for the protein senataxin

(Blair et al., 2000; Chen et al., 2004). This form of juvenile ALS,

also known as distal hereditary motor neuronopathy with pyram-

idal features, shows autosomal dominant inheritance, has symp-

tom onset often 56 years, severe muscle weakness and pyramidal

signs but a notable absence of bulbar abnormalities. ALS5 is linked

to chromosome 15 (15q15.1-q21.1) (Orlacchio et al., 2010). It is

characterized by onset in the first or second decade of life with

slowly progressive weakness and atrophy of the hands and feet

and only later bulbar muscles. Upper motor neuron features are

a late development (Andersen and Al-Chalabi, 2011).

‘Young-onset’ amyotrophic lateral sclerosis is considered to be

similar to ‘classic’ Charcot ALS with mixed upper and lower motor

neuron features commencing before an arbitrary cut-off age of

45 years and apparently sporadic. In clinic-based series, younger

age is then an independent predictor of longer survival (Rosen,

1978; Eisen et al., 1993; Turner et al., 2002; Czaplinski et al.,

2006; Sabatelli et al., 2008; Chio et al., 2009, 2011a). There is

potential overlap of young onset with juvenile ALS in terms of age

of onset, but cases of classical Charcot ALS with onset 520 years

are exceptional (Gouveia and de Carvalho, 2007; Sabatelli et al.,

2008) and may indicate a different condition. A lower limit of

20 years at symptom onset is therefore suggested.

Historical observations
Contemporary studies have generally reported young-onset ALS

cases to account for �10% of the total (Sabatelli et al., 2008;

Logroscino et al., 2010). On the other hand, a review of a

representative number of historical cases (�200) from the early

ALS literature (1850–1940) reveals over half of the cases as

young-onset ALS by similar definition. Individual case reports are

summarized in Table 1.

Earliest documented cases
The first documented case of classic Charcot ALS was probably

that of Prosper Lecomte, a 30-year-old proprietor of a small circus

(Cruveilhier, 1853). Even though Cruveilhier considered this to be

a case of progressive muscular atrophy, careful analysis of the

clinical and pathological details as described by Veltema (1975)

meets all the criteria for the disease that Charcot was to describe

several years later. Roberts (1858) collected 105 cases and wrote a

monograph on what he referred to as Cruveilhier’s atrophy.

Certainly many of these, all young, were cases of young-onset

ALS but others were due to a variety of disorders. Cruveilhier’s

case was very characteristic of ALS with muscle cramping, and

fasciculation (referred in the early literature as fibrillary twitching

or contractions) was diffuse and included the tongue. Bilateral

tongue fasciculation is virtually synonymous with ALS (Li et al.,

1991). Violent trembling of the lower jaw was described, which

most certainly reflected jaw clonus. This is of interest because in

1886, Beevor (1886) described jaw clonus in a 48-year-old female

with ALS, commenting that this had not previously been

described. Lockhart Clarke also published an autopsy-proven

case of ALS before Charcot (Radcliffe and Lockhart Clarke,

1862; Turner et al., 2010) in a 40-year-old male. Charcot’s first

reported case occurred in the same year as Lockhart Clarke’s first

case (Charcot, 1865) and was a 20-year-old female with isolated

upper motor neuron findings. It was only later that Charcot con-

sidered primary lateral sclerosis, progressive muscular atrophy and

their much commoner occurrence together that the term amyo-

trophic lateral sclerosis was coined (Charcot and Joffroy, 1869;

Rowland, 2001). It is of interest that Charcot’s understanding

was based on probably fewer than 10 cases.

The cases of Professor Joseph Collins
(1866–1950)
Professor Collins, working at the New York City Hospital, was able

to collect 104 cases of ALS (Collins, 1903). Ninety-four cases were

from the literature and a further 10 he had personally examined.

There were 55 males and 49 females (ratio 1:1.1). Thirty patients

were aged between 30 and 40 years, 29 between 40 and 50 years

and 28 between 50 and 60 years. Average disease duration was

2 years (minimum of a few months and maximum of 9 years).

The upper limb was affected first in 39 cases, the lower limb in

14 cases, both upper and lower limbs in 11 cases and bulbar onset

in 21 cases. Although Collins stressed that ‘mental symptoms

occur with considerable frequency, which is what makes this

disease (ALS) different from progressive muscular atrophy’, he

did not expand on the issue. ‘Pathologically the pyramidal tracts

are affected late in the disease course and only to a slight extent.

The cerebral cortex is not affected except very late when there

occur symptoms of dementia, such as depression of spirits, mean-

ingless laughter and weeping and suicidal impulses.’ While the

‘depression of spirits’ might well be the apathy commonly seen

in frontotemporal dementia, now established to have pathological

overlap with ALS (Phukan et al., 2007), the observation of mean-

ingless laughter and weeping is now understood as a reflex disin-

hibition at the bulbar level rather than cognitive in origin. Even
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today, patients and particularly their caregivers are mystified by

the uncontrollable, usually inappropriate laughter and crying asso-

ciated with bulbar muscle involvement.

The cases of Professor Israel S. Wechsler
(1886–1962)
Wechsler, Former President of the American Neurological

Association, and colleagues described two autopsy-confirmed

cases of ALS aged 40 years (a female) and 48 years (a male),

both having presented with lower limb pain and then subse-

quently developed both upper and lower motor neuron signs

and symptoms (Wechsler et al., 1929). The pain in the female

was so severe that a laminectomy was done to rule out some

structural lesion. Pain is now a well-recognized, if not always

appreciated, feature of ALS (Chio et al., 2011b; Handy et al.,

2011). He also described ‘mental changes in ALS’ (Wechsler and

Dvison, 1932), now understood as a spectrum with frontotem-

poral dementia. Of the six cases he initially described, two who

had autopsy-proven disease are of particular interest. The first was

a male aged 38 years, who presented with mental changes char-

acterized by impairment of memory. ‘The family noticed that he

was tongue-tied, reiterated statements without being aware of it

and could not recall the names of his parents and failed to rec-

ognize the members of his family or the house and street in which

he lived.’ A year later, he started to develop wasting and weak-

ness of upper extremity muscles. This became diffuse also invol-

ving bulbar muscles. In addition to typical pathological changes of

ALS, there were also ‘disturbances in the architecture of the cor-

tical layers, extending from the frontal to the temporal regions’.

Wechsler had considerable insight into ALS, which after this case

he considered to be a diffuse degenerative process. He also com-

mented on the marked reparative glial changes ‘a process that

warrants the conclusion that the glial proliferation was primary’.

It is almost certain that Wechsler’s was a case of

ALS-frontotemporal dementia (possibly the first one recorded),

now linked to the C9ORF72 gene hexanucleotide repeat in at

least 30% of those with a family history of ALS

(DeJesus-Hernandez et al., 2011; Renton et al., 2011).

The importance of glia in the pathogenesis of ALS also cannot

be underestimated (Vargas and Johnson, 2010). Gowers (1902)

had appreciated that neuroglia were important in the degenera-

tive process 30 years before Wechsler. ‘Whenever the nerve

elements waste there is always an overgrowth of the interstitial

neuroglia, the connecting and supporting tissue which lies

between them.’

Table 1 Individual case reports of ALS from 1853–1931

Age (gender) Features References

30 (male) Right arm followed by left arm, then bulbar, spastic legs Cruveilhier (1853)

40 (male) Bulbar onset, rapidly progressive Radcliffe and Lockhart Clarke (1862)

38 (female) Right arm, rapidly followed by bulbar and legs Clarke and Jackson (1867)

44 (female) Fasciculations of arms, then weakness, wasting, with legs then bulbar Kahler and Pick (1879)

44 (male) Bilateral hand wasting and fasciculations, followed by arm and bulbar Shaw (1879)

38 (male) Left arm, followed by right arm, then bulbar Lewis (1880)

44 (male) Bulbar onset, then legs, then arms Ferrier (1881)

38 (male) Bulbar onset, then arms, then legs Ferrier (1881)

34 (male) Left leg, right arm then bulbar with death in 12 months Marie (1883)

29 (male) Right foot followed by left foot, spastic, then small hand muscles Kojewnikoff (1883)

41 (male) Right thumb, arm and shoulder with fasciculations, then left arm then legs Cooper (1886)

32 (male) Left hand and arm, then right, then legs then bulbar with spastic speech Ormerod (1886)

39 (female) Right leg, then right arm, then left leg and left arm Mott (1895)

46 (female) Bulbar onset followed by left arm Beevor (1886)

27 (male) Weakness, wasting hands followed by bulbar symptoms Rovighi and Melloti (1888)

45 (male) Left leg then right leg, right hand, trunk fasciculations Willis (1895)

62 (male) Difficulty walking, left foot drop, then hands and arms Hektoen (1895)

53 (male) Spastic weak legs then wasting, later arms and bulbar Dercum and Spiller (1899)

47 (male) Twitching legs then weakness, then arms and later bulbar McPhedran (1903)

27 (male) Left arm, then right arm, then legs, diffusely brisk reflexes Guthrie and Fearnsides (1916)

62 (female) Bulbar onset but rapid weakness of arms and legs Hassin (1919)

34 (female) Arms, followed by legs with fasciculations Marie et al. (1923)

39 (male) Spastic gait, diffuse fasciculations, then bilateral arm wasting Warner (1926)

40 (female) Both legs spastic and weak, later both arms finally bulbar Wechsler et al. (1929)

48 (male) Right foot drop, then both legs, diffuse fasciculations, then bulbar Wechsler et al. (1929)

40 (male) Both hands, then bulbar features and neck drop Thomas (1928)

28 (female) Both hands, spastic legs Gordon and Delicati (1928)

41 (male) Both hands, then bulbar Hechst (1931)

More than 80% of these cases are under the age of 45 years (mean, 40 years; SD, 9). The male-to-female ratio is 3:1. Onset of symptoms is noted as upper limb (46%),
lower limb (36%) and bulbar (18%).
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Wechsler worked at the Mount Sinai Hospital, New York,

and looked after legendary Yankees baseball player Lou Gehrig

(‘The Iron Horse’) who died of ALS in 1941 at the age of

38 years. By 1944, Wechsler had collected 81 cases of ALS,

examined between 1939 and 1942 (Wechsler et al., 1944).

Of these, he considered 68 to be primary, in other words they

met criteria of classic Charcot ALS with combined upper and lower

motor neuron findings. The ratio of males to females was 2.2:1.

He was able to follow 22 of the 68 to their demise, which

ranged from 5 to 39 months (average 19.6 months). Although

Wechsler states that ALS is a disease of ‘adult life and of middle

and old age’, 37 (54%) of his 68 cases were younger than

50 years.

Life expectancy considerations
There are cases of ALS described from 1850 onwards undoubtedly

not identified here and a few in which the diagnosis was uncer-

tain, which were not included. ALS is also assumed to have existed

as a disease entity long before the printed word. The Lisbon

Mummy Study recently described evidence for prostatic cancer

in a Ptolemaic Egyptian from �2200 years ago (Prates et al.,

2011), but because of the poor preservation of neural tissue,

human palaeoneurobiology is almost non-existent (Appenzeller

et al., 2001). It has been suggested that short lifespan in antiquity

precluded development of cancer, which might then also apply to

ALS. However, the average lifespan of wealthier classes even then

was between 40 and 50 years, and many individuals did live to

a sufficiently advanced age to develop many ‘age-related’

disorders (David and Zimmerman, 2010).

It must be noted in any comparison that the historical case

reports highlighted are all largely specialist referrals, whereas con-

temporary data have been derived from larger population studies.

Aside from this consideration, the most obvious interpretation of

the younger age of onset in our historical versus contemporary

series is an increase in life expectancy. Life expectancy may be

defined as the median survival for an individual’s birth cohort.

Differently, lifespan is the maximum number of years that a

human can live. While the human lifespan has substantially

remained unchanged for the past 100 000 years at �125 years

(Canudas-Romo, 2010), life expectancy from birth has greatly

increased, mainly due to improved hygiene and nutrition and

more recently due to the elimination of infectious diseases occur-

ring in infancy and development of antibiotics and vaccinations

(General Lifestyle Survey, 2011). Ageing of populations observed

in Western societies is evidenced by the acceleration in the rise of

the number of older (aged 85 and over) persons and the increase

in the number and percentage of centenarians (Canudas-Romo,

2010). Mortality varies with age in a consistent ‘U’ or ‘J’ shape,

with highest mortality rates in infancy, dropping rapidly in child-

hood, reaching their lowest level in late childhood and adoles-

cence, and then beginning to increase in a regular manner

with age.

For about five decades after the first descriptions of ALS, life

expectancy was 40–45 years (http://www.mortality.org), so that

the predominance of young-onset ALS cases reported in the

second half of the 19th century and early 20th century may

indeed simply reflect a selection artefact related to life expectancy.

However, such figures represent life expectancy from birth,

whereas if infancy and early childhood were survived, then life

expectancy even in the mid- to late-19th century considerably

exceeded 45 years. By 1930, life expectancy at birth had reached

460 years, nearer the contemporary median age of onset of ALS

(63–66 years) (Logroscino et al., 2005; Johnston et al., 2006;

O’Toole et al., 2008). Despite this, the majority, or relatively

large number, of patients with ALS were still younger than 50

years (Ziegler, 1930; Wechsler et al., 1944). Ziegler had examined

69 patients at the Mayo Clinic between 1925 and 1930 (Ziegler,

1930). The youngest was 24 years old and ‘the average was

slightly less than 50’. Even as recently as 1960, young-onset

ALS was still very prominent. Spillane (1962) collected 40 cases

of ALS of which 16 (40%) were younger than 50 years. Similarly,

Mackay (1963) followed 70 cases of ALS to their death, of which

27 (39%) were younger than 50 years. Of 332 patients with ALS

collected between 1977 and 1982, 60 (18%) were younger

than 50 years (Li et al., 1985). This is still approximately double

the number of young-onset ALS encountered in the last two

decades.

Accepting the possibility of ‘referral bias’ (e.g. younger patients

being more motivated), there appears to have been a decreasing

number of young-onset ALS into the late 20th century during

a period when life expectancy has changed relatively little. Life

expectancy at birth among early humans was likely to be about

20–30 years, but by 1900, the average length of life in industria-

lized nations had doubled relative to this historical extreme

(Wilmoth, 1998). The longest available series of reliable informa-

tion on the upper limits of achieved human lifespan is that from

the Swedish national demographic data from 1861 to 1999

(Wilmoth et al., 2000). The maximum age at death accelerated

markedly around 1969, rising at a rate of 0.44 years per decade

from 1861 to 1969 and 1.11 years per decade from 1969 to 1999.

It was around the early 1960s that the incidence of young-onset

ALS declined to present-day levels.

Not all countries show this decline, however. A large Indian

cohort of 1153 cases with classic Charcot ALS was studied

between years 1976 and 2005 (Nalini et al., 2008). Mean age

at clinical onset was 46 years with over one-third showing onset

before the age of 40 years. Life expectancy for these patients at

birth was 64.7 years (WHO data). The much younger age of onset

is also true for other parts of Asia and South America (Nalini et al.,

2008) and those in Africa or of African origin (Marin et al., 2012).

Factors linked to ‘social development’, for example nutrition,

might then have an important role in this decline. Another

possibility might relate to occupational regulations in relation to

exposure to toxins (Sutedja et al., 2009).

Phenotype observations in
young-onset amyotrophic
lateral sclerosis
A classic Charcot ALS phenotype was observed in 40% of a series

of patients with young-onset, compared with 80% of patients
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with older-onset ALS, and an upper motor neuron-predominant

phenotype was over-represented in the young-onset group

(60 versus 17%, respectively) (Sabatelli et al., 2008; Chio et al.,

2011a). In the young-onset cases presented in Table 1, a

male:female ratio of 3:1 was observed. Significant differences in

the gender ratios between young- and older-onset ALS have been

documented in contemporary series, with a tendency to equality in

those with onset 465 years (Rosen, 1978). In another study, the

predominance of males in the young-onset group (2.6:1 versus

1.3:1) appeared to be driven by a large difference in the

upper motor neuron-predominant phenotype gender ratio in

young-onset cases (5.8:1 versus 0.8:1), whereas classic ALS

showed a near equal gender mix (1.1:1 versus 1.4:1) (Sabatelli

et al., 2008).

Patients with ALS reporting a family history of the disease have

been noted to have a lower mean age of onset (Rosen, 1978;

Andersen and Al-Chalabi, 2011). ALS associated with basophilic

inclusions and associated with mutations of the FUS gene com-

monly occurs in late teenage patients and is an aggressive disease,

with typical ALS signs and asymmetric onset (Baumer et al., 2010;

Mackenzie et al., 2011a, b). Identification of a pathologically

expanded hexanucleotide repeat sequence in the C9ORF72

gene in at least 30% of ALS cases reporting a family history of

both ALS and frontotemporal dementia has provided genetic

support for a well-established clinical and pathological link

between the two disorders. Phenotype studies in this group

have demonstrated a younger age of onset, including those

younger than 45 years (Majounie et al., 2012). Despite this

younger age, more frequent bulbar onset of symptoms has been

noted (Mackenzie et al., 2011a; Chio et al., 2012; Majounie et al.,

2012) and a generally more rapid progression with frequent

behavioural change (notably psychosis in a few) (Byrne et al.,

2012; Chio et al., 2012; Cooper-Knock et al., 2012;

Simón-Sánchez et al., 2012).

Bulbar-onset is less common
in young-onset amyotrophic lateral
sclerosis
The site of onset of ALS symptoms appears to be focal and patho-

logical studies support this view (Ravits and La Spada, 2009).

The observation that the site of first symptoms is distributed

approximately equally between upper limb, lower limb and

bulbar (25–35%), with the remaining few cases in which it is

respiratory insufficiency, truncal weakness or dementia, might

suggest this is random. Concordance for handedness and laterality

in upper limb onset has been demonstrated in ALS, though not for

leggedness (Turner et al., 2011). A gender shift among patients

with bulbar-onset ALS has been noted with age, a higher

frequency being observed among elderly females (Eisen and

Krieger, 1998). Our review of 19th and early 20th century ALS

suggests that even though there was a predominance of

young-onset ALS, bulbar-onset ALS among them was rare. Two

detailed descriptions of bulbar-onset ALS were both in older

patients (Gibson, 1900). A tendency for patients with bulbar

onset to be older (mean 59 versus 55 years for limb onset) was

observed in an early clinic-based series (Rosen, 1978). A lower

proportion of bulbar onset (mean 16%) was observed in those

with onset 541 years versus older patients (mean 43% in those

with onset 470 years), as well as a gender reversal effect (mean

10% in females versus 18% in males with onset 541 years com-

pared with mean 55% in females versus 34% in males with onset

470 years) (Haverkamp et al., 1995). Another clinic-based series

reported 21% of young-onset patients with bulbar onset (Sabatelli

et al., 2008). Large European population-based analysis noted

rising proportions of bulbar onset with age of symptom onset,

specifically 10–51% in males and 6–72% in females (Beghi

et al., 2007; Chio et al., 2011a). Using the King’s College

London tertiary clinic database (Turner et al., 2002), 1384 cases

of apparently sporadic ALS were analysed. Overall, 25% were

bulbar onset. In logistic regression (including gender as a

covariate), bulbar-onset frequency was independently positively

correlated with higher age at symptom onset (P50.001) and so

significantly under-represented among cases of young-onset

ALS (Fig. 1).

While the anatomical substrate for bulbar dysfunction in ALS

may intuitively lie within the brainstem nuclei of the medulla,

there is no simplistic correlation with bulbar symptoms and re-

spiratory dysfunction, the centres for which lie in close proximity.

A primary cortical origin for bulbar symptoms is also entirely

plausible. Our observation of a significantly reduced frequency

of bulbar onset in young-onset ALS suggests that the focality

of onset involves site-specific factors and further study may

reveal the nature of the apparent age-related selective

vulnerability.

Figure 1 Analysis of the King’s College London tertiary

ALS clinic database (Turner et al., 2002). Bar chart showing

percentage of cases of bulbar- (dark grey) and non-bulbar-onset

ALS (light grey) for males and females 445 years at onset and

445 years. In logistic regression, there was a significantly lower

proportion of bulbar onset in younger cases independent of

gender.

Young-onset ALS Brain 2012: 135; 2883–2891 | 2887

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/135/9/2883/325075 by guest on 24 April 2024



How early might amyotrophic
lateral sclerosis start?
The pathological changes that characterize both Alzheimer’s

and Parkinson’s diseases are now recognized to have lengthy pre-

clinical periods amounting to years if not decades. The common

denominator is probably related to the gradual accumulation of

misfolded protein (Gorman, 2008; Jellinger, 2009; Huang and

Figueiredo-Pereira, 2010; Polymenidou and Cleveland, 2011).

Even though the onset of ALS is most commonly (and consistently

for research) taken as the time of first clinical manifestations, it

seems unlikely that this is when the degenerative process begins

(Eisen, 2011). Gowers (1902) appreciated this over a century ago,

encapsulated in his concept of ‘abiotrophy’ in which the nervous

system underwent an inherent process of disintegration separate

from pathology driven by ‘external’ processes, for example infec-

tion. He said: ‘While general life still seems full of vigour the nu-

trition of some neurons fails; they slowly die. The neurons which

most frequently thus decay are the spinal motor neurons—those

which sometimes fail, as we have seen, at the very beginning of

life. These are more frequent in late life than isolated degeneration

of the upper, cerebral, motor neuron which causes spastic paraly-

sis, although this does sometimes suffer alone and almost always

together with the lower motor neuron in the ordinary atrophic

cases’. The ordinary atrophic cases undoubtedly refer to ALS.

Implicit in this statement is that degeneration of the motor neu-

rons is a gradual process, and an important issue in understanding

the age of onset of ALS is when the potentially degenerative

process is first set in motion and whether it must be upon a

vulnerable substrate in order to propagate.

The study of healthy carriers of gene mutations linked to ALS

in later life has the potential to provide clues to the nature of

symptom onset. In one such study, a loss of motor unit number

estimates preceded clinical deficits by only a few weeks (Aggarwal

and Nicholson, 2001), and in another cortical hyperexcitability

was noted in presymptomatic individuals before symptom onset

(Vucic et al., 2008). However, in respect of the former study,

a decline of the number of motor units in normal subjects has

been noted to start around the age of 40 years (McComas

et al., 1971), and it has been estimated that 30% of anterior

horn cells must be lost before weakness is apparent (Wohlfart,

1958), suggesting that the emergence of symptoms in ALS is

a threshold.

It has been postulated that Alzheimer’s disease, Parkinson’s

disease and ALS are due to environmental damage to specific

regions of the CNS that remains subclinical for several decades

but makes those affected especially prone to the consequences

of age-related neuronal attrition (Calne et al., 1986). Examples

include methylphenyltetrahydropyridine (MPTP) exposure and par-

kinsonism, poliovirus infection and post-poliomyelitis syndrome,

chickling pea ingestion and lathyrism, an unidentified environmen-

tal factor and ALS-Parkinson’s disease complex of Guam and

trauma and pugilist’s encephalopathy. These observations suggest

that attention should be focused on the environment in early

rather than late life. The ratio of the second (2D) and fourth

(4D) finger length has been linked to prenatal circulating levels

of testosterone (Manning and Bundred, 2000). Patients with ALS

(male and female) were noted to have a consistently lower 2D:4D

ratio (Vivekananda et al., 2011), although it has also been noted

in the settings of autism and prostate cancer. Nonetheless, the

broader issue is in raising the possibility of prenatal influences on

motor system development that define vulnerability in later life.

Some studies suggest that ALS is a developmental disorder; this

has also been hypothesized for Parkinson’s disease (Weidong

et al., 2009). ALS may result from early-life developmental

somatic mutations (Frank, 2010), and if so a continuum of risks

and age of onset might be predicted. Those who inherit a predis-

posing mutation have the highest risk and earliest disease onset

and those with very few mutations have such low risk as to escape

the disease, with a spectrum of risk and onset age in between

these extremes. Such a view is dependent on a truly ‘focal’ onset

in ALS, which continues to be a contentious issue (Ravits and

La Spada, 2009; Kiernan et al., 2011). In ALS, the neurons that

degenerate have some of the longest projections within the ner-

vous system, extending from near the surface of the brain through

the length of the spinal cord or from the spinal cord segments to

the muscles of the distal extremities. This makes it is plausible that

a developmental defect in axonal guidance or maintenance or

repair could predispose to ALS. Common gene variants in the

axon guidance pathway have been shown to relate not only to

ALS susceptibility but also to age of onset (Lesnick et al., 2008).

Evolutionary considerations
We suggest that since the mid-19th century, young-onset, as a

proportion of all cases of ALS, have decreased from 450 to

�10% of all cases of ALS from about 1960 onwards in Western

populations. There is separate evidence that the mean age of

symptom onset of older (475 years) cases may be increasing

(Doi et al., 2010; Goldacre et al., 2010). The mean onset

age of ALS in the 1960s and early 1970s had a wide range

(46–64 years) (Jokelainen, 1977a, b). A significant increase of

maximum life expectancy occurred in about 1960 (Wilmoth

et al., 2000). Between 1860 and 2000, 470% of the maximum

age at death is attributable to reductions in death rates above age

70 so that the rise in maximum age in recent times is due primarily

to decline in old-age mortality. As factors associated with disease

change over time, the specifics of disease also change and this

includes the age of onset (Ors, 1977). This applies to microorgan-

isms in the course of their evolutionary development and to

humans over a much shorter time scale. The modifying factors,

which broadly include genetic, epigenetic and environmental

influences, are poorly understood but do not remain static. They

may increase or lessen in degree, often disappearing altogether to

be replaced by new ones. A specific example of an environmental

factor with relevance to ALS is smoking (Armon, 2009). Exposure

to smoking in utero might induce both somatic mutations and

epigenetic effects perhaps influencing younger onset, and there

have been declining rates of smoking in pregnant women with

time (Stein et al., 2009). Mechanisms exist through which epigen-

etic change can be converted into a genetic change on which

selection can act. This would constitute a potential route through
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which the environment might directly influence evolution (Turner,

2009).

Concluding remarks
Over the last 150 years, age-related variability has, and continues,

to occur in ALS. This must be driven by biological fundamentals,

and across geographical populations there may be profound

environmental as well as genetic substrates. A better understand-

ing of this age-related influence on pathogenesis and phenotype

may prove critical in determining how and when to intervene in

this most resistant of neurodegenerative disorders.
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