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Progressive supranuclear palsy and Parkinson’s disease have distinct underlying neuropathology, but both diseases affect cognitive

function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can

occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments

underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response

decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson’s syndrome), 24 patients with

clinically diagnosed Parkinson’s disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted

infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their

responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic

latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go

choices. By using Bayesian parameter estimation, we fitted a hierarchical drift–diffusion model to individual participants’ single

trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of

accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters

provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed

disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter

non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade

decision boundary compared to Parkinson’s patients and controls. This indicates a prepotency of responding in combination with a

reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical com-

bination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the

model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders.

The mechanistic differences underlying participants’ poor performance were not observable from classical analysis of behavioural

data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new

therapeutic strategies for cognition and behaviour in these disorders.
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Introduction
Parkinson’s disease and progressive supranuclear palsy

(PSP) are associated with many non-motor symptoms as

well as the motor hallmarks of bradykinesia and rigidity.

Despite very different underlying neuropathology (Hauw

et al., 1994; Litvan et al., 1996b; Braak et al., 2003),

both disorders may lead to executive dysfunction and im-

pulsivity. Impulse control disorders are severe in �10% of

patients with Parkinson’s disease (Weintraub et al., 2010),

but patients are impaired in response inhibition and deci-

sion-making even in the absence of impulse control dis-

orders, and also before they are exposed to any

dopaminergic therapies (Obeso et al., 2011; Nombela

et al., 2014; Ye et al., 2014a). The Richardson’s syndrome

or ‘classical’ phenotype of PSP also causes impulsivity des-

pite severe akinesia and apathy (O’Sullivan et al., 2010;

Burrell et al., 2014). It manifests as delay intolerance,

choice impulsivity, and behavioural decisions that increase

the risk of falls, and it can exacerbate dysphagia and carer

burden (Wedderburn et al., 2008; Burrell et al., 2014).

There are several candidate mechanisms by which PSP

and Parkinson’s disease may lead to impulsivity and poor

response inhibition. For example, loss of subthalamic inhib-

ition would lead to a bias towards action and away from

response inhibition, by disinhibition of thalamocortical pro-

jections (Frank et al., 2007; Averbeck et al., 2014). Cortical

neuropathology, especially in prefrontal and premotor cir-

cuits (Braak et al., 2003; Brenneis et al., 2004; Rae et al.,

2012) may also impair the appropriate accumulation of

evidence for action and inhibition in a given context

(Verbruggen and Logan, 2009), and impair the selection

and execution of actions (Zhang et al., 2012). Finally,

changes in dopaminergic, serotonergic and noradrenergic

innervation of the cortex and striatum can influence deci-

sion-making and response inhibition (Ye et al., 2014a, b),

while dopaminergic therapies themselves can increase risk-

taking behaviours and impulsivity (Weintraub et al., 2010).

The different features of PSP and Parkinson’s disease

mean that behavioural deficits in response inhibition may

have different origins in these two disorders. In Parkinson’s

disease for example, the impulsive choice arising from

dopaminergic stimulation is distinct from the impulsive

choice arising from therapeutic deep brain stimulation of

the subthalamic nucleus (Frank et al., 2007).

We tested this hypothesis in two clinically diagnosed pa-

tient groups and a healthy control group on a saccadic Go/

No-Go task (Fig. 1A). The reason for the use of saccadic

measures is 2-fold: (i) the precision of the oculomotor

system that enables accurate recording and modelling;

and (ii) the advantage of measuring the time to initiate

movement, not execution time, in patients with

bradykinesia.

The underlying cognitive deficits were revealed by forma-

lizing the Go/No-Go task as an accumulation-to-threshold

decision process, which can be described by a drift-

diffusion model (DDM) (Gomez et al., 2007; Ratcliff

and McKoon, 2008). This model provides a parsimonious

account of complex behavioural phenomena, including re-

sponse latency distributions (Ratcliff and Smith, 2004),

speed accuracy trade-offs (Zhang and Rowe, 2014), and

the effects of uncertainty on decision-making (Mulder

et al., 2012). The DDM also has direct neurophysiological

evidence in support of it, for neurons in the superior col-

liculus (Ratcliff et al., 2003) and cortex (Kim and Shadlen,

1999; Shadlen and Newsome, 2001), while related methods

have been used to examine anatomical correlates from

functional brain imaging data (Rowe et al., 2010; Zhang

et al., 2012). This model-based approach has proven valu-

able and has already revealed the critical role of the sub-

thalamic nuclei for motor inhibition under conditions of

ambiguity or risk (Cavanagh et al., 2011) and the effect

of subthalamotomy on inhibitory behaviour (Obeso et al.,

2014).

Accurate fitting of the model in studies of animals and

healthy participants often requires thousands of trials

(Brunton et al., 2013). This would not be tolerated by pa-

tients with neurodegenerative disorders. We therefore used

a Bayesian parameter estimation approach to fit a hierarch-

ical DDM that encompasses patient heterogeneity in terms

of random sampling of individuals from a group-wise dis-

tribution (Wiecki et al., 2013). By optimizing the model to

fit both the distribution of response latencies and the ac-

curacy of responses, the hierarchical DDM is efficient at

reproducing behavioural data and the properties of genera-

tive decision processes, within a few trials.

The DDM assumes that a single accumulator integrates

the momentary evidence over time. This accumulation pro-

cess terminates when the accumulated evidence reaches an

upper or a lower boundary, corresponding to the Go or

No-Go decisions (Fig. 1B). Impulsive behaviour in the Go/

No-Go task can be decomposed into different changes in

parameters of the DDM, for example a baseline bias to-

wards ‘Go’ decisions (Mulder et al., 2012), or reduced ac-

cumulation rate for ‘No-Go’ decisions (Obeso et al., 2014).

We predicted that both PSP and Parkinson’s disease

impair response inhibition but the hierarchical DDM

would reveal different causes of these deficits in the two

diseases. Knowledge of these mechanisms may not only

increase our ability to detect such deficits, but

would also enable the development of better mechanistic

therapies.
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Materials and methods

Participants

Sixty-nine participants were recruited. Demographic and clin-
ical features of the participants are summarized in Table 1.
Nineteen patients with PSP were recruited from a regional spe-
cialist clinic for PSP and related disorders at the Cambridge
University Hospitals NHS Foundation Trust. Consensus clin-
ical diagnostic criteria (Litvan et al., 1996a) for probable PSP
were used by an experienced neurologist, identifying the
Richardson’s syndrome phenotype. To date, 10 of the clinic-
ally diagnosed patients have died and been recruited to the
Cambridge Brain Bank as part of a separate research pro-
gramme: all 10 had neuropathological confirmation of the
diagnosis.

Twenty-four patients with idiopathic Parkinson’s disease
(Hoehn and Yahr stage I–III) were recruited through the
Cambridge University Parkinson’s Disease Research Clinic.
All Parkinson’s patients met the United Kingdom Parkinson’s
Disease Society Brain Bank Clinical Diagnostic Criteria
(Gibb and Lees, 1988). Patients with Parkinson’s disease did

not have pathological confirmation. Additional inclusion
criteria were: (i) non-demented at last clinical assessment
(Mini-Mental State Examination score, MMSE5 24/30); (ii)
no ongoing clinically significant depression (Beck Depression
Inventory score418; Beck et al., 1988).

Twenty-six healthy control participants with no history of
significant neurological or psychiatric disorders were recruited
from the volunteer panel of the Medical Research Council
Cognition and Brain Sciences Unit.

Participants underwent cognitive assessment using the
Revised Addenbrooke’s Cognitive Examination (ACE-R) and
Mini-Mental State Examination. Disease severity was assessed
by the PSP Rating Scale (PSPRS) (Golbe and Ohman-
Strickland, 2007) and the Unified Parkinson Disease Rating
Scale (UPDRS, part III motor subscale) (Fahn, 1986). All test-
ing was performed with participant’s taking their usual medi-
cation. The study was approved by the local research ethics
committee. Written informed consent was obtained from all
participants.

Task and procedure

All participants performed a saccadic Go/No-Go task (Fig. 1A;
Nombela et al., 2014). Each participant sat at a distance of
1.5 m from a blank screen wearing a head-mounted saccad-
ometer (Ober consulting) with a binocular infra-red scleral
oculometer for measurement of horizontal movements. The
infrared reflectance signals were recorded at 1 kHz and low
pass filtered at 250 Hz, with 12 bit resolution. Three low-
power lasers were mounted on the forehead plate and angled
at �10�, 0� and + 10� azimuth for stimulus presentation.
Because the device and target display moves with the head, a
head restraint or a bite bar is not required.

Each experiment session consisted of 300 trials. At the be-
ginning of each trial, the participants fixated on two central
spots at 0� (one green, one red). After a random period be-
tween 1500 ms and 2500 ms, one of the central spots was ex-
tinguished and simultaneously a red target spot was presented
with a �10� or + 10� horizontal displacement. In 50% of the
trials, the green central spot remained and the participants
were required to make a saccade to the lateral target (Go
trials). In the other 50% of trials, the red central spot re-
mained and the participants were required to hold their sac-
cade and maintain fixation (No-Go trials). The lateral target
disappeared 250 ms after a saccade was made, or after a max-
imum duration of 1500 ms was reached. The order of the
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Figure 1 Saccadic Go/No-Go task and the drift-diffusion

model. (A) Participants fixated on green and red points overlap-

ping at the centre of the screen. One of the two points disappeared

and a saccadic target was presented on the left or right of the

screen at an angle of 10� from the fixation point. Participants were

instructed to make a saccade to the target if the remaining fixation

point was green, or withhold their response if the remaining fixation

point was red. (B) Examples of trajectories of the drift-diffusion

model. Two decision boundaries (0 and a) represent the Go and

No-Go decisions. The drift rate v represents the rate of accumu-

lation. The diffusion process starts at a starting point between the

two boundaries (a*z) until the accumulated evidence reaches one of

the two boundaries. The predicted saccadic latency is the sum of

the duration of the diffusion process and the non-decision time Ter.

Table 1 Demographics and neuropsychological meas-

ures of participants with PSP, Parkinson’s disease and

healthy control subjects

PSP (n = 19) PD (n = 24) Control (n = 26)

Age 68.37 � 6.54 66.17 � 10.15 66.58 � 7.10

Gender 8 M / 11 F 13 M / 11 F 10 M / 16 F

MMSE 26.58 � 3.73 28.29 � 1.92 29.46 � 0.95

ACE-R 79.89 � 12.23 89.63 � 8.72 94.62 � 4.05

PSPRS 38.16 � 16.89 – –

UPDRS-III – 33.88 � 15.89 –

Values are mean � standard deviation. PD = Parkinson’s disease.
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target locations (leftwards and rightwards) and the trial type
(Go and No-Go) were randomized within and across partici-
pants. A short series of 40 presentations of the targets were
used at the beginning of the session for calibration.

Data preprocessing

Eye movement data were downloaded from the saccadometer
to a laptop and preprocessed using an automated validation
program in Latency Meter 2.3 (Ober consulting). The valid-
ation program removed erroneous trials due to blinks, as well
as grossly abnormal profiles as determined by the instantan-
eous velocity, acceleration, and position of eye movement
traces, and rejection criteria for either the peak velocity or
saccadic duration (Ober et al., 2003).

For trials with valid saccades, the saccadic latency was
defined as the time interval between the target onset and the
onset of the saccade. The saccadic latency data were pooled
for leftward and rightward targets to increase statistical
power, because the saccadic latencies did not significantly
differ between the two target locations [t(68) = 0.63,
P = 0.53, paired t-test]. Four behavioural measures were ob-
tained for each participant: (i) the rate of omission errors in
Go trials; (ii) the rate of commission errors in No-Go trials;
(iii) mean saccadic latency in successful Go trials; and (iv)
mean saccadic latency in No-Go trials with commission errors.

Hierarchical drift-diffusion model for
the Go/No-Go task

The saccadic Go/No-Go task can be conceptualized as a rapid
two-alternative forced choice between a Go decision and a No-
Go decision (Gomez et al., 2007). The decision process has
been described by a widely accepted DDM (Ratcliff and
McKoon, 2008). The model can be described by four param-
eters (Fig. 1B): boundary separation a indicating the distance
between the two decision boundaries, drift rate v indicating the
rate of evidence accumulation, a priori decision bias z indicat-
ing the starting point of the accumulator at stimulus onset, and
non-decision time Ter indicating the time used for non-decision
processes (e.g. stimulus encoding or response execution
latencies).

Most decision-making tasks require selecting between two
overt responses. For example, in a lexical decision task, par-
ticipants are instructed to make ‘word’ or ‘non-word’ decisions
by pressing one of two response buttons (Ratcliff et al., 2004).
In this case, the two decision boundaries in the DDM corres-
pond to the two choice alternatives, and the model predicts the
decision time for each choice as the latency of accumulator
activity reaching the corresponding boundary. However, the
Go/No-Go task differs from the classical binary decision
tasks in that response time for a No-Go decision cannot be
explicitly measured. In line with previous studies (Gomez
et al., 2007), we assumed an implicit lower decision boundary
for No-Go decisions and an upper boundary for Go decisions
(Fig. 1B), and fitted the DDM to individual participant’s re-
sponses (i.e. the proportion of Go and No-Go choices) as well
as the distributions of saccadic latencies (i.e. in Go trials with
successful responses or in No-Go trials with commission
errors).

The hierarchical DDM toolbox was used to fit the data
(Wiecki et al., 2013). The hierarchical model assumes that
participants are random samples drawn from group-level dis-
tributions, and uses Bayesian statistical methods to simultan-
eously estimate parameter distributions at both the group level
and the individual-participant level (Vandekerckhove et al.,
2011). The Bayesian approach has been shown to be more
robust in recording model parameters than other methods
such as maximum likelihood estimation when limited data
are available (Jahfari et al., 2013). This important feature
greatly benefits the current study, because of substantial con-
straints on the duration of the task for patients.

We examined four variants of the DDM with different par-
ameter constraints. The first model assumed an unbiased start-
ing point (z = 0.5) and the same absolute value for the drift
rate in the Go and No-Go conditions (i.e. if the drift rate in the
Go condition is v, then the drift rate in the No-Go condition is
�v). The second model assumed an unbiased starting point but
allowed the drift rate to vary between the two conditions. The
third model assumed variable starting points across partici-
pants and the same absolute value for the drift rate in the
two conditions. The fourth model assumed variable starting
points and different drift rates in the two conditions. Each
model parameter had three group-level distributions corres-
ponding to the three participant groups (PSP, Parkinson’s dis-
ease and controls) and individual-level distributions for each
participant.

For each model, we generated 15 000 samples from the joint
posterior distribution of all model parameters by using
Markov chain Monte Carlo methods (Gamerman and Lopes,
2006). The initial 5000 samples were discarded as burn-in to
minimize the effect of initial values on the posterior inference
(see Wiecki et al., 2013 for more details of the procedure).
Geweke statistic was used to assess the convergence of the
Markov chains (Gelman et al., 2004). Parameter estimates in
all models were converged after 15 000 samples.

Statistical analysis

ANOVAs and post hoc t-tests were used for statistical analysis
of the behavioural measures between groups. Statistical infer-
ence on model parameters was made by two complementary
approaches. First, for each parameter at the individual-partici-
pant level, the mean of its posterior distribution was used as a
point estimate for comparing between groups. Second, for each
parameter at the group level, Bayesian inference was used to
directly compare its posterior distribution between groups
(Lindley, 1965; Berger and Bayarri, 2004; Gelman et al.,
2004; Kruschke, 2010). We use P to refer to classical frequen-
tist P-values, and Pp|D to refer to the proportion of posteriors
supporting the testing hypothesis at the group level from
Bayesian inference.

Model-based classification
of individual patients

To investigate how well the model parameters can distinguish
between the three participant groups, we used a three-way
linear logistic regression classifier implemented in Weka
(http://www.cs.waikato.ac.nz/ml/weka). For each participant,
the feature space for classification included mean estimates of
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the five model parameters from the best fitted model (a, z, Ter,
vgo, and vno-go). A leave-one-out cross-validation procedure
was performed to optimize the use of this limited dataset. In
each cross-validation fold, one participant was first removed
and the remaining participants’ data were used as a training
set to build the classifier. The participant left out was then
classified into one of the three groups (PSP, Parkinson’s disease
and controls), independently from the training set.
Classification performance was evaluated by the hit rate, pre-
cision, and the area under the receiver operating characteristic
(ROC) curve (AUC) of each class, averaged across all cross-
validations.

To assess whether the model parameters provide better dis-
crimination than simple behavioural measures, we performed
the same classification procedure with a second feature space,
which contained four raw behavioural measures (omission
rate, commission rate, mean saccadic latencies in the Go and
No-Go conditions).

We used permutation tests to evaluate whether DDM par-
ameters are better than raw behavioural measures in the clas-
sification of a participant’s group. Three evaluation criteria
were used: weighted average of hit rate across the three classes,
weighted average of precision, and weighted average of AUC.
The significance of each criterion was determined by compar-
ing the observed evaluation criterion with its distribution
under the null hypothesis, which was generated by 100 000
random permutations of leave-one-out classification results be-
tween the two feature sets. The permutation P-value was then
obtained by calculating the probability of the permuted sam-
ples exceeding the observed value in the data.

Results

Behavioural results

Details of participant demographics, disease severity and

neuropsychological scores are given in Table 1. The three

groups were well matched for age [F(2,68) = 0.42, P = 0.66]

and gender (P = 0.51, chi-square test). As expected, cogni-

tive performance differed significantly between groups

[MMSE: F(2,68) = 8.41, P5 0.001; ACE-R: F(2,68) =

16.34, P5 0.00001]. Both patient groups had lower

MMSE scores than controls [PSP: t(43) = �3.79,

P50.001; Parkinson’s disease: t(48) = �2.76, P5 0.01]

and total ACE-R scores [PSP: t(43) = �5.74, P50.00001;

Parkinson’s disease: t(48) = �2.63, P5 0.05]. Patients with

PSP also had lower ACE-R [t(41) = �3.04, P50.01] and

marginally lower MMSE [t(41) = �1.95, P = 0.06] than pa-

tients with Parkinson’s disease.

Behavioural results are shown in Fig. 2. There were sig-

nificant group differences in the omission error in the Go

condition [F(2,68) = 12.37, P5 0.0001; partial �2 = 0.27],

and in the commission error in the No-Go condition

[F(2,68) = 7.20, P5 0.001; partial �2 = 0.18]. Compared

with controls, both patient groups had higher omission

errors [PSP: t(43) = 4.45, P5 0.0001; Parkinson’s

disease: t(48) = 3.58, P5 0.001] and higher commission

errors [PSP: t(43) = 3.42, P50.001; Parkinson’s

disease: t(48) = 3.27, P5 0.01]. Patients with PSP had

higher omission errors than patients with Parkinson’s dis-

ease [t(41) = 2.49, P50.05], and the two patient groups

had similar commission errors [t(41) = 0.83, P = 0.41].

There was no significant group difference in the saccadic

latency in successful Go trials [F(2,68) = 2.34, P = 0.10;

partial �2 = 0.07] or No-Go trials with commission errors

[F(2,68) = 1.65, P = 0.20; partial �2 = 0.05].

Hierarchical drift-diffusion model fit
to saccadic Go/No-Go data

We compared four variants of the hierarchical DDM for

the saccadic Go/No-Go task, varying systematically in con-

straints on whether the starting point was biased towards

one of the two decision boundaries, and whether the drift

rate varied between Go and No-Go conditions, because the

drift rate is often assumed to change between stimulus con-

ditions (Gomez et al., 2007). For each model, a Bayesian

parameter estimation procedure was used to estimate the

joint posterior distributions of all the model parameters,

given the observed behavioural data. To identify the

model with the best fit, we estimated the deviance informa-

tion criterion (DIC) value of each model, a goodness-of-fit

measure for Bayesian models with a penalty for additional

free model parameters (Spiegelhalter et al., 2002).

The best model (with the lowest DIC value) to describe

the data across Go/No-Go conditions and participants had

a variable starting point between participants and variable

drift rates between Go and No-Go conditions (Model 4 in

Fig. 3A, see also Fig. 3B). To evaluate the model fit, we

compared posterior model predictions with the observed

data. The posterior predictions of the best model were

generated by averaging 500 simulations of the same

amount of model predicted data as observed in the experi-

ment using posterior parameter estimates. There was a

good agreement between the observed data and the

model predictions across conditions in all three participant

groups (Fig. 3C).

Inferences from model parameters

Figure 4 shows the posterior parameter estimates for the

three participant groups. We used both frequentist and

Bayesian statistics to examine group differences in model

parameters.

Response bias

The starting point was significantly larger than 0.5 in all

three groups [PSP: t(18) = 13.10, P5 1 � 10�9, PP|D� 1;

Parkinson’s disease: t(23) = 7.85, P5 1 � 10�7, PP|D� 1;

control: t(25) = 9.52, P5 1 � 10�9, PP|D�1], indicating

that there is a prepotent bias towards the Go response

(i.e. the upper decision boundary). However, the absolute

magnitude was small in healthy controls and we observed a

significant difference in the response bias between groups

[F(2,68) = 18.16, P5 0.000001, partial �2 = 0.36]. No
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significant difference was observed between patients with

Parkinson’s disease and controls [t(48) = 1.28, P = 0.21,

PP|D = 0.86]. The PSP group had a significantly larger bias

towards the Go response than the Parkinson’s group

[t(41) = 4.20, P5 0.001, PP|D�1] and controls

[t(43) = 6.14, P5 0.000001, PP|D�1], indicating that des-

pite their difficulty in moving because of akinetic rigidity,

patients with PSP are actually close to the movement

threshold.

Accumulation of evidence for the response

There was a significant group difference in the drift rate in

both Go and No-Go conditions [Go: F(2,68) = 36.68,

P51 � 10�10, partial �2 = 0.53; No-Go: F(2,68) = 4.38,

P50.05, partial �2 = 0.12]. The drift rate in the Go con-

dition was lower in the PSP group than that in the

Parkinson’s disease group [t(41) = 2.96, P5 0.01,

PP|D = 0.99] and controls [t(43) = 6.54, P51 � 10�7,

PP|D�1], whereas the patients with Parkinson’s disease

also had a lower Go drift rate than the controls

[t(48) = �6.54, P5 1 � 10�7, PP|D� 1]. For the No-Go

condition, both patient groups had lower drift rate than

controls [PSP: t(43) = �2.33, P5 0.05, PP|D = 0.98;

Parkinson’s disease: t(48) = �3.02, P5 0.01, PP|D = 0.99],

but no significant difference was observed between the

two patient groups [t(41) = 0.25, P = 0.80, PP|D = 0.61].

Non-decision time and boundary separation

The three participant groups significantly differed in their

non-decision time [F(2,68) = 15.63, P50.00001, partial

�2 = 0.32]. Both patient groups had a shorter non-decision

time than controls [PSP: t(43) = �4.54, P5 0.0001,

PP|D� 1; Parkinson’s disease: t(48) = �4.30, P5 0.0001,

PP|D� 1], and the non-decision time was similar between

the two patient groups [t(41) = 0.89, P = 0.38, PP|D = 0.74].

The three participant groups had similar boundary separ-

ation between thresholds for Go and No-Go decisions

[F(2,68) = 0.14, P = 0.87, partial �2 = 0.004].

Model-based classification

We used a leave-one-out cross validation procedure in a

three-way classification of participant groups (PSP,

Parkinson’s disease, and controls). First we used the four

raw behavioural measures (commission error, omission

error, saccadic latency distributions in the Go and No-Go

conditions) as the feature space. As expected from the de-

scriptive statistics and group contrasts, there was only a

modest ability to classify participants, such that 50–60%

of patients were correctly classified (Table 2). The asso-

ciated ROC curves illustrate the limited performance of

behavioural measures, and in particular, show limited dis-

crimination of the two patient groups (Fig. 5).

We then used the model parameters as a second feature

space for classification using the same cross-validation pro-

cedure. The model-based approach showed superior sensi-

tivity and precision in classification across the three groups

(475%) (Table 2). The accompanying ROC curves illus-

trate the significant enhanced ability of model parameters

to differentiate participants (Fig. 5). The significant im-

provement in classification using model parameters over
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raw behavioural data was confirmed with permutation

tests.

Discussion
We confirmed the impairment of response inhibition in pa-

tients with PSP and Parkinson’s disease, but identified sig-

nificant differences in these disorders on the decision

processes that lead to disinhibition. Both patient groups

made more commission errors despite akinesia (O’Sullivan

et al., 2010; Nombela et al., 2014). However, the striking

result in PSP was that patients were strongly biased to-

wards making a response and yet were severely impaired

at accumulating the necessary evidence to commit to that

response (Fig. 4E). This combination provides a

parsimonious explanation for the apparently paradoxical

combination of impulsivity and akinesia seen in this

disease.

The study highlights the benefits of formal computational

modelling of behaviour for a better understanding of dis-

ease mechanisms. Bayesian parameter estimation of the

drift-diffusion model provided a highly efficient and

robust measure of an individual’s performance, with

many fewer data needed in comparison with other

approaches in preclinical and normative studies

(Vandekerckhove et al., 2011; Wiecki et al., 2013;

Zhang and Rowe, 2014). This approach enables one to

infer disease-specific changes at the group level.

The model decomposed behavioural data into five par-

ameters associated with Go/No-Go decisions: response bias,

drift rates in Go and No-Go conditions, boundary

A

C

B

Figure 3 Model comparison and model fits. (A) The deviance information criterion (DIC) value differences between the best fit model

(Model 4) and the other three model variants, for each group separately (dash lines) and all participants combined (solid lines). (B) The graphical

representation of the best fit model. The shaded node Data(g,p,i,j) indicates the observed data of each group (g), participant (p), condition (i) and

trial (j). Nodes a, Ter, z, and v are parameters of the drift-diffusion model, each with a group distribution for each patient group with mean m and

standard deviation �. (C) Posterior predictive data distributions from the best fit model. The distribution along the positive x-axis shows the

latency distribution in the Go condition (correct Go trials), and the distribution along the negative x-axis shows the latency distribution in the No-

Go condition (commission error trials). Each panel shows the normalized histograms of the observed data and the model prediction (black lines).

The area under the curve on the positive x-axis corresponds to the observed and predicted accuracy in the Go condition. The area under the

curve along the negative x-axis corresponds to the commission error in the No-Go condition. PD = Parkinson’s disease.
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separation and non-decision time. These model parameters

also improved the discrimination of patients and controls

over the common behavioural measures (errors and reaction

times), with higher precision and superior signal detection in

classification (as receiver operating characteristics). Simple

behavioural measures, like the mean latency of response,

have been examined before in both diseases, but with mixed

conclusions. In patients with Parkinson’s disease, pro-

saccades may have longer latency to controls (Michell et al.,

2006) or normal (Chan et al., 2005; van Koningsbruggen

et al., 2009), and reflective saccades may be faster (Briand

et al., 2001). Horizontal saccadic latency in PSP has been

reported to be either slower than controls (Linder et al.,

2012; Ghosh et al., 2013) or normal, at least at the group

level (Pierrot-Deseilligny et al., 1989; Vidailhet et al., 1994).

By using the full distribution of response latencies and accur-

acy, the model-based approach instead provides clear evi-

dence of abnormality in both PSP and Parkinson’s disease.

This result implies that data analysis methods for disease

monitoring or drug response monitoring need to be more

sophisticated than basic behavioural measures. The effect of

a candidate drug on behaviour may be missed if crude metrics

like reaction time alone are used. Our modelling approach has

greater potential to support clinical trials.

The model-based analysis revealed that behavioural im-

pairments of response inhibition in PSP and Parkinson’s
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Go decisions (i.e. the upper boundary), and a reduced non-decision time, but that the further accumulation of evidence towards a response is

accumulated very slowly, predisposing patients to inhibition errors but without prolonged latencies of actual responses. In contrast, Parkinson’s

disease leads to a shorter non-decision time but normal initial response bias and a mild reduction in the rate of accumulation of evidence.

PD = Parkinson’s disease.
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disease arise for different reasons. This implies that effective

treatment strategies for one disease may not work for the

other. However, in both patient groups and controls, a

response bias towards Go decisions was consistently

observed. This could be explained by the reactive nature

of Go saccades and an underlying bias in response neuron

populations. For example, neurons in the intermediate layer

of the superior colliculus have stronger sustained activities

in Go trials than No-Go trials (Paré and Wurtz, 2001),

which might enhance descending supranuclear control for

saccades.

Patients with PSP demonstrated more severe response

bias than patients with Parkinson’s disease and control sub-

jects, which could be explained by several pathophysio-

logical mechanisms. Abnormal ocular fixation, such as

square wave jerks, is more apparent in PSP (Garbutt

et al., 2004; Otero-Millan et al., 2011) than in

Parkinson’s disease (Rascol et al., 1991). This has been

attributed to midbrain atrophy in PSP (Kato et al., 2003).

The disease interrupts inputs to omnipause neurons (e.g.

from rostral superior colliculus, see Everling et al., 1998),

which in turn changes the reciprocal discharge patterns of

omnipause neurons and burst neurons in the pontine

reticular formation. At the behavioural level, the affected

brainstem circuitry would be prone to initiate saccades,

leading to a strong bias towards Go responses in the Go/

No-Go task.

It is also worth considering the contribution of cortical

pathology. 18F-fluorodeoxyglucose PET imaging has identi-

fied decreased metabolic activity in the medial prefrontal

cortex, anterior cingulate, and ventrolateral prefrontal

cortex in PSP (Eckert et al., 2008). These regions are part

of the cortical network essential for executive control

(Ridderinkhof et al., 2004) and response inhibition of

both eye and hand movements (Leung and Cai, 2007).

Therefore severe response bias in PSP may also result

from cortical degeneration, which imbalances the binary

decision between Go and No-Go choices (Mulder et al.,

2012).

Patients’ with PSP and Parkinson’s disease had slower

drift rates than controls in both Go and No-Go conditions.

This result suggests the effects of the diseases on the accu-

mulation of decision signal: prolonging the latency to reach

a decision boundary and thereby increasing response

errors. Previous work on Parkinson’s disease is consistent

with this account. Briand et al. (1999) showed longer
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Figure 5 Receiver operating characteristic curves of each class in the leave-one-out three-way classification based on the

model parameters (solid lines) and raw behavioural measures (dash lines). PD = Parkinson’s disease.

Table 2 Leave-one-out cross-validation results from three-way linear logistic regression classifiers

Feature sets True positive rate Precision AUC of ROC curves

PSP

group

PD

group

Control

group

Weighted

average

PSP

group

PD

group

Control

group

Weighted

average

PSP

group

PD

group

Control

group

Weighted

average

DDM parameters 0.73 0.67 0.85 0.75 0.82 0.73 0.73 0.76 0.92 0.81 0.93 0.89

Behavioural measures 0.63 0.50 0.77 0.64 0.75 0.55 0.65 0.64 0.82 0.66 0.85 0.78

Permutation P-values

for DDM superiority

P5 0.05 P = 0.07 P5 0.0001

Permutation tests were used to compare the classification results based on DDM parameters and raw behavioural measures. For classification based on DDM parameters, three PSP

patients were misclassified as controls and two as Parkinson’s disease (PD) patients; while five patients with Parkinson’s disease were misclassified as controls and three as patients

with PSP. For classification based on behavioural measures, two patients with PSP were misclassified as controls and five as patients with Parkinson’s disease; whereas nine patients

with Parkinson’s disease were misclassified as controls and three as patients with PSP.
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saccadic latency in patients with Parkinson’s disease in an

anti-saccade task (Antoniades et al., 2013). Similar results

were reported in studies using pro-saccade paradigms

(Amador et al., 2006; Michell et al., 2006) and manual

reaction time tasks (Gauntlett-Gilbert and Brown, 1998).

Using voxel-based morphometry, Perneczky et al. (2011)

identified that the longer and more variable saccadic la-

tency in patients with Parkinson’s disease was associated

with lower grey matter volume of the frontal eye field

and lateral prefrontal cortex. The frontal-subcortical path-

way plays a central role for the generation of saccades with

precise timing (Robinson and Fuchs, 2001), and the accur-

ate saccade control in response to different task demands

via the prefrontotectal tract (Robinson and Fuchs, 2001).

In Parkinson’s disease, cortical and subcortical atrophy dis-

rupts this saccadic decision network (Tinaz et al., 2011;

Rae et al., 2012), which may give rise to the lowered

drift rates observed in the current study. Similarly, pro-

longed pro-saccade latencies have also been reported in

PSP (Ghosh et al., 2010). We speculate that this is also

caused by atrophy in saccadic control regions (Ghosh

et al., 2012), which is yet to be confirmed in imaging stu-

dies that correlate with saccade latency.

An intriguing finding is that patients with PSP and those

with Parkinson’s disease had shorter non-decision time

than controls. The non-decision time reflects the latency

of early sensory encoding external to the oculomotor deci-

sion process (Ratcliff and McKoon, 2008; Wagenmakers,

2009). Therefore, shorter non-decision time could imply

enhanced early sensory processing in patients. This result

may at first seem surprising, given motor akinesia and cog-

nitive slowing associated with the diseases. Nevertheless,

our result is consistent with EEG evidence. In a visual odd-

ball paradigm, the latency of the early event-related poten-

tial N1 in patients with Parkinson’s disease was shorter

than that in healthy control subjects (Wang et al., 2001;

Li et al., 2003), suggesting excessive attention or enhanced

sensory processing in patients. This concurs with the hy-

pothesis (Palop et al., 2006) that impaired cognitive func-

tion in neurodegenerative disorders can be compensated for

by additional processing, such as increased reliance on

visual features (Bloem et al., 2004; Helmich et al., 2007).

In both PSP and Parkinson’s disease there is abundant

evidence for impulsive limb movements and global behav-

iours (Litvan et al., 1996a; Aarsland et al., 2001; Robert

et al., 2009; O’Sullivan et al., 2010; Jahanshahi et al.,

2014; Nombela et al., 2014). For example, patients with

Parkinson’s disease have higher commission errors than

controls in manual Go/No-Go tasks (Nombela et al.,

2014), and longer stop-signal reaction time in manual

stop-signal tasks (Gauggel et al., 2004; Ye et al., 2014a).

Therefore the failure of response inhibition is not restricted

to eye movements as studied here. It is possible that the

origin of limb inhibition deficits is different to oculomotor

inhibition deficits, but we propose that the two types of

decision deficit are homologous. Several lines of research

support this hypothesis. For instance, limb kinetics affect

saccadic outputs in health (Snyder et al., 2002; van

Donkelaar et al., 2004), and both are comparably impaired

in Parkinson’s disease (Gibson et al., 1987). Onset latencies

for eye and hand movements are correlated in many tasks

(Lunenburger et al., 2000; Sailer et al., 2000; Gribble et al.,

2002; Snyder et al., 2002), including in stop-signal tasks

(Boucher et al., 2007). Furthermore, the same accumulator

model, assuming competitions between a Go process and a

Stop process during response inhibition, provides a good fit

for data from both saccadic and manual stop-signal tasks

(De Jong et al., 1990; Hanes et al., 1998; Gopal and

Murthy, 2015). Therefore, although the inhibited move-

ments of saccades and manual movements are not con-

trolled by an identical anatomical pathway, different

inhibitory systems may share the same computational prin-

cipals: disruption to this process therefore gives rise to simi-

lar impulsivity across response modalities in diseases. This

account is consistent with the findings that deep brain

stimulation in Parkinson’s disease influences inhibitory con-

trols over saccadic as well as manual responses (van den

Wildenberg et al., 2006; Yugeta et al., 2010; Swann et al.,

2011; Jahanshahi, 2013).

There are several limitations to this study. First, the

severe response bias towards Go decisions indicates that

PSP is associated with impulsivity in saccadic inhibition.

However, impulsivity is a multi-modal construct (Dalley

et al., 2011) and our study alone does not show whether

performance impairments in behavioural paradigms such as

the Go/No-Go task are associated with different domains

of cognition and impulsivity. Saccadic latencies target im-

paired decision processes in the cortical and subcortical

supranuclear network and cognitive precursors to oculo-

motor inhibition. This is not necessarily a sensitive measure

of a broad range of other higher-order cognitive deficits in

Parkinson’s disease and PSP (Burrell et al., 2014; Yarnall

et al., 2014). Nevertheless, saccadic control involves wide-

spread cortico-striato-thalamo-cortical circuits that are es-

sential to cognition (Alexander et al., 1990; Hikosaka

et al., 2000), which makes saccades a valuable tool for

understanding cognitive dysfunctions (Leigh and Kennard,

2004). A recent study on the fractionation of impulsivity

provides promising results in this regard. Commission

errors in the saccadic Go/No-Go task, together with other

tasks with demands on conflict resolution, are associated

with the self-assessment of impulsive behaviours on the

Barrett Impulsivity Scale (Nombela et al., 2014), suggesting

the sensitivity and broad relevance of saccadic tasks in re-

lation to clinical features.

Second, we have reported that model parameters were

more informative than the commonly derived behavioural

measures (mean latencies and errors) in classification. This

does not mean that the model parameters are more inform-

ative than the raw data, but reflects the fact that the model

parameters are sensitive to higher order moments of the

reaction time distributions, especially the skew, kurtosis

and variance. Addition of these higher order moments

might improve accuracy of classification, but would not
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provide the mechanistic interpretation of the deficits as re-

vealed from the DDM.

Finally, the patients were recruited from a regional clinic

and therefore may not fully represent the whole population

of patients at different disease stages. We included a modest

number of patients in each group, which was sufficient for

detecting disease-specific differences. Given the fact that

saccadometry is well tolerated in patients, our protocol

could be extended to a larger cohort, from which the

increased statistical power would allow one to further in-

vestigate the association between model parameters and

clinical measures. Interestingly, a recent longitudinal study

showed that, in PSP, oculomotor function and cognition

were affected early in the course of the illness (Ghosh

et al., 2013). Therefore, although our approach is poten-

tially useful to explore the effects of treatment or disease on

oculomotor and decision-making systems, model-based

analysis of longitudinal data would be required to identify

appropriate biomarkers for tracking disease progression in

individual patients.

In conclusion, impairments of saccadic response inhib-

ition occur in both PSP and Parkinson’s disease. Both dis-

eases impaired information sampling during decision-

making, while patients with PSP showed an additional

stronger, disease-specific bias towards Go decisions. We

further demonstrated that computational modelling is

more efficient than raw behavioural measures when

used for discriminating between patients. These results

have the potential to be exploited in future diagnostic and

therapeutic studies for the comprehensive understanding

of different disease mechanisms and in the evaluation of

disease-modifying treatments.
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