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Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individ-

uals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for

mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural

mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of

connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological

markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed

to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder

(BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory

methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36

healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods

of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain

activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss

anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy

Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connec-

tions (the number of connections in the network), path length, and the global connectivity direction (‘top-down’ versus

‘bottom-up’) were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation).

These analyses showed that loss anticipation was characterized by denser top-down fronto-striatal and fronto-parietal con-

nectivity in healthy control subjects, by bottom-up striatal-frontal connectivity in MDD, and by sparse connectivity lacking

fronto-striatal connections in BDD. Win anticipation was characterized by dense connectivity of medial frontal with striatal

and lateral frontal cortical regions in BDD, by sparser bottom-up striatum-medial frontal cortex connectivity in MDD, and by

sparse connectivity in healthy control subjects. In summary, this is the first study to demonstrate that BDD and MDD with

comparable levels of current depression differed from each other and healthy control subjects in density of connections,

connectivity path length, and connectivity direction as a function of win or loss anticipation. These findings suggest that

different neurobiological mechanisms may underlie aberrant anticipation processes in BDD and MDD, and that distinct thera-

peutic strategies may be required for these individuals to improve coping strategies during expectation of positive and negative

outcomes.
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Introduction
Bipolar disorder and major depressive disorder are debili-

tating mood disorders that result in psychosocial, emo-

tional and cognitive dysfunction of affected individuals.

The prevalence of depressive symptoms makes it clinically

challenging to distinguish bipolar disorder from major

depressive disorder, especially during depressive episode

(Hirschfeld et al., 2003). Neuroimaging studies that focus

on understanding the differences in abnormal brain func-

tioning underlying emotional and cognitive impairments in

depressed individuals with bipolar disorder (BDD) and de-

pressed individuals with major depressive disorder (MDD)

may help to identify neurobiological markers differentiating

these disorders, thus helping to develop better therapeutic

strategies and improve treatment outcomes (Phillips and

Kupfer, 2013; Phillips and Swartz, 2014).

Previous studies showed that depressed individuals are

impaired in processing of reward and loss (Martin-Soelch,

2009; Eshel and Roiser, 2010). One component of reward/

loss processing is reward/loss anticipation (Berridge and

Robinson, 2003; Gard et al., 2006) during which a neutral

stimulus predicts receipt of either reward or punishment,

thus evoking a relevant motivational state (Robinson

et al., 2014). In healthy individuals, reward anticipation

relies on functioning of ventral striatum signalling about

the level of anticipated reward (Knutson et al., 2001;

Schultz, 2002), anterior cingulate cortex activating as a

function of anticipatory arousal (Critchley et al., 2001)

and effort (Croxson et al., 2009), and parietal regions pro-

cessing outcome predictability (Platt and Glimcher, 1999;

Verney et al., 2003; Ernst et al., 2004).

Depressed individuals, relative to healthy control sub-

jects, show reduced expectation of positive outcomes

(Meehl, 1975; Davidson et al., 2002; Treadway et al.,

2009; Sherdell et al., 2012), and increased expectation of

negative outcomes (Andersen et al., 1992; Strunk et al.,

2006; Strunk and Adler; 2009). These altered anticipation

patterns may be associated with altered functioning of stri-

atal and prefrontal cortices and may depend on current

diagnosis (i.e. major depressive disorder versus bipolar dis-

order) and mood state (Mason et al., 2012; Nusslock et al.,

2012; Caseras et al., 2013; Chase et al., 2013; Ubl et al.,

2015; Yip et al., 2015). The only study that directly com-

pared anticipation-related brain activation patterns in bipo-

lar disorder versus MDD versus healthy control subjects

showed increased left ventrolateral prefrontal cortex activa-

tion in BDD versus MDD and healthy control subjects, but

reduced anterior cingulate cortex activation in bipolar dis-

order and MDD versus healthy control subjects during

reward anticipation (Chase et al., 2013). Other studies

showed reduced ventral striatum (VS), orbitofrontal

cortex (OFC) and anterior cingulate cortex (ACC) activa-

tion during reward anticipation and reduced ACC activa-

tion during loss anticipation in MDD versus healthy

control subjects (Ubl et al., 2015); increased VS activation

during reward anticipation (Mason et al., 2012; Nusslock

et al., 2012), but decreased VS activation during loss an-

ticipation (Yip et al., 2015) in euthymic individuals with

bipolar disorder versus healthy control subjects; and a

negative correlation between depressive symptoms and VS

activation during reward anticipation in individuals with

major depressive disorder, bipolar disorder, attention deficit

hyperactivity disorder, alcohol dependency and schizophre-

nia independently of current psychiatric diagnosis (Hägele

et al., 2015).

Altered activation in a selected region cannot fully ex-

plain complex patterns of cognitive and emotional impair-

ments in psychiatric disorders. It is, therefore, important to

examine functioning of a whole network including effective

connectivity among the regions (Van Horn and Poldrack,

2009; Worbe, 2015). Specifically, in addition to aberrant

anticipation-related activation patterns in prefrontal cor-

tical-VS circuitry, BDD and MDD may also have distinct

aberrant patterns of brain connectivity among these regions

(Phillips and Swartz, 2014). To date, there has been no

systematic attempt to characterize and compare functional

and effective connectivity in BDD, MDD and healthy con-

trol subjects during reward and loss anticipation.

The present study aimed to fill this gap using Bayesian

network approaches: the Independent Multiple sample

Greedy Equivalence Search (IMaGES; Ramsey et al.,

2010), and Linear non-Gaussian Orientation, Fixed

Structure (LOFS) algorithms (Ramsey et al., 2011). Due to

IMaGES search-based nature, this method allows examin-

ation of larger networks without a priori model specification

(Mumford and Ramsey, 2014) and to overcome the limita-

tions of previous clinical neuroimaging studies (e.g. using

dynamic causal modelling) that limited models to three to

four regions of interest (Phillips and Swartz, 2014). IMaGES

and LOFS were specifically designed for a multi-subject

functional MRI data processing, have been able to identify
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over 95% of connections in simulation studies (Ramsey

et al., 2010), and have already been successfully used in

studies of healthy individuals (Boukrina et al., 2014;

Manelis and Reder, 2014; Mills-Finnerty et al., 2014) and

individuals with autism (Hanson et al., 2013). The models

are described in terms of the number of connections, path

length (Bullmore and Sporns, 2009), and the global connect-

ivity direction (‘top-down’ versus ‘bottom-up’).

Based on previous studies of brain connectivity in BDD,

MDD and healthy control subjects (Almeida et al., 2009;

Versace et al., 2010), we hypothesized that anticipation-

related connectivity patterns would depend not only on par-

ticipants’ diagnoses (BDD versus MDD versus healthy con-

trol subjects), but also on the specific anticipation condition

(win anticipation versus loss anticipation). Anticipation in-

volves emotional and motivational components, and previ-

ous studies showed increased resting state connectivity in the

affective and cognitive control networks for depressed indi-

viduals versus healthy control subjects (Sheline et al., 2010).

Based on this, we hypothesized that depressed individuals

would have more connections within the anticipation net-

work than healthy control subjects.

Materials and methods

Participants

Participants were recruited from general community through
advertisements, from universities (University of Pittsburgh,
Carnegie Mellon University), counselling and medical centres,
Western Psychiatric Institute and Clinic (WPIC) outpatient
clinics and community mental health clinics through advertise-
ments and referrals. Some patients were referred from other
WPIC research studies. We also presented information about
the study monthly at the WPIC’s Intensive Outpatient Program
groups. All diagnoses were made by a trained clinician and
confirmed by a psychiatrist(s). The study was approved by
the University of Pittsburgh Institutional Review Board. All
participants gave written informed consent before participation
in the study. They were right-handed, native English speakers.
The three groups of participants [BDD (with bipolar disorder
type I) = 36, MDD = 46, healthy control subjects = 42] were
matched on age, gender and IQ. Healthy control subjects
had no family history of psychiatric disorders.

Patients were diagnosed according to DSM-IV criteria and
the Structure Clinical Interview for DSM-IV, Research Version
(SCID-P; First et al., 1995), had a Hamilton Rating Scale for
Depression (HRSD-25; Hamilton, 1960) score5 10, and a
Young Mania Rating Scale (YMRS; Young et al., 1978)
score410 on the day of the scan. The relatively low threshold
of HRSD-25 = 10 was used to allow recruitment of depressed
individuals with bipolar disorder who had subthreshold de-
pression severity at the time of assessment, but who had re-
cently had higher severity depression. Of all patients, only one
patient with bipolar disorder had a HRSD-25 score of 11. All
other patients had HRSD-25 scores 515. Table 1 reports par-
ticipants’ clinical characteristics. Exclusion criteria included
history of head injury, systemic medical illness, cognitive

impairment (score5 24 on the Mini-Mental State
Examination; Folstein et al., 1975), premorbid IQ585 mea-
sured by the National Adult Reading Test (Blair and Spreen,
1989), current alcohol/drug abuse, metal in the body, preg-
nancy, and claustrophobia. Data from five BDD, seven
MDD and six healthy control subjects were excluded from
the analyses due to excessive motion in the scanner (42 mm)
or errors rate 42, leaving 31 BDD, 39 MDD and 36 healthy
control subjects in the dataset.

To account for different medications we calculated total
medication load using the following steps (Hassel et al.,
2008): (i) all psychotropic medications were classified as fol-
lows: antidepressant, anxiolytic/benzodiazepine, mood stabil-
izer, antipsychotic, or unknown/other psychotropic; (ii) each
medication was assigned a medication load based on the
‘usual therapeutic dose’ where 1 = lower than usual therapeutic
dose and 2 = higher than or equal to usual therapeutic dose.
e.g. 51000 mg of lithium per day = 1, 51000 mg of lithium
per day = 2; and (iii) medication loads were summed by class
or across all five classes listed above to obtain the total medi-
cation load for a given study participant.

Measuring medication load has several advantages: (i) patients
who remain medication-free are unlikely to be matched for ill-
ness severity with patients who require medication; (ii) medicated
MDD and BDD are more representative of the patient popula-
tion versus those who are not medicated; (iii) total medication
load calculation allows avoidance of multiple comparisons
among various medication subgroups; and (iv) total medication
load reflects both the dose and variety of various medications
taken by BDD and MDD (Hassel et al., 2008).

Task

During the guessing task (Forbes et al., 2009; Supplementary
Fig. 1), participants were presented with a 4-s question mark
to guess whether the number is greater than ‘5‘ by pressing a
corresponding button. After that, they were shown either a 6-s
win anticipation (upward arrow) screen suggesting a possibil-
ity to win money (12 trials), or a 6-s loss anticipation (down-
ward arrow) screen suggesting a possibility to lose money (12
trials). A 1-s feedback (win, loss, or no-change outcomes) was
followed by a 9-s intertrial interval. Participants received $1
for each win and lost 50 cents for each loss.

Neuroimaging data acquisition and
analyses

Acquisition

Functional MRI data were acquired at the University of
Pittsburgh using a Siemens MAGNETOM TrioTim 3 T MR
system. A high-resolution structural image (1 � 1 � 1 mm) was
acquired using MPRAGE (repetition time = 2200 ms, echo
time = 3.29 ms, field of view = 256, flip angle = 9�, 192 slices).
Functional data (240 volumes) were collected using a gradient-
echo, echo-planar sequence (voxel size: 3.2 � 3.2 � 3.1 mm,
repetition time = 2000 ms, echo time = 28 ms, field of
view = 205, flip angle = 90�, 39 slices).

Preprocessing

The images were preprocessed and analysed using FSL5.0.8
(www.fmrib.ox.ac.uk/fsl). Preprocessing included non-linear
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noise reduction using SUSAN (http://fsl.fmrib.ox. ac.uk/fsl/

fslwiki/SUSAN); motion correction with MCFLIRT (Jenkinson

et al., 2002), non-brain removal using BET (Smith, 2002), spa-
tial smoothing with a Gaussian kernel of full-width at half-

maximum = 6 mm; multiplicative mean intensity normalization

of the volume at each time point; high-pass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with

sigma = 30.0 s). A haemodynamic response function was mod-

elled using a Gamma function.
Unexpected artefacts were detected using the independent

component analysis (ICA)-based data exploration using
MELODIC (Beckmann and Smith, 2004) and FIX (Grianti

et al., 2014; Salimi-Khorshidi et al., 2014) (http://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/FIX). The number of dimensions (ICA com-

ponents) was estimated using the Laplace approximation to
the Bayesian evidence of the model order (Minka, 2000;

Beckmann and Smith, 2004). Trained-weights files supplied

with FIX were used as training data. The quality of FIX clas-
sification was checked in 25 participants randomly chosen

from a set of 106. For each noise component selected by

FIX, we carefully examined a thresholded IC map and a cor-
responding time course, to make a decision about whether that

specific component might be considered as noise (Tohka et al.,
2008; Kelly et al., 2010). This quality assurance analysis sug-

gested that FIX successfully detected noise components.

The high-resolution structural images were segmented using

the fsl_anat script to separate white matter, grey matter and

CSF, and to also segment subcortical structures. The white
matter and CSF masks were then coregistered with functional

images, and their timecourses were extracted from the

preprocessed functional data for further analyses. Motion out-
liers (time points where the functional MRI signal was cor-

rupted due to subject motion) were identified using the

fsl_motion_outliers script (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLMotionOutliers). A confound matrix from this analysis

was then combined with the white matter and CSF time

courses and used as a confound variable of no interest in the

first-level analyses.
Blood oxygenation level-dependent images were registered to

the high-resolution structural (MPRAGE) images using FLIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002), the high-

resolution images were registered to the MNI152_T1_2 mm

template using FNIRT (Andersson et al., 2007), and the two
resulting transformations were concatenated and applied to the

original blood oxygenation level-dependent image to transform

it to MNI space. Preprocessed data were submitted to a first-
level analysis with Guessing, Win anticipation, Loss anticipa-

tion, Feedback and Error trials as regressors.
Group-level analyses were conducted using FLAME1.

Significant activation clusters were determined by thresholding

Table 1 Demographic and clinical characteristics of healthy and depressed participants

BDD

(n = 31)

MDD

(n = 39)

HC

(n = 36)

Group

differences

Tukey HSD for three

groups, or t-

test/chi-square test

for BD versus MDD

Gender, male/female 7/24 8/31 10/26 �2 = 0.6, P = 0.75

Age, years, mean (SD) 33.38 (8.44) 31.51 (7.99) 32.78 (6.10) F (2,103) = 0.6, P = 0.6

NART IQ, mean (SD) 112.00 (8.54) 113.20 (8.45) 112.92 (6.97) F (2,103) = 0.2, P = 0.8

Level of education 5.45 (1.12) 6.33 (1.24) 6.56 (1.21) F (2,103) = 7.8, P = 0.001 BD5MDD,HC; HC = MDD

HRSD-25 score, mean (SD) 25.52 (7.24) 26.97 (5.77) 1.72 (2.20) F (2,103) = 246.9, P5 0.001 BD,MDD4HC; BD = MDD

YMRS score, mean (SD) 3.84 (2.90) 3.97 (2.77) 0.50 (1.11) F (2,103) = 24.4, P5 0.001 BD,MDD4HC; BD = MDD

State anxiety score, mean (SD) 55.97 (10.83) 57.23 (8.28) 26.81 (7.02) F (2,103) = 139.3, P5 0.001 BD,MDD4HC; BD = MDD

Trait anxiety score, mean (SD) 60.53 (9.13) 59.18 (9.61) 26.00 (5.62) F (2,103) = 186.5, P5 0.001 BD,MDD4HC; BD = MDD

Mania age at onset, years, mean (SD) 23.03 (8.57) na na

Mania duration, years, mean (SD) 10.35 (7.68) na na

Depression age at onset, years, mean (SD) 18.10 (7.21) 18.36 (7.24) na t(68) = �0.15, P = ns

Depression duration, years, mean (SD) 15.28 (8.71) 13.15 (7.53) na t(68) = 1.1, P = ns

Illness age at onset, years, mean (SD) 17.03 (4.92) 18.36 (7.24) na t(68) = 1.7, P = ns

Illness duration, years, mean (SD) 16.35 (8.17) 13.15 (7.53) na t(68) = �0.87, P = ns

Number of mania episodes 1.94 (1.03) na na

Number of depression episodes 3.13 (1.38) 2.92 (1.01) na t(68) = 0.7, P = ns

Psychotropic medication load, mean (SD) 3.77 (2.47) 2.20 (2.00) na t(68) = 2.9, P = 0.005

Antipsychotic, taking/not taking 19/12 3/36 0/36 �2 = 23.0, P5 0.001

Antidepressant, taking/not taking 12/19 26/13 0/36 �2 = 5.4, P = 0.02

Mood stabilizer, taking/not taking 20/11 6/33 0/36 �2 = 17.9, P5 0.001

Benzo, taking/not taking 8/23 10/29 0/36 �2 = 0, P = ns

Depressed individuals with bipolar disorder (BDD) and depressed individuals with major depressive disorder (MDD) are contrasted on clinical variables that are present in patient

groups, but absent in healthy control (HC) subjects. Given that the F-test yields significant results, Tukey’s HSD post hoc tests were performed in order to compare BDD, MDD and

healthy control subjects. na = not applicable; NART IQ = National Adult Reading Test intelligence quotient; SD = standard deviation; YMRS scores in both groups of depressed

individuals were driven mainly by higher scores on the Irritability item (Item 5, scored out of 8 points). For this item, the mean score of 1.4 (SE = 0.22, maximum score = 4 reported

in two participants) was observed in BDD, and the mean score of 1.7 (SE = 0.17, maximum score = 4 reported in three participants) was observed in MDD. The mean scores for all

other items were5 0.65 and were significantly lower than the mean scores for Irritability (all P-values5 0.001 in both depressed groups).
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Z-statistic images in the whole brain mask at z4 3.72 (uncor-
rected voxel wise P5 0.0001) and a corrected cluster signifi-
cance threshold (Worsley, 2001) of P5 0.05. The anticipation
network was derived across all participants (BDD, MDD and
healthy control subjects; total number = 106). All analyses
were whole-brain. We hypothesized that some brain regions
would support general anticipation processes independently
of emotional valence of anticipated outcomes. Such non-spe-
cific anticipation processes may include motivation to perform
the task, remembering task-specific rules during anticipation
periods, planning of future motor responses, etc. Brain activa-
tion characterizing these non-specific (or general) anticipation
processes was examined by contrasting all anticipation trials
(Win anticipation + Loss anticipation) versus baseline. Based
on previous research, we also hypothesized that other brain
regions (e.g. VS) would be more sensitive to anticipation of
positive versus negative (and vice versa) outcomes. These re-
gions were determined by contrasting win anticipation versus
loss anticipation, and vice versa. The brain regions identified
during these analyses comprised the anticipation network that
is defined as a set of regions activating during anticipation
periods and underlying emotion non-specific and emotion-spe-
cific anticipation processes.

Graph analysis

The IMaGES algorithm is a Bayesian search algorithm that
starts with an empty graph for a set of regions of interest
(21 regions of interest in our study). The algorithm then
tests all possible models with one connection and computes
the Bayesian Information Criterion (BIC) score for each sub-
ject. A model with the highest mean BIC score across all data-
sets (i.e. across all participants) is selected and the algorithm
starts searching for the second connection, taking into account
the fact that one connection is already present in the model.
The algorithm continues to add connections to the model, one
at a time, every time selecting a model with the highest mean
BIC score, until the BIC score is no longer improved. After
that, the algorithm removes connections from the model, one
at a time, until the BIC score can no longer be improved
(Ramsey et al., 2010, 2011). The IMaGES algorithm deter-
mines the presence of connections (or edges) between the re-
gions of interest (or nodes) in the network and produces a
Markov equivalence class of models consisting of directed
acyclic graphs that have the same structure. The IMaGES al-
gorithm ensures that directed acyclic graphs do not include
any connectivity cycles (or triangulation) by increasing a pen-
alty in the BIC score.

After IMaGES identified connections within each model, a
directed acyclic graph for each group/condition was submitted
to the LOFS algorithm that oriented those connections using
the R3 rule (Ramsey et al., 2014). LOFS determined the con-
nections orientation (i.e. a causal relationship between two
regions of interest) by exploiting the fact that the residuals
of any incorrect linear model will be more Gaussian than the
residuals of the correct model with independent non-Gaussian
sources of error (Ramsey et al., 2011, 2014; Mumford and
Ramsey, 2014). The degree of non-Gaussianity was estimated
using the Anderson-Darling score (Anderson and Darling,
1952).

A total of six graph models were created (Win/Loss
anticipation � BDD/MDD/healthy control subjects). All
graphs had the same nodes—the regions of interest comprising

the anticipation network. Time series (30–36 repetition times
each) were extracted from each region of interest using
Featquery. For a large region of interest that covered three
brain regions, we extracted time series from a 6-mm radius
sphere drawn around the local maxima coordinates. Graph
analyses were conducted using TETRAD-V (v.5.1.2-3; http://
www.phil.cmu.edu/projects/tetrad). First, condition-specific
time series from all regions of interest for all participants in
a group were submitted to IMaGES with increasing penalty
discount in the Bayesian Information Criterion (BIC) score to
avoid ‘triangulation’ (when three regions of interest are con-
nected to each other) and the possibility of spurious causal
connections (Ramsey et al., 2010, 2011, 2014; Mumford
and Ramsey, 2014). Then, we submitted the outcome from
the IMaGES algorithm to the LOFS algorithm. We then esti-
mated model goodness-of-fit to each set of data by submitting
the outcomes of the LOFS algorithm to a structural equation
modelling (SEM) estimator that estimated the values of param-
eters for a SEM parametric model with a regression optimizer.

Given that the dependence between the two variables in a
directed acyclic graph is ‘conditioned on all other variables in
the directed acyclic graph’ (Guo et al., 2014), each connection
in the directed acyclic graph should be considered in the con-
text of the whole graph, not as an independent variable. The
IMaGES search algorithm includes several steps to identify a
winning model, but the algorithm steps are not a source of the
variation. An outcome of the algorithm is deterministic. Once
a winning model has been identified, it is independent of any
search process. If the edge (or the connection) is detected, its
presence is statistically significant as justified by the improve-
ment in the BIC score. If the edge is absent, that means that
adding that edge to the model did not improve the model fit.
Given that during model search the algorithm always selects a
model with the best BIC score, the final model is the best
model for the set of variables for a sample of subjects. Two
directed acyclic graphs can be compared in terms of presence
versus absence of a specific connection (or edge) in the two
models. If the connection is present in both models, the
strength of connections (i.e. the SEM coefficients) can be com-
pared using inferential statistics.

Further in the text, the presence of a specific connection with-
out considering its orientation is indicated with a dash (e.g.
RVS–RFCm), and the connectivity direction is indicated with
an arrow (e.g. RVS!RFCm). The graphs will be described in
terms of density of connections (the number of connections in
the network), path length (the number of connections to travel
from one region to another) (Bullmore and Sporns, 2009), and
the global connectivity direction (‘top-down‘ versus ‘bottom-
up’).

Exploratory analyses

Exploratory analyses examined linear relationships between the
connectivity strength (indicated by the SEM coefficients) for all
connections in the model discovered by IMaGES and oriented by
LOFS for each patient group (BDD, MDD) and each anticipa-
tion condition (Win/Loss anticipation) to predict the HRSD-25
and YMRS scores as well as the total illness duration, total
number of manic/depressive episodes and medication load.

In addition, we conducted a series of t-tests to compare the
SEM coefficients for patients who were ON/OFF antidepres-
sants, antipsychotics, benzodiazepines and mood stabilizers.
Given multiple comparisons, all P-values were Bonferroni
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corrected for the number of comparisons (0.05/number of con-
nections in each network).

Results
Abbreviations for brain regions referred to hereafter are

presented in Box 1.

Box 1 Brain area designations

ACC = anterior cingulate cortex

DLPFC = dorsolateral prefrontal cortex

LAng = left angular gyrus

LFP = left frontal pole

LFPm = left medial frontal pole

LIFG = left inferior frontal gyrus

LLOCinf = left lateral occipital cortex inferior division

LMFG = left middle frontal gyrus

LMTG = left middle temporal gyrus

LOFg = left fusiform gyrus

LOP/ROP/OP = left/right/occipital pole

LVS = left ventral striatum

OFC = orbitofrontal cortex

OFg = right and left occipital fusiform gyrus

PFC = prefrontal cortex

RAng = right angular gyrus

RDLPFC = right dorsolateral prefrontal cortex

RFCm = right medial prefrontal cortex

RFP = right frontal pole

RFPm = right medial frontal pole

RLOCinf = right lateral occipital cortex

RMFG = right middle frontal gyrus

ROFg = right fusiform gyrus

RVS = right ventral striatum

VS = ventral striatum

Functional MRI

Consistent with previous studies (Ernst et al., 2004; Fan

et al., 2007), anticipatory processes activated bilateral pre-

frontal cortical (PFC) regions, left middle temporal gyrus

(LMTG), parietal and occipital regions in the All anticipa-

tion4 baseline contrast. A left frontopolar cluster covered

three regions: left frontal pole (LFP), left middle frontal

gyrus (LMFG) and left inferior frontal gyrus (LIFG). Win

anticipation elicited greater activation in the right medial

prefrontal cortex (RFCm), bilateral VS and occipital pole

(OP) than loss anticipation. Loss anticipation elicited

greater activation in bilateral fusiform gyrus (OFg) than

win anticipation (Fig. 1 and Table 2; see Supplementry

Table 1 for All anticipation5baseline activations).

Given that education and medication load differed across

the groups (in particular, BDD versus MDD, see Table 1),

we tested whether the anticipation network derived from

the whole sample would change if education and medica-

tion load were used as covariates in the analyses. The re-

sults of these analyses revealed no association between

education level and anticipation-related brain activation,

as well as between medication load and anticipation-related

brain activation in either brain region, at least at the

threshold that was chosen for this study. The anticipation

network revealed in this analysis was very similar (almost

identical) to the network identified in the main analysis that

did not use education and medication load as covariates

(Supplementary Table 2).

Graphical modelling in reward and
loss anticipation regions

Independently of group and condition, LIFG was discon-

nected from other region, and the posterior and medial

regions of the postcentral/precentral gyrus were connected

only to each other. Another 18 regions comprised ‘occipi-

tal’ and ‘fronto-parietal-temporo-striatal’ subnetworks.

Occipital subnetwork

The ‘occipital’ subnetwork included bilateral occipital regions

(LOFg, ROFg, LLOCinf, RLOCinf, LOP, and ROP) con-

nected to each other with five connections (Fig. 2).

LLOCinf–RLOCinf, RLOCinf–ROFg and RLOCinf–ROP

were common connections for all groups and conditions.

Healthy control subjects and MDD had similar connectivity

patterns. In addition to common connections, they had

LOFg–ROFg, LLOCinf–LOP connection for win anticipa-

tion, and LOP–ROP, LOFg–LLOCinf connections for loss

anticipation. BDD had similar connectivity patterns for win

and loss anticipation (common connections, ROFg!LOFg,

LOP–ROP) that differed from those in healthy control sub-

jects and MDD. The LOP–ROP connection during win an-

ticipation was stronger for BDD ON versus BDD OFF

antipsychotics: t(29) =�4.87, P-value50.001, with signifi-

cantly stronger connectivity in BDD who were OFF anti-

psychotic medications.

Fronto-parietal-temporo-striatal subnetwork

The fronto-parietal-temporo-striatal subnetwork included

frontal (RFP, LFP, RDLPFC, RMFG, LMFG, RFPm,

RFCm), striatal (RVS, LVS), parietal (RAng,LAng) and tem-

poral (LMTG) regions (Fig. 3). Four connections, three of

which were between the homologous brain regions, were

common for all three groups and both anticipation conditions

(LAng–RAng, LFP–RFP, LVS–RVS, and RDLPFC–RFP).

For win anticipation, connectivity density was the highest

in individuals with bipolar disorder (11 connections), fol-

lowed by MDD (10 connections), and healthy control sub-

jects (nine connections). The longest connectivity path was

observed in BDD and included four right frontal regions:

RFCm!RFPm!RFP!RDLPFC. The longest connectivity

paths in healthy control subjects and MDD included three

regions (healthy control subjects: RAng!LAng!LMTG;

MDD: RAng!RDLPFC!RFP, and LVS!RFCm!RFPm).

For loss anticipation, connectivity density was the highest

in healthy control subjects (11 connections), followed by

MDD (10 connections) and BDD (eight connections).

Among three groups, the longest connectivity path was

observed in MDD and included seven regions connected
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in the bottom-up direction: RFCm!RFPm!RFP!

RDLPFC!RAng!RMFG. The longest path in healthy

control subjects included four regions connected in the

top-down direction: RFP!RFPm!RFCm!RVS. The

longest path in BDD also included four regions, but they

were connected in the bottom-up direction: RAng!

RDLPFC!RFP!LFP. Interestingly, no fronto-striatal con-

nectivity was observed in BDD during loss anticipation.

Exploratory analyses

There was no association between connectivity strength

and HRSD-25 scores, illness duration and a total number

of manic/depressive episodes in either BDD or MDD

groups in either win or loss anticipation conditions.

There was an association between the strength of connec-

tions in the loss anticipation network [F(16,22) = 2.36,

P-value = 0.03, R2 = 0.63, adjusted R2 = 0.36] and

YMRS scores in MDD. MDD with higher YMRS scores

had weaker LAng–LMTG, but stronger LVS–RVS connect-

ivity. Below is the equation to compute YMRS scores for

MDD.

YMRS ¼ 1:6� 6:8 SEM coefficient for LMTG! LAngð Þ

þ 6 SEM coefficient for LVS! RVSð Þ
ð1Þ

There was also an association between the strength of con-

nections in the loss anticipation network [F(14,16) = 3.25,

Figure 1 Anticipation-related network. Activation maps thresholded at z4 3.72 (P5 0.0001) and a corrected cluster significance

threshold of P5 0.05. Activation for the All Anticipation periods4 baseline contrast is in red, the local maxima for a large left frontopolar cluster

is in yellow, win anticipation4 loss anticipation contrast in in blue, and loss anticipation4win anticipation contrast is in green. The three local

maxima for a large left PFC cluster are in yellow.

Table 2 Anticipation-related brain activation

Region n voxels Z-max x y z

Win and loss anticipation: increases (z4 3.72, P5 0.05)

L Frontal pole (LFP) 8514 7.75 �42 48 �8

L Inferior frontal gyrus (LIFG) – 7.54 �56 24 12

L Middle frontal gyrus (LMFG) – 7.75 �34 14 54

L Angular gyrus (LAng) 2115 8.05 �46 �62 40

R Lateral occipital cortex, inferior division (RLOCinf) 1828 8.31 34 �86 8

R Angular gyrus (RAng) 1295 6.29 50 �60 34

L Lateral occipital cortex, inferior division (LLOCinf) 1216 7.87 �28 �90 �2

L Middle temporal gyrus (LMTG) 1088 6.55 �64 �44 �12

R Postcentral/precentral lateral (RPostPre,l) 741 6.31 34 �24 52

R Dorsolateral prefrontal cortex (RDLPFC) 643 5.64 50 30 24

R Frontal pole, lateral (RFP) 582 5.8 38 58 �4

R Middle frontal gyrus (RMFG) 246 5.08 38 16 54

R Frontal pole, medial (RFPm) 193 5.05 16 66 �2

R Postcentral/precentral gyrus, medial (RPostPrem) 155 5.04 8 �32 56

Win anticipation4 loss anticipation (z4 3.72, P5 0.05)

R Occipital pole (ROP) 556 7.85 22 �98 0

R VS (accumbens) (RVS) 189 5.19 8 18 �8

L VS (accumbens) (LVS) 170 4.75 �8 10 �4

L Occipital pole (LOP) 135 5.71 �16 �106 �6

R Medial frontal cortex/ paracingulate gyrus (RFCm) 118 4.28 10 46 �10

Loss anticipation4win anticipation (z4 3.72, P5 0.05)

R Occipital fusiform gyrus (ROFg) 834 6.79 22 �88 �18

L Occipital fusiform gyrus (LOFg) 569 5.94 �30 �82 �22

L = left; R = right; B = bilateral.
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P-value = 0.013, R2 = 0.74, adjusted R2 = 0.51] and a total

medication load in BDD. BDD with greater medication

load had weaker RDLPFC–RFP and LLOCinf–RLOCinf con-

nectivity, but stronger RLOCinf–ROP, RLOCinf–ROFg,

LAng–RAng, LLOCinf–RLOCinf, and RAng–RDLPFC con-

nectivity. Below is the equation to compute medication load

for BDD.

Medication load ¼ � 5:8

þ 8:5 SEM coefficient for RAng! RDLPFCð Þ

�5:8ðSEMcoefficient for RDLPFC! RFPÞ

þ6:7 SEM coefficient for RAng! LAngð Þ

þ14:8ðSEMcoefficient for ROP! RLOCinfÞ

þ11:4 SEM coefficient for ROFg! RLOCinfð Þ

�7:5ðSEMcoefficient for RLOCinf! LLOCinfÞ

þ4:6 SEM coefficient for ROP! LOPð Þ ð2Þ

Discussion
Understanding the functioning of large-scale brain net-

works and their relationship to psychiatric disorders has

potential to provide novel insights into underlying neural

mechanisms of these disorders (Menon, 2011). This is the

first study to assess functional and effective connectivity in

a large-scale anticipation network in BDD versus MDD

versus healthy control subjects using graph theory methods.

The major finding was that BDD and MDD with compar-

able levels of current depression differed from each other

and healthy control subjects in density of connections,

connectivity path length, and the connectivity direction as

a function of win/loss anticipation. Healthy control subjects

had sparse connectivity for win anticipation, but denser

connectivity for loss anticipation that was characterized

by ‘top-down’ fronto-striatal and fronto-parietal connectiv-

ity. BDD versus healthy control subjects and MDD had

denser connectivity for win anticipation, but sparser con-

nectivity for loss anticipation lacking fronto-striatal connec-

tions. In MDD, win and loss anticipation were

characterized by the same connectivity density, and the

‘bottom-up’ connectivity direction in the fronto-parietal-

temporo-striatal subnetwork with longer path length for

loss than win anticipation.

Although it might be difficult to interpret the results

when both hypo- and hyper-connectivity may be con-

sidered aberrant, this concept becomes much easier to

understand if we make parallels between brain connect-

ivity and a peripheral biological measure routinely exam-

ined in clinical practice, for example, the amount of

thyroid hormone. Having too much or too little thyroid

hormone are both considered abnormal, and lead to dif-

ferent problems with physical health. In the same way,

having over-connected, or under-connected patterns of

neural network connectivity may be abnormal, and

may be associated with different psychiatric disorders,

as our present data suggest. Whether a person has ‘too

much’, or ‘not enough’ of thyroid hormone is determined

by comparing an individual’s values with the normative

laboratory range of measurements of this hormone. As

there are no ‘normative laboratory range of measure-

ments’ for brain connectivity (yet), we compared brain

connectivity values of patients with those of healthy

Figure 2 Connectivity within the occipital subnetwork. The arrows show a connection (edge) orientation. Thick frames denote regions

with three connections going to or from these regions. Connections common for all groups and conditions are shown in solid arrows, while all

other connections are shown in dashed arrows.

Brain connectivity for anticipation in depression BRAIN 2016: 139; 2554–2566 | 2561

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/139/9/2554/1744593 by guest on 20 April 2024



controls. In this way, we were able to determine the

extent to which each of the two patient groups differed

from, and were abnormal relative to, the healthy control

range of connectivity values.

Previous studies suggest that hyper-connectivity may be

a neural signature of depression by showing that de-

pressed individuals versus healthy control subjects had

increased intrinsic resting state connectivity in the affect-

ive, cognitive control, and default mode networks (Sheline

et al., 2010), and that electroconvulsive therapy (ECT)

treatment-related reductions in functional connectivity be-

tween medial PFC, DLPFC and parietal cortices correlated

with reduction in depressive symptoms (Perrin et al.,

2012). Our study, however, demonstrated that hyper-con-

nectivity was not a neural signature of depression per se,

but, rather, depended on whether depressed individuals

suffered from major depressive disorder or bipolar dis-

order, and the anticipatory context (i.e. anticipating win-

ning or losing money). For example, hyper-connectivity

during anticipation of potentially rewarding outcomes,

shown by BDD, but not by MDD, may be a biomarker

of impulsive, risky, pleasure-seeking behaviours that char-

acterize predisposition to mania.

Anticipation involves attentional, emotional and motiv-

ational components (Berridge et al., 2003; Gard et al.,

2006; Robinson et al., 2014) that may rely on different

connectivity patterns depending on the emotional valence

of an anticipatory condition. During loss anticipation, par-

ticipants expect to lose money, which, in turn, may induce

such negative feelings as sadness, fear, anger, decrease in

motivation to continue the task, etc. During this condition,

healthy control subjects had the highest (of all groups) con-

nectivity density and distinct ‘top-down’ connectivity direc-

tion from RFP down to RVS and parietal cortex. While

having more connections in the network may be energetic-

ally costly (Bullmore and Sporns, 2009), it may also help

healthy control subjects to ‘pre-regulate’ negative emotions

related to potential monetary loss by downregulating VS

response. During win anticipation, participants expect to

gain money, which, in turn, may induce such positive feel-

ings as happiness, joy, increase in interest and motivation

to continue task performance, etc. During this condition,

connectivity density in the fronto-parietal-temporo-striatal

subnetwork in healthy control subjects was the lowest com-

pared with other groups, and lateral frontal regions

involved in prospective (Burgess et al., 2007) and working

Figure 3 Connectivity within the fronto-parietal-temporo-striatal sub-network. The arrows show a connection (edge) orientation.

Thick frames denote regions with three connections going to or from these regions. Connections common for all groups and conditions are

shown in solid arrows, while all other connections are shown in dashed arrows. Abbreviations are presented in Box 1.
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(Owen et al., 2005) memory were disconnected from VS

and medial PFC, potentially because no emotion regulation

was required during win anticipation.

MDD had the same connectivity density and a ‘bottom-

up’ connectivity pattern originating in LVS for win and loss

anticipation. During loss anticipation, changes in LVS re-

sulted in activation changes in parietal and multiple frontal

regions involved in emotion regulation and attentional con-

trol (Phillips et al., 2008a; Kanske et al., 2011), which may

have impaired the ability of MDD to downregulate nega-

tive emotions during anticipation of monetary loss. The

fact that YMRS score was associated with stronger subcor-

tical but weaker cortical connectivity during loss anticipa-

tion in MDD may perhaps reflect a relationship between

YMRS score and irritability during depressive episode in

MDD, where thinking about potential loss is associated

with increased irritability, and associated with reduced

‘top-down’ cognitive control processes. Indeed, YMRS

scores in both groups of depressed individuals were

driven mainly by higher scores on the Irritability item

(Table 1). During win anticipation, LVS was disconnected

from lateral frontal and parietal regions, thus allowing

those regions to function independently of anticipated or

perceived reward value. Similarities in connectivity density

for win and loss anticipation in MDD may suggest that

negative biasing and low anticipatory pleasure (Sherdell

et al., 2012) characterize both types of anticipation, not

only anticipation of negative events (Abler et al., 2007;

Hamilton et al., 2012; Strigo et al., 2013).

During loss anticipation, BDD, compared with MDD and

healthy control subjects, had much sparser connectivity

that lacked fronto-striatal connections. Interestingly, of

eight connections associated with loss anticipation in

BDD, four connections were common across all groups

and all condition (LAng–RAng, LFP–RFP, LVS–RVS, and

RDLPFC–RFP), and two connections were common across

all groups during loss anticipation (LAng–LMTG and

RAng–RDLPFC). Most connections were either going to,

or from, the angular gyrus. One function of the angular

gyrus is to guide visual attention to relevant information

related to reward and punishment (Studer et al., 2014). The

path originating from LAng or RAng did not extend to

medial PFC and VS, regions involved in evaluation of po-

tential reward values or tracking rewarding outcomes

(Knutson et al., 2003), suggesting a neural mechanism for

blocking disturbing visual information from further pro-

cessing. This distinguished BDD from MDD, whose nega-

tive bias during processing of negative cues resulted in the

spread of activation across multiple frontal and parietal

regions.

Win anticipation in BDD, compared to MDD and

healthy control subjects, was characterized by denser con-

nectivity in the fronto-parietal-temporo-striatal subnetwork.

Changes in RFCm activation influenced activation in RVS

and multiple frontal regions involved in emotion regulation

and attentional control (Phillips et al., 2008a; Kanske et al.,

2011). Given that one function of the RFCm is to track

rewarding outcomes (Knutson et al., 2003), this connectiv-

ity pattern suggests increased attention to the perceived

value of potential reward, and may, in turn, be associated

with the well-documented finding of increased reward sen-

sitivity in bipolar disorder (Lawrence et al., 2004; Nusslock

et al., 2012; Caseras et al., 2013; Whitton et al., 2015).

In contrast to recent findings of hyper-connectedness and

hyper-efficiency in occipital regions during resting state for

individuals with seasonal depression versus healthy control

subjects (Borchardt et al., 2015), in our study, patients with

MDD and healthy control subjects did not differ in their

occipital connectivity patterns. Occipital connectivity in

BDD, however, differed from that in patients with MDD

and healthy control subjects, and was characterized by

greater number of inter-hemispheric versus intra-hemi-

spheric connections, which may reflect a compensatory

mechanism for underlying intra- and inter-hemispheric

white matter pathology (Brambilla et al., 2009; Frank

et al., 2015).

One limitation of this study was the recruitment of

medicated BDD and MDD. While recruiting drug-free indi-

viduals may be preferable for functional MRI studies (Yip

et al., 2015), some studies suggest that psychotropic medi-

cations improve brain functioning in individuals with bipo-

lar disorder (Haldane et al., 2008; Phillips et al., 2008b). In

addition, it is ethically difficult to ask participants to stop

taking medications. Focusing on unmedicated participants is

also likely to bias the study by limiting recruitment to par-

ticipants with lower illness severity. We would also like to

note that while comparing non-medicated participants might

remove the potential confound of medication, such a com-

parison would not reflect the reality, in which MDD and

BDD require different medications. Removing the medica-

tion confound from the study may thus result in a compari-

son of BDD and MDD that is not generalizable to typical

MDD and BDD populations. Furthermore, we worked hard

to include MDD and BDD in the same mood state with

comparable levels of current depression and mania, which

necessarily resulted in BDD and MDD taking different medi-

cations. Our exploratory analyses showed that taking versus

not taking psychotropic medications did not affect connect-

ivity strength in the fronto-parietal-temporo-striatal subnet-

work, where most significant between-group differences

were found. Total medication load (Hassel et al., 2008)

was associated with connectivity strength, but only during

loss anticipation and only in bipolar disorder. This result

cannot, however, explain the sparse connectivity pattern in

bipolar disorder given that greater medication load was

mostly associated with greater connectivity strength among

the regions.

While the different types of medications in depressed in-

dividuals may potentially affect the connectivity patterns

observed in this study, simulation studies suggest that

IMaGES are relatively robust to moderate between-subject

variation (Ramsey et al., 2010). It is most likely that

IMaGES are able to detect the connections that are

common across all (or most) participants in the sample
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(independently of medication type and combination). The

connections that are specific to some participants only (e.g.

those taking mood stabilizers) will probably not receive a

high mean BIC score, and, as a result, will not be included

to the model. It is thus probable that the connectivity pat-

terns identified in this study are generalizable for each

sample. While it is reasonable to suggest the subjects who

are, for example, taking mood stabilizers would have less

dense connectivity during, for example, win anticipation,

because mood stabilizers aim to balance excitation and in-

hibition processes, our sample was not sufficiently large to

test this hypothesis directly.

In summary, this is the first study to demonstrate that

BDD and MDD with comparable levels of current depres-

sion and mania differed from each other and healthy con-

trol subjects in density of connections, connectivity path

length, and connectivity direction during win or loss antici-

pation. We showed that both decreased and increased con-

nectivity density may be aberrant, by disrupting the balance

between excitation and inhibition processes in the network,

and by triggering maladaptive emotional and behavioural

responses. While a smaller number of connections may

limit cross-talk among regions, a greater number of con-

nections may lead to faster spread of activation in the net-

work, simultaneous activation of multiple regions, and

network over-excitation. In BDD, aberrant connectivity

patterns included hyper-connectivity during win anticipa-

tion, but hypo-connectivity during loss anticipation. In

MDD, aberrant patterns were characterized by a ‘bottom-

up’ connectivity direction during win and loss anticipation

that may have impeded ability to regulate emotions related

to anticipated win and loss.

The ultimate goal of clinical neuroimaging is to contrib-

ute to clinical practice by helping practicing physicians de-

termine appropriate treatment options on an individual

basis. Indicators of neural functioning, such as neural acti-

vation and neural connectivity patterns, may also be meas-

ures that can help in diagnostic decision-making. Our

findings suggest different neural mechanisms underlying ab-

errant anticipation processes in BDD and MDD, and sug-

gest that distinct therapeutic interventions may be required

for these two groups of individuals to improve coping stra-

tegies during anticipation of positive and negative out-

comes. For example, knowing that ECT decreases fronto-

parietal connectivity (Perrin et al., 2012), we can hypothe-

size that such treatment may benefit MDD during anticipa-

tion of negative outcomes, because it can reduce bottom-up

influences on the frontal cortex, thus allowing MDD to use

higher order cognitive strategies for emotion regulation.

Such treatment will not necessarily benefit bipolar disorder,

however, because ECT may diminish the sparse neural con-

nectivity in these individuals during anticipation of negative

outcomes, and may thus further impair the already aber-

rant ability of these individuals to prepare to cope with

potentially negative outcomes. Future studies are needed

to replicate these findings, to identify trajectories in con-

nectivity patterns corresponding to a decrease or increase

in depressive/manic symptoms over time, in order to predict

the onset of the next mood episode, and to determine the

extent to which these connectivity patterns predate devel-

opment of bipolar disorder or major depressive disorder in

at-risk individuals.
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