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Parkinson’s disease varies widely in clinical manifestations, course of progression and biomarker profiles from person to person.

Identification of distinct Parkinson’s disease subtypes is of great priority to illuminate underlying pathophysiology, predict pro-

gression and develop more efficient personalized care approaches. There is currently no clear way to define and divide subtypes in

Parkinson’s disease. Using data from the Parkinson’s Progression Markers Initiative, we aimed to identify distinct subgroups via

cluster analysis of a comprehensive dataset at baseline (i.e. cross-sectionally) consisting of clinical characteristics, neuroimaging,

biospecimen and genetic information, then to develop criteria to assign patients to a Parkinson’s disease subtype. Four hundred and

twenty-one individuals with de novo early Parkinson’s disease were included from this prospective longitudinal multicentre cohort.

Hierarchical cluster analysis was performed using data on demographic and genetic information, motor symptoms and signs,

neuropsychological testing and other non-motor manifestations. The key classifiers in cluster analysis were a motor summary score

and three non-motor features (cognitive impairment, rapid eye movement sleep behaviour disorder and dysautonomia). We then

defined three distinct subtypes of Parkinson’s disease patients: 223 patients were classified as ‘mild motor-predominant’ (defined as

composite motor and all three non-motor scores below the 75th percentile), 52 as ‘diffuse malignant’ (composite motor score plus

either 51/3 non-motor score 475th percentile, or all three non-motor scores 475th percentile) and 146 as ‘intermediate’. On

biomarkers, people with diffuse malignant Parkinson’s disease had the lowest level of cerebrospinal fluid amyloid-b

(329.0 � 96.7 pg/ml, P = 0.006) and amyloid-b/total-tau ratio (8.2 � 3.0, P = 0.032). Data from deformation-based magnetic res-

onance imaging morphometry demonstrated a Parkinson’s disease-specific brain network had more atrophy in the diffuse malig-

nant subtype, with the mild motor-predominant subtype having the least atrophy. Although disease duration at initial visit and

follow-up time were similar between subtypes, patients with diffuse malignant Parkinson’s disease progressed faster in overall

prognosis (global composite outcome), with greater decline in cognition and in dopamine functional neuroimaging after an average

of 2.7 years. In conclusion, we introduce new clinical criteria for subtyping Parkinson’s disease based on a comprehensive list of

clinical manifestations and biomarkers. This clinical subtyping can now be applied to individual patients for use in clinical practice

using baseline clinical information. Even though all participants had a recent diagnosis of Parkinson’s disease, patients with the

diffuse malignant subtype already demonstrated a more profound dopaminergic deficit, increased atrophy in Parkinson’s disease

brain networks, a more Alzheimer’s disease-like cerebrospinal fluid profile and faster progression of motor and cognitive deficits.
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Introduction
Parkinson’s disease varies considerably in its clinical mani-

festations and prognosis, suggesting it may be divisible into

subtypes (Berg et al., 2014). Recently the National

Institutes of Health established subtype identification as

one of the top three clinical research priorities in

Parkinson’s disease (Sieber et al., 2014). Defining different

subcategories of Parkinson’s disease is key to better under-

stand underlying disease mechanisms, predict disease

course, and design clinical trials. Yet, the means to identify

subtypes and predict individual prognosis remain

undefined.

Disease subtypes can be identified with cluster analyses,

which use a hypothesis-free data-driven approach. Previous

studies used cluster analysis to define clinical Parkinson’s

disease subtypes based on motor severity, motor complica-

tions, certain non-motor features and demographic charac-

teristics (van Rooden et al., 2010; Fereshtehnejad et al.,

2015). Depth of phenotypic information in these studies

was variable, and often limited. Moreover, all previous

cluster analyses were only based on clinical features; neither

neuroimaging, nor serum/CSF biomarkers nor genetic data

were available. Many previous studies were limited by in-

sufficient longitudinal assessments to evaluate prognosis of

subtypes. Finally, the final output of statistical approaches

such as clustering can be described at the group level only.

In order to be used in practice, statistical subtyping solu-

tions need to be translated into a method to assign individ-

ual patients to a subtype.

The Parkinson’s Progression Markers Initiative (PPMI) is

a comprehensive longitudinal, international multi-centre

database consisting of clinical, genetic, neuroimaging, and

blood/CSF biomarkers of over 400 de novo Parkinson’s

disease patients (PPMI, 2011). All clinical features are

also annually reassessed. This extensive phenotypic and

biomarker information provides a unique opportunity to

assess the heterogeneity of Parkinson’s disease, to create

the most comprehensive definition of subtypes yet per-

formed, and to allow longitudinal assessment of disease

progression and outcome of different subtypes.

The aims of our study were to: (i) perform cluster ana-

lysis on a comprehensive baseline dataset, including both

motor and non-motor clinical characteristics and genetic

information to identify distinct Parkinson’s disease clusters;

(ii) introduce a new practical classification method to assign

individual patients to their subtype; (iii) assess on post hoc

analyses the neuroimaging, biospecimen and clinical char-

acteristics of each Parkinson’s disease subtype; and (iv) com-

pare disease progression between different Parkinson’s

disease subtypes.

Materials and methods

Study setting and population

PPMI (http://www.ppmi-info.org) has been extensively
described elsewhere (PPMI, 2011). Recruitment criteria in-
clude: age5 30, Parkinson’s disease diagnosis within the last
2 years, baseline Hoehn and Yahr Stage I–II, and no antici-
pated need for symptomatic treatment within 6 months of
baseline (PPMI, 2011). The institutional review board
approved the PPMI protocol in all participating sites.
Written informed consent was attained from all participants.

We obtained data from the PPMI database on May 2016 in
compliance with the PPMI Data Use Agreement. Any individ-
ual with 420% missing values on baseline data was excluded
(n = 421 included).

Baseline and clinical assessments

In PPMI, a comprehensive set of clinical features including
both motor and non-motor symptoms is assessed. We used
the following data:

(i) Demographics: age, sex, race, family history, symptom duration,

education level.

(ii) Blood biomarkers: biochemical tests.

(iii) Motor manifestations: International Parkinson’s disease and

Movement Disorder Society-Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS)-Part II, MDS-UPDRS-Part III, total tremor

score, postural instability–gait difficulty (PIGD) score, tremor/

PIGD motor phenotype (Stebbins et al., 2013), Schwab-England

activities of daily living (ADL) score.

(iv) Neuropsychological features: age/education adjusted Montreal

Cognitive Assessment (MoCA) (Nasreddine et al., 2005), all

neuropsychological variables including visuospatial function

[Benton Judgment of Line Orientation (JOLO)] (Benton et al.,

1978), speed/attention (Symbol–Digit Matching) (Smith, 1991),

memory [Hopkins Verbal Learning Test (HVLT) for total

recall, delayed recall, retention and recognition-discrimination]

(Shapiro et al., 1999) and executive function [semantic verbal-

language fluency test (Gladsjo et al., 1999) and letter-number

sequencing (LNS) (Wechsler, 2008)]. Baseline analysis of
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cognitive performance in PPMI has been recently reported

(Weintraub et al., 2015).

(v) Other non-motor manifestations: MDS-UPDRS-Part I, olfactory

dysfunction [age/sex adjusted University of Pennsylvania Smell

Identification Test (UPSIT) score] (Doty et al., 1984), autonomic

dysfunction [Scales for Outcomes in Parkinson’s disease-

Autonomic (SCOPA-AUT) total score and its subsections: orofa-

cial, constipation, urinary, cardiovascular, thermoregulatory,

pupillo-motor and sexual] (Visser et al., 2004), orthostatic drop

in systolic blood pressure, depression [Geriatric Depression Scale

(GDS) score] (Yesavage and Sheikh, 1986), anxiety [State-Trait

Anxiety Inventory (STAI) score] (Spielberger et al., 1983), REM

sleep behaviour disorder (RBD) [RBD screening questionnaire

(RBDSQ) score] (Stiasny-Kolster et al., 2007), sleep disturbances

[Epworth Sleepiness Score (ESS)] (Johns, 1991), impulse control

disorders (ICD) [Questionnaire for Impulsive-Compulsive

Disorders in Parkinson’s disease (QUIP) score] (Weintraub

et al., 2009). For other non-motor features without specific

tools for measurement (hallucinations, apathy, pain, fatigue) we

used single items from MDS-UPDRS-Part I.

Genetic information

A single summary indicator genetic risk score was used. This
was previously calculated in PPMI by summing the number of
28 common risk loci identified in a large-scale meta-analysis of
Parkinson’s disease genome-wide association studies, plus two
additional risk variants detected within PPMI (p.N370S in
GBA and p.G2019S in LRRK2) (Nalls et al., 2015).

CSF biomarkers

CSF amyloid-b1-42, total (t)-tau, and phosphorylated tau
(P-tau181) were measured by INNO-BIA AlzBio3 immuno-
assay (Innogenetics Inc.), and a-synuclein was measured by
enzyme-linked immunosorbent assay (Kang et al., 2013). We
also calculated ratios between CSF biomarkers as recently rec-
ommended (Kang et al., 2016).

Imaging biomarkers

Single-photon emission computed tomography (SPECT) with
the DAT tracer 123I-ioflupane was obtained in 351 PPMI par-
ticipants at baseline and follow-up visits (PPMI, 2011). The
striatal binding ratio using the occipital lobe as a reference
region, was calculated for the left and right caudate and pu-
tamen separately. High resolution T1-weighted 3 T MRI were
available for 229 individuals with Parkinson’s disease and 117
healthy age-matched controls at baseline. Deformation-based
morphometry (DBM) was used as a measure of brain atrophy.
The analysis was performed as described previously (Zeighami
et al., 2015). Briefly, each subject’s MRI was first linearly and
then non-linearly registered to the Montreal Neurological
Institute (MNI) ICBM-152 template. Non-linear transform-
ations were used to calculate the Jacobian determinant of the
deformation matrix at each voxel for each subject. We then
performed independent component analysis (ICA) on the DBM
maps to identify Parkinson’s disease-specific atrophy networks
in early Parkinson’s disease (Zeighami et al., 2015). Two in-
dicators of atrophy were calculated for each participant: the
Parkinson’s disease-related network atrophy score from the
DBM ICA, and the substantia nigra atrophy score, equal to

the DBM measure in the substantia nigra. Because MRI was
only performed in 229 patients (and also to enhance clinical
applicability), MRI variables were not included in the cluster-
ing solution, but were tested in post hoc comparisons.

Longitudinal assessments

As all the above clinical and neuroimaging features are re-
assessed annually (PPMI, 2011), we also analysed progression
over time. Follow-up time is variable; we selected the earliest
and latest recorded data for each feature, with the interval
between the two measurements calculated for each individual.
Patients with less than 1-year follow-up were excluded from
longitudinal analysis, leaving 401 cases analysed for
progression.

Global composite outcome

Parkinson’s disease has diverse manifestations, all of which
contribute to quality of life and overall disease progression.
For analysis of progression, we created a global composite
outcome (GCO) as a single numeric indicator of prognosis,
similar to our previous single-centre study on Parkinson’s dis-
ease clustering (Fereshtehnejad et al., 2015). This merged the
most important clinical domains into a single aggregate, sim-
ultaneously accounting for different variations in the range/
direction of scores, while avoiding overweighting a single
domain. The GCO equally weighted non-motor symptoms
(UPDRS-I), motor symptoms (UPDRS-II), motor signs
(UPDRS-III), overall activities of daily living (Schwab and
England ADL), and global cognition (MoCA), standardized
by averaging the z-scores of each component. For calculating
change we used the mean/SD from baseline as reference, to
assess progression. Calculations for each component were:

Baseline : z-scorebaseline

¼ ðcrude scorebaseline �meanbaselineÞ=SDbaseline

Follow-up : z-scorefollow-up

¼ ðcrude scorefollow-up �meanbaselineÞ=SDbaseline

The total GCO was calculated by averaging all components’
z-scores (higher GCO scores indicate worse function).

Statistical methods and cluster/sub-
type definition

Data preparation and missing data imputation

We used R version 3.2.2 (https://www.r-project.org) to read
variables and extract scores from the PPMI database
(Supplementary material). Where appropriate, scores were cal-
culated based on normative values (for instance, using
%normal age/sex adjusted UPSIT rather than crude scores).
Missing values (54%) were imputed by using mean values
for the entire cohort.

Cluster analysis

To avoid overweighting a single feature or single domain in
the clustering solution, we generated composite indicators,
each of which summarizes several redundant variables
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(for instance the composite cognitive memory score used aver-
aged z-scores for all single HVLT scores). This also provided
dimension reduction, allowing the number of statistical vari-
ables to better correspond with the number of data points
(Formann, 1984). For the same reasons (also for consider-
ations of missing data points and poor clinical feasibility/ap-
plicability), we did not include other biomarkers (i.e. CSF and
imaging biomarkers) as clustering features in the main cluster
solution; these were tested for post hoc comparisons.

Cluster analysis was performed in R. Agglomerative hier-
archical clustering with Euclidean distance calculation was
applied. Various measures were tested to estimate the optimal
number of clusters. Of 24 solutions, 10 suggested two clusters,
and seven suggested three clusters [see Supplementary Fig. 1
for the results from Hartigan’s rule (value = 6.03 for three
clusters)]. Ultimately, we prioritized the three-cluster solution
because of a better balanced data distribution as well as clin-
ical relevance (the two-cluster solution had 91% of patients
in one cluster, limiting its utility). Furthermore, to check the
stability of the clustering, we randomly half-split the study
population and the same clustering method was repeated.
This procedure was repeated 1000 times and the case mem-
berships were cross-checked with that of the original cluster-
ing each time. Cohen’s Kappa agreement rates were all in the
moderate-substantial range (0.53 for mild motor-predomin-
ant, 0.54 for intermediate, and 0.70 for diffuse-malignant).

Clinical definition of the subtypes

Cluster analysis is a statistical method that calculates and com-
bines features at the group level. However, there will be indi-
viduals in each cluster who will not have all the key features
that defined the cluster. For example, if a cluster solution states
that RBD, orthostatic hypotension and cognition are the three
most important variables for assigning to a cluster, there will
still be patients in that cluster who do not have these variables.
This means that results from clustering solutions cannot be
applied to an individual, unless the solution is translated into
rules to assign patients to clusters.

Therefore, based on analysis of characteristics of each clus-
ter, we generated a categorical definition to assign individuals
to the three subtypes. This was generated by identifying the
critical features that discriminated clusters on principle compo-
nent analysis (see ‘Results’ section, and Supplementary Fig. 2).
On this analysis, motor markers (UPDRS II and III, PIGD
score), autonomic dysfunction (SCOPA-AUT), RBD, and cog-
nition were highly ranked significant features. This was con-
verted into four composite domains: motor (UPDRS-II,
UPDRS-III, and PIGD score), cognition (combining all avail-
able neuropsychological batteries in PPMI), RBD (RBDSQ
score), and dysautonomia (SCOPA-AUT total score). Based
on the distribution of scores in each cluster, the following
definitions were created: Subtype I (mild motor-predominant):
both composite motor score and all non-motor summary
scores (NMS) are below the 75th percentile; Subtype III (dif-
fuse malignant): EITHER (i) composite motor score 475th
percentile and 51 of 3 non-motor scores 475th percentile;
OR (ii) all three non-motor scores 475th percentile; and
Subtype II (intermediate): those not meeting criteria for
Subtype I or II

Further details are described in Supplementary Tables 1 and
2. Also to assist with clinical usefulness, we created an Excel
‘Subtype Calculator’ into which patient values can be entered,

and the appropriate category automatically calculated
(Supplementary material). Note that this can only be applied
to patients who have similar characteristics to the PPMI popu-
lation at baseline (e.g. de novo untreated Parkinson’s disease).

Principal component analysis

To assess the robustness of subtypes and the importance of
each variable in separating them, we used principal component
analysis (PCA). The loading value and t-score of each feature
represent the importance of each variable in defining the sub-
types. PCA model, loading values and t1-t2 scatter plot were
created using SIMCA software (version 14.1) (MKS Data
Analytics).

Univariate comparisons

We evaluated differences in all baseline demographics, clinical
characteristics, CSF biomarkers and imaging markers
(including variables that were not used in cluster analysis) be-
tween subtypes/clusters. In addition, longitudinal changes in
outcomes of interest and GCO were compared between sub-
types. Univariate statistical tests were either one-way ANOVA
(with Bonferroni post hoc test) or chi-square test where appro-
priate. Analysis of covariance (ANCOVA) for the between-
clusters/subtypes comparisons was also applied, adjusting for
age and disease duration.

Structural MRI analysis

The Parkinson’s disease-specific atrophy network (Zeighami
et al., 2015) was used as a region of interest to examine atro-
phy (compared to controls). An unpaired t-test was performed
for each voxel within the predefined region of interest. The P-
values were then corrected for multiple comparisons using the
false discovery rate (FDR) technique. Furthermore, we also
performed an exploratory voxel-wise uncorrected analysis to
compare the whole brain atrophy pattern between clinical
subtypes.

General linear model

For analysis of progression, we applied general linear models
(GLMs) for a more comprehensive longitudinal comparison
between subtypes. In each separate GLM, the change in the
outcome measure was defined as the dependent variable. In
order to avoid ‘regression towards mean’ bias, multivariate
statistical adjustment was performed using the baseline value
of each outcome variable as a predictor (Vickers and Altman,
2001). Subtype membership was the main independent vari-
able with follow-up duration as a potential covariate included
in each model. All univariate and multivariate analyses were
performed using IBM SPSS Statistics for Macintosh software
(version 23.0). Two-tailed P-value 50.05 was considered the
threshold for statistical significant differences in all analyses.

Results

Baseline description

A total of 421 de novo treatment-naive patients with

Parkinson’s disease were included in this study consisting

of 276 (65.6%) males and 145 (34.4%) females with an

average age of 61.1 � 9.7 and Parkinson’s disease duration
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(defined in PPMI as time from motor symptom onset) of

6.5 � 6.5 months at baseline. The mean MDS-UPDRS

parts I, II and III were 5.6 � 4.1, 6.0 � 4.2 and

21.0 � 9.0, respectively.

Statistical clusters

Eighteen different variables were included in the final clus-

tering solution: age, genetic risk score, orthostatic systolic

blood pressure drop, MDS-UPDRS-Part II, MDS-UPDRS-

Part III, tremor/PIGD scores, ESS, GDS, STAI, QUIP,

RBDSQ, SCOPA-AUT, UPSIT, and average z-scores of

visuospatial, speed/attention, memory and executive func-

tion (Supplementary Table 1).

As illustrated in Fig. 1, the cluster analysis revealed three

distinct clusters of Parkinson’s disease patients (Table 1 and

Supplementary Fig. 1), with similar disease duration

(P = 0.23). We observed substantial baseline differences in

motor and non-motor manifestations between clusters, with

clinically important effect sizes. Cluster I patients were

younger and exhibited the mildest scores in motor

UPDRS and sleep disorders, olfactory and autonomic dys-

function. They also had the least affected cognitive per-

formance in almost all domains at baseline. We named

this cluster ‘mild motor-predominant’. By contrast, cluster

III was the smallest group who presented with the worst

scores in both motor and non-motor components (except

for olfactory dysfunction and hallucinations). These pa-

tients had an average of MDS-UPDRS total score of 50.1

[standard deviation (SD) = 13.1] and the highest PIGD

score at baseline. In addition, they also had the highest

RBD score, Epworth score and worse autonomic function,

the most severe cognitive impairment and most severe de-

pressive, anxiety, apathy, pain and fatigue symptoms at

baseline. We termed this cluster ‘diffuse malignant’. The

remaining cluster was categorized as class II and repre-

sented an intermediate status in most motor and non-

motor manifestations at baseline. We named this cluster

‘intermediate’. Except for UPSIT score (olfaction), all

differences remained significant after adjustment for age

and Parkinson’s disease duration.

Clinical subtypes

Following the exploration of clusters, clinical classification

rules were developed to assign patients into discrete sub-

types (see ‘Materials and methods’ section). Two hundred

and twenty-three were categorized into the mild motor pre-

dominant subtype, 146 into intermediate, and 52 (12.4%)

into diffuse malignant. The overall membership agreement

rate between the statistical clusters and clinical subtypes

was 76.3% for diffuse malignant, 74.2% for mild motor

predominant, and 50.6% for intermediate. In general, dif-

ferences in subtypes were even larger than for clusters

(Table 2 and Supplementary Fig. 3). To summarize, the

diffuse malignant subtype had the baseline highest MDS-

UPDRS total score (51.7 � 11.3), the highest PIGD score

and the worst Schwab and England ADL, ESS, RBDSQ,

GDS, STAI, UPSIT, SCOPA-AUT (including its subcompo-

nents), apathy, fatigue and all cognitive scores (except

HVLT-retention) (all P5 0.05). On the other side of the

spectrum, the ‘mild motor-predominant’ subtype had the

lowest severity of motor and non-motor manifestations

with an average MDS-UPDRS total score half of subtype

III (26.4 � 9.4). These had the least impaired cognition,

psychiatric features, sleep problems, olfactory and auto-

nomic dysfunctions at baseline (all P5 0.05). For almost

all manifestations, Parkinson’s disease patients of the inter-

mediate subtype (n = 146) had values intermediate between

Subtypes I and III (Table 2). Most between-subtype differ-

ences remained statistically significant after additional ad-

justment for age and disease duration (Table 2).

Importance of baseline clinical and
biomarker features for subtype
discrimination

The PCA model testing all clinical features, CSF, genetic

and imaging biomarkers found that the strongest loading

values (i.e. classification power) were for MDS-UPDRS-Part

I (0.37), MDS-UPDRS-Part II (0.37), SCOPA-AUT (0.32),

PIGD (0.28), RBDSQ (0.27), GDS (0.26), Schwab and

England ADL (0.26), STAI (0.25), UPDRS-Part III (0.25),

ESS (0.19) and composite cognitive status (0.18) (Fig. 2 and

Supplementary Fig. 2).

Imaging, blood and CSF biomarkers

We examined the imaging and CSF biomarkers in the clin-

ical subtypes (Tables 1 and 2).

On MRI, the diffuse malignant subtype had a signifi-

cantly lower Parkinson’s disease-specific ICA network

score (�0.33 � 0.90, P = 0.018), indicating more severe at-

rophy in brain areas affected in early Parkinson’s disease.

Both the Parkinson’s disease-specific ICA network and the

substantia nigra demonstrated the least atrophy in the mild

Figure 1 Dendrogram of the final hierarchical cluster so-

lution in the PPMI population. Green = mild motor-predomin-

ant; blue = intermediate; red = diffuse malignant.
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motor-predominant subtype. To illustrate the global atro-

phy pattern in different Parkinson’s disease clinical sub-

types, the DBM brain atrophy measure was compared

with controls and between subtypes. For all three subtypes,

midbrain regions midbrain (more specifically, substantia

nigra) were significantly atrophied. The total volume of

regions significantly different in atrophy in patients than

controls increased in a stepwise manner from subtype I

(0.33 cm3), to II (1.45 cm3), to III (1.74 cm3). Figure 3A

shows the corresponding FDR-corrected maps for each sub-

type. The effect size t-maps (Fig. 3B) demonstrated a trend

for progressively greater whole brain atrophy in each sub-

type compared to controls. Figure 3D and E illustrate the

exploratory voxel-wise comparisons between subtypes.

Greater atrophy was seen in the diffuse malignant subtype

compared to both mild-motor predominant and intermedi-

ate subtypes, in a stepwise manner, although no voxel dif-

ferences survived statistical correction for multiple

comparisons.

On dopaminergic SPECT scanning, the mild-motor pre-

dominant subtype had the least denervation of both caud-

ate (2.10 � 0.53, P = 0.001) and putamen (0.23 � 0.81,

P = 0.006). By contrast, the ‘diffuse malignant’ subtype

had the highest level of caudate denervation (1.73 � 0.71,

P = 0.001).

On CSF analysis, there was lower CSF amyloid-b
(329.0 � 96.7 pg/ml, P = 0.006) and amyloid-b/t-tau ratio

(8.2 � 3.0, P = 0.032) in the diffuse malignant subtype.

The mild motor-predominant subtype had the highest CSF

amyloid-b (378.3 � 97.7 pg/ml) levels and amyloid-b/t-tau

ratio (9.5 � 3.1) (all P5 0.05). There were no differences

in CSF a-synuclein between subtypes (P = 0.73), and no dif-

ference in any blood-based biomarker (data not shown).

In contrast to the clinical subtypes, differences between

the statistical clusters failed to reach statistical significance

for biomarkers, suggesting that the clinical subtypes were

able to identify more robust differences than the statistical

clusters.

Disease progression

The PPMI population was followed for 32.8 � 9.3 months,

with no difference in follow-up duration between subtypes

(Table 3 and Fig. 4). Results from the GLM adjusted for

baseline values and follow-up duration time showed that

the intermediate and diffuse malignant subtypes had signifi-

cantly greater progression in UPDRS-Part II (2.1 and 3.4

units more increase in compared to the mild motor-pre-

dominant subtype) and Schwab and England ADL score

(2.4 and 6.9% more decline, respectively). Similar hierarch-

ical progression could be also seen in several non-motor

features namely UPDRS-Part I (1.7 points faster in inter-

mediate, 2.7 points faster in diffuse malignant), ESS (0.9

and 1.7 points faster), STAI (3.2 and 8.7 units faster) and

MoCA (0.7 and 1.5 points faster). Moreover, the speed of

progression in the global composite outcome was signifi-

cantly higher in the diffuse malignant (0.68 increase in

z-score, P5 0.001) and intermediate (0.38 increase in z-

score, P5 0.001) subtypes. As illustrated in Fig. 4, the

faster slope of progression in the diffuse malignant subtype

was most noticeable for Schwab and England ADL,

MoCA, and GCO. When the GCO was compared between

classically-defined tremor/PIGD phenotypes, those classified

as PIGD did not have significantly worse prognosis (0.19

increase in z-score, P = 0.087). When looking at statistical

clusters, results were similar in direction to the clinical sub-

types, but effect sizes were larger for the clinical subtypes

than the statistical clusters (Supplementary Fig. 4 and

Supplementary Table 3).

On biomarker analysis patients with Parkinson’s disease

in the diffuse malignant subtype had greater decline in

dopaminergic innervation of the caudate (0.15 units more

decline, P = 0.007) and putamen (0.08 units more decline,

P = 0.006) after an average of 2.7 years of follow-up.

As per definition, there were two ways to make a classi-

ficaiton of the diffuse malignant subtype; a minority (n = 5)

fulfilled only the second criterion (high severity in all non-

Figure 2 Score scatter plot of the PCA to discriminate different clinical phenotype in the PPMI population. Green = mild motor-

predominant; blue = intermediate; red = diffuse malignant.
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Figure 3 Structural MRI analysis in different clinical phenotypes of Parkinson’s disease in the PPMI population. (A) DBM maps

within the Parkinson’s disease-specific network have been compared between each subtype and healthy controls, corrected for multiple com-

parison using FDR. There is higher atrophy in the diffuse malignant subtype compared to the intermediate subtype, and in the intermediate

subtype compared to the mild motor-predominant subtype. (B) Whole brain atrophy pattern within each group compared to controls (un-

corrected) shows consistent increase in the amount of atrophy from the mild motor-predominant to diffuse malignant subtype. The last column

on the right shows the overlapped pattern of atrophy in all subtypes merged together. (C) DBM maps of the Parkinson’s disease-specific network

showing significant differences in atrophy between patients with Parkinson’s disease and healthy control subjects in PPMI (P = 0.003 after

Bonferroni correction for multiple comparisons). The independent component analysis spatial map was converted to z-statistic image via a

normalized mixture-model fit and then thresholded at z = 3. Selected sections in MNI space at coordinates: z = � 10, x = � 6, y = + 14. (D and E)

Exploratory comparisons of the whole brain atrophy pattern between clinical subtypes (uncorrected) shows brain areas with higher atrophy in the

intermediate subtype compared with the mild motor-predominant subtype (left), brain areas with higher atrophy in the diffuse malignant subtype

compared with the mild motor-predominant (middle) and intermediate (right) subtypes.
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Table 3 Longitudinal changes in clinical motor and non-motor outcomes and SPECT striatal binding ratios in three

different clinical phenotypes of Parkinson’s disease population in the PPMI population with at least 1 year of follow-

up (n = 401)

Outcome Phenotype I Mild

motor-predominant

(n = 216)

Phenotype II

Intermediate

(n = 136)

Phenotype III

Diffuse malignant

(n = 49)

ANOVA

P-value

Multivariate

linear regression

P-value

Follow-up time, months 32.6 (9.0) 32.8 (9.7) 33.5 (9.7) 0.825 -

UPDRS-Part II

� (t2-t1) 2.6 (4.6) 4.0 (5.5) 3.6 (6.7) 0.049 -

b adjusted coefficient (95% CI) 0a 2.1 (1.0–3.2) 3.4 (1.6–5.1) - Pphenotype II_ 0.001

Pphenotype III_ 0.001

UPDRS-Part III

� (t2-t1) 4.8 (10.0) 6.4 (12.0) 3.1 (12.2) 0.141 -

b adjusted coefficient (95% CI) 0a 2.7 (0.5–4.9) 2.1 (�1.3–5.4) - Pphenotype II = 0.015

Pphenotype III = 0.231

Schwab and England ADL score

� (t2-t1) �5.1 (8.9) �6.7 (9.0) �9.0 (11.7) 0.023 -

b adjusted coefficient (95% CI) 0a
�2.4 (�4.2–�0.6) �6.9 (�9.5–�4.2) - Pphenotype II = 0.008

Pphenotype III_ 0.001

Follow-up time, months 28.4 (9.7) 28.7 (10.4) 29.5 (11.0) 0.780 -

UPDRS-Part I

� (t2-t1) 2.2 (4.0) 3.0 (5.3) 2.5 (6.1) 0.283 -

b adjusted coefficient (95% CI) 0a 1.7 (0.7–2.7) 2.7 (1.2–4.3) - Pphenotype II = 0.001

Pphenotype III = 0.001

Epworth sleepiness score

� (t2-t1) 0.9 (3.5) 1.4 (4.2) 1.6 (4.5) 0.337 -

b adjusted coefficient (95% CI) 0a 0.9 (0.1–1.7) 1.7 (0.5–2.9) - Pphenotype II = 0.023

Pphenotype III = 0.005

RBD score

� (t2-t1) 0.7 (2.1) 0.4 (2.6) �0.7 (2.9) 0.001 -

b adjusted coefficient (95% CI) 0a 0.5 (0.0–1.1) 0.1 (�0.7–0.9) - Pphenotype II = 0.049

Pphenotype III = 0.761

SCOPA-AUT score

� (t2-t1) 2.7 (4.1) 2.3 (6.1) 1.0 (6.6) 0.102 -

b adjusted coefficient (95% CI) 0a 1.3 (0.1–2.4) 1.4 (�0.4–3.1) - Pphenotype II = 0.030

Pphenotype III = 0.127

MoCA score

� (t2-t1) �0.6 (2.5) �1.1 (3.1) �1.8 (2.9) 0.019 -

b adjusted coefficient (95% CI) 0a
�0.7 (�1.3–�0.2) �1.5 (�2.3–�0.6) - Pphenotype II = 0.011

Pphenotype III = 0.001

Geriatric depression scale

� (t2-t1) 0.3 (2.5) 0.5 (2.8) 0.7 (2.4) 0.436 -

b adjusted coefficient (95% CI) 0a 0.4 (�0.1–0.9) 1.3 (0.5–2.1) - Pphenotype II = 0.128

Pphenotype III = 0.001

State-trait anxiety inventory

� (t2-t1) �0.9 (14.8) 1.0 (14.7) 1.4 (19.8) 0.429 -

b adjusted coefficient (95% CI) 0a 3.2 (0.3–6.2) 8.7 (4.2–13.1) - Pphenotype II = 0.031

Pphenotype III_ 0.001

QUIP score

� (t2-t1) 0.0 (1.1) 0.0 (0.9) �0.1 (1.6) 0.724 -

b adjusted coefficient (95% CI) 0a 0.0 (�0.2–0.2) 0.1 (�0.2–0.3) - Pphenotype II = 0.836

Pphenotype III = 0.663

z-score

� (t2-t1) 0.56 (0.77) 0.80 (0.89) 0.82 (0.98) 0.015 -

b adjusted coefficient (95% CI) 0a 0.38 (0.20–0.56) 0.68 (0.38–0.97) - Pphenotype II_ 0.001

Pphenotype III_ 0.001

Right caudate

� (t2-t1) �0.28 (0.33) �0.30 (0.38) �0.34 (0.32) 0.527 -

b adjusted coefficient (95% CI) 0a
�0.06 (�0.13–0.01) �0.15 (�0.26–�0.04) - Pphenotype II = 0.105

Pphenotype III = 0.007

(continued)
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motor domains with relatively preserved motor scores).

This ‘all-non-motor’ subgroup demonstrated the worst

prognosis of all groups. Compared to the rest of the diffuse

malignant subtype, they had faster progression of GCO

(1.9 � 1.3 versus 0.7 � 0.9, P = 0.006) motor disability

(MDS-UPDRS-Part III) (11.4 � 9.4 versus 2.1 � 12.2,

P = 0.106), Schwab and England (20.0 � 12.2 versus

7.7 � 11.1, P = 0.025) and MoCA (5.5 � 5.2 versus

1.4 � 2.5, P = 0.076).

Discussion
Capitalizing on the large sample size and extensive assess-

ment of clinical features and biomarkers in the PPMI, we

were able to systematically identify subtypes of Parkinson’s

disease and their prognosis. Based predominantly on clin-

ical features, we defined three Parkinson’s disease subtypes.

Our results showed that, despite similar disease duration,

subtypes differed substantially in terms of neuroimaging,

CSF biomarkers, clinical characteristics and disease pro-

gression over time.

Clinical features

The variables we tested to create Parkinson’s disease clus-

ters and used for post hoc comparisons are the most com-

plete set used so far, including not only a comprehensive

clinical assessment but also neuroimaging, genetic, blood,

and CSF biomarkers. The three clusters differed in most

motor and non-motor features at the baseline evaluation.

Moreover, to overcome practical problems with the appli-

cation of clustering to the individual level, we created a

clinical definition for subtyping Parkinson’s disease at base-

line, which can be applied in real-life practice. Note that

the choice of clinical criteria was primarily based on

clustering and PCA analyses, but also influenced by know-

ledge of the literature and other considerations. For in-

stance, we elected not to use depression/anxiety (one of

the significant features for cluster discrimination in PCA

analysis) in the clinical subtyping definition since many psy-

chiatric scales have limited content validity, are affected by

large ceiling effects, and can be confounded by non-mood

symptoms such as sleep disturbances and motor impair-

ment (already included in the clinical subtyping definition)

(Schrag et al., 2007). In line with previous studies

(Fereshtehnejad et al., 2015), four main variables—MDS-

UPDRS, RBD, autonomic dysfunction, and cognitive im-

pairment—were the most critical clinical determinants of

prognosis.

Post hoc comparisons of other clinical variables and es-

pecially analysis of neuroimaging and CSF biomarker pro-

files demonstrated that the clinical subtypes represent

distinct subtypes of Parkinson’s disease, which have differ-

ent rates of progression. The diffuse malignant subtype

consisted of 12% of the Parkinson’s disease sample and

had the most severe motor and non-motor features, sug-

gesting simultaneous involvement of dopaminergic and

non-dopaminergic pathways at baseline. The diffuse malig-

nant cluster was the most robustly identified; for example,

in two cluster solutions, a highly-similar cluster was clearly

identified, with considerable overlap in membership to the

three-cluster solution diffuse malignant cluster (data not

shown). Even after only 2.7 years follow-up, individuals

with diffuse malignant Parkinson’s disease had greater pro-

gression in global composite outcome, motor symptoms,

activities of daily living, and several non-motor features

such as somnolence, depression, anxiety and cognition

(including a decline of MoCA differing by almost two

units). On the opposite side of the spectrum, over 50%

of patients were classified as the mild motor-predominant

Table 3 Continued

Outcome Phenotype I Mild

motor-predominant

(n = 216)

Phenotype II

Intermediate

(n = 136)

Phenotype III

Diffuse malignant

(n = 49)

ANOVA

P-value

Multivariate

linear regression

P-value

Left caudate

� (t2-t1) �0.27 (0.31) �0.27 (0.34) �0.28 (0.33) 0.985 -

b adjusted coefficient (95% CI) 0a
�0.04 (�0.11–0.02) �0.06 (�0.16–0.04) - Pphenotype II = 0.202

Pphenotype III = 0.275

Right putamen

� (t2-t1) �0.17 (0.21) �0.12 (0.23) �0.15 (0.21) 0.125 -

b adjusted coefficient (95% CI) 0a 0.02 (�0.03–0.06) �0.03 (�0.09–0.04) - Pphenotype II = 0.456

Pphenotype III = 0.402

Left putamen

� (t2-t1) �0.15 (0.20) �0.11 (0.21) �0.20 (0.27) 0.065 -

b adjusted coefficient (95% CI) 0a
�0.01 (�0.05–0.02) �0.08 (�0.13–�0.02) - Pphenotype II = 0.461

Pphenotype III = 0.006

All presented values are mean (standard deviation), unless otherwise specified.

Statistical adjustment was performed using follow-up duration and baseline value of the outcome variable as potential covariates in the multivariate linear regression model to

compare the amount of change in each outcome of interest between three phenotypes.
aReference group.
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Figure 4 Longitudinal changes in outcomes of interest in different phenotypes of Parkinson’s disease in the PPMI population

with at least 1 year of follow-up. Mean follow-up duration in the entire population = 2.7 years. SBR = striatal binding ratio.
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subtype. These had relatively modest impairment of motor

and all major non-motor features at baseline. These pa-

tients had slower progression; even after 2.7 years they

did not reach the baseline severity of the diffuse malignant

subtype. The middle group, labelled intermediate, consisted

of 35% of the sample, and had both baseline severity and

progression rate between the other two extremes. For com-

paring the slope of progression between the subtypes, we

adjusted for baseline values to overcome regression towards

mean bias (Vickers and Altman, 2001) and to account for

non-linearity of the scales (e.g. the MDS-UPDRS is de-

signed to be sensitive to change at low scores). This

makes a considerable difference because the crude recorded

values (Fig. 4), fail to show differences in the rate of pro-

gression in motor disabilities. Nevertheless, regardless of

analysis technique, people with diffuse malignant

Parkinson’s disease more rapidly progressed to severe cog-

nitive impairment, severe sleep disturbance and restricted

ADL. It will be of considerable interest to continue follow-

ing these subtypes, to observe to what degree these differ-

ences in progression persist over the longer term.

Finally, typical clustering solutions present cluster char-

acteristics at the group level, using mean values, which

make it impossible to place individuals into a distinct sub-

group, and so apply the solutions to real-life practice. Of

note, substantial disagreement was observed for member-

ship in the statistical clusters versus the clinical subtypes,

especially for the intermediate and diffuse malignant sub-

types. This reflects the flawed performance of clustering

results in assigning individuals to their subtypes. Indeed,

post hoc comparisons and especially analysis of disease

progression found that the categorical clinical definition

for Parkinson’s disease phenotyping better discriminated

distinct subgroups of Parkinson’s disease than did the

simple cluster analysis. By recommending clear-cut criteria

for translating information learned from the cluster analysis

into clinical subtypes, our solution has the benefit of allow-

ing Parkinson’s disease subtyping in real-life practical ap-

plication (Supplementary material, subtype calculator).

Genetic, imaging and CSF
biomarkers

Our study also included genetic information for clustering

the Parkinson’s disease population. Instead of entering in-

dividual gene information (which would be underpowered),

we used a single indicator ‘genetic risk score’, which sum-

marizes data on 30 Parkinson’s disease-specific mutations.

Use of a summary indicator also facilitates fair weighting of

genetic markers relative to other 17 classifiers. In a model

designed to distinguish Parkinson’s disease from controls,

the genetic risk score explained 13.6% of the variance

(Nalls et al., 2015). However, in contrast, our results

showed that the role of currently known genetic markers,

at least when combined, is much less influential than clin-

ical features for determining subtype. Note that the number

of individuals with LRRK2 and GBA risk variants in PPMI

was low, and so they could not be entered as independent

variables in the clustering model; there may still exist im-

portant differences in the prognosis of patients with differ-

ent genetic mutations.

In contrast to genetics, imaging biomarkers demonstrated

clear differences between subtypes. DBM-MRI analysis

showed differences in patterns of atrophy of a Parkinson’s

disease-specific network. Atrophy was greater in the diffuse

malignant and less in the mild motor-predominant subtypes.

The MRI analysis procedure here is based on a network-

based degeneration model in Parkinson’s disease (Zeighami

et al., 2015). It specifically assesses a Parkinson’s disease-

specific pattern of atrophy that occurs primarily in struc-

tures functionally connected to substantia nigra. To the

best of our knowledge, this is the first time that MRI-

based measures of atrophy were found to differentiate de

novo Parkinson’s disease subtypes. Results from our ex-

ploratory voxel-wise comparisons between the subtypes sug-

gest a pattern of increasing atrophy from a mild motor-

predominant to intermediate, and finally diffuse malignant

subtype. Nevertheless, the exploratory analyses failed to

remain statistically significant following conservative correc-

tions for multiple comparisons; power may be limited by

sample size (especially in the diffuse malignant subtype) and

by the modest degree of atrophy seen in early stages of

Parkinson’s disease. In addition to MRI, the hierarchical

rank of SPECT striatal binding ratio seen in these subtypes

provides external validation of the clinical subtypes, and

demonstrates the utility of SPECT imaging for assessing dis-

ease severity and Parkinson’s disease subtypes.

CSF biomarkers also differed between the subtypes.

Interestingly, individuals with diffuse malignant Parkinson’s

disease, who had the fastest cognitive decline, showed an

Alzheimer’s disease-like CSF profile with low amyloid-b
and amyloid-b/t-tau ratio. This further justifies the import-

ance of cognitive impairment in subtyping Parkinson’s dis-

ease. Our results are also aligned with those of a recent

study showing that PPMI participants with low cerebral

amyloid-b had more impaired cognitive performance,

reduced grey matter volume and higher frequency of

APOE "4 alleles (McMillan and Wolk, 2016), and also

with studies in which even small amounts of brain amyloid

on Pittsburgh compound-B PET scanning were associated

with increased dementia risk in Parkinson’s disease

(Gomperts et al., 2013).

Comparison to other subtyping
solutions

Several studies have attempted to divide Parkinson’s disease

into subtypes. Most early subtyping systems were based on

classification variables that were selected a priori, including

age, tremor versus akinetic-rigid predominance, or the rela-

tive prominence of motor versus non-motor features.

Tremor-dominant motor phenotype for instance, is
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generally considered to have a more favourable prognosis

than the PIGD phenotype (Jankovic, 2008). However, early

single-variable subtyping solutions have been challenged

because of inconsistent reliability and confounding by dis-

ease stage (Berg et al., 2014). In our study, most of those in

the mild motor-predominant subtype, were categorized as

tremor-dominant (79%). However, only one-third of the

diffuse malignant subtype was PIGD dominant.

Moreover, the tremor PIGD classification alone could not

predict prognosis in this study, unlike our global subtyping

solution.

Data-driven cluster analysis has the advantage of a hy-

pothesis-free approach, allowing broader interrogation of

classifiers and unbiased estimates of factor importance.

The first cluster analysis was performed by Graham and

Sagar (1999), who introduced three subtypes as ‘motor

only’, ‘motor and cognition’ and ‘rapid progression’.

Several clustering solutions have identified two clusters of

‘old age-at-onset and rapid disease progression’ and ‘young

age-at-onset and slow disease progression’ (van Rooden

et al., 2011). Of crucial importance, cluster analyses are

only as good as the variables they include. Most previous

studies had a dearth of data on several important features

particularly many non-motor and biomarker profiles, a

limitation overcome by the comprehensiveness of the

PPMI cohort. Also, most previous studies lacked longitu-

dinal follow-up to enable the validation that comes with

comparison of disease progression between different

Parkinson’s disease subtypes over time. Recently, using a

separate cohort, we recommended a clustering-derived sub-

typing where three critical non-motor features—mild cog-

nitive impairment, RBD and orthostatic hypotension—at

baseline identified the most rapidly progressive subtype

(also named ‘diffuse malignant’) over 4.5 years

(Fereshtehnejad et al., 2015). Interestingly, the results

from both cohort studies, though with different baseline

disease duration and length of follow-up, are in broad

agreement, further highlighting the importance of non-

motor manifestations as drivers of Parkinson’s disease sub-

typing and prognosis.

A recent study by Erro et al. (2016) reported a non-hier-

archical cluster analysis also on the PPMI database. It iden-

tified three subgroups of Parkinson’s disease where apathy

and hallucinations were found to be the most important

classifiers. We did not use apathy and hallucination as clas-

sifiers as these were measured only by a single MDS-

UPDRS-Part I item with discrete scores (and since only

13 patients had hallucinations at baseline). Our post hoc

analysis showed significant difference between subtypes for

apathy, but not for hallucinations. The agreement in the

membership of PPMI participants between the Erro cluster-

ing and our recommended clusters is relatively low (56%).

Of note, their recommended clusters (Erro et al., 2016) did

not differ in several manifestations known to influence

Parkinson’s disease prognosis, such as dysautonomia, de-

pression and cognition. Moreover, differences in motor im-

pairment were relatively modest; for example, while the

average baseline MDS-UPDRS-Part III was 24.9 in the

most severely affected cluster in their analysis, the average

‘diffuse malignant’ score was 30.0 in our solution. This

may be because the previous solution did not include im-

portant features that were key classifiers in our model,

namely neuropsychological testing, somnolence, and ortho-

static hypotension. Furthermore, instead of using MoCA as

a simple global measure, we included data from the full

neuropsychological examination, as the baseline MoCA

had small variance with clear ceiling effects (rendering it

too insensitive for cluster analysis). We have also included

MRI measures and CSF biomarkers for post hoc compari-

sons, and have assessed longitudinal progression.

Pathophysiological explanations

The most distinct subtype was the diffuse malignant with

more severe motor and non-motor symptoms, more atro-

phy in substantia nigra-connected areas, more dopamin-

ergic deficit on SPECT and reduced amyloid-b in CSF.

This subtype is consistent with one identified in a post-

mortem study in which 25% of Parkinson’s disease cases

had an early malignant, dementia-dominant course and

severe neocortical degeneration (Halliday et al., 2008). Of

note, patients in this clinico-pathologic series also had a

higher occurrence of amyloid pathology on autopsy. One

explanation might be the existence of a synergistic inter-

action between synucleinopathy and tau and amyloid path-

ology (McMillan and Wolk, 2016). However, an additional

Alzheimer-like process with amyloid accumulation need not

be the only explanation. The key markers of the diffuse

malignant subtype are related to the dysfunction of diverse

anatomical areas and brain pathways, are highly inter-cor-

related (Postuma et al., 2008, 2009; Kim et al., 2012;

Rolinski et al., 2014) and are not typical clinical features

of Alzheimer’s disease [e.g. RBD is notably uncommon in

Alzheimer’s disease (Boeve et al., 2013)]. There is also evi-

dence that synuclein may spread differently in more malig-

nant subtypes. For example, in a separate cohort study, the

presence of RBD in Parkinson’s disease was associated with

a more diffuse and severe deposition of synuclein seen at

autopsy (Postuma et al., 2015).

In some staging models of Parkinson’s disease such as

that of Braak (Braak et al., 2003), Parkinson’s disease path-

ology gradually progresses from olfactory tracts/medulla

through the brainstem and the higher cortical layers. Our

MRI findings find a similar hierarchical pattern of deform-

ation, with the diffuse malignant subtype demonstrating

greater degeneration along the Parkinson’s disease-specific

network. As there was no difference in disease duration

between the subtypes, the different subtypes are not

simply different stages of disease. This suggests that spread-

ing models although true in aggregate, still include patients

with both different progression speed and different spread

patterns. There may exist a spectrum between a relatively

substantia nigra-predominant disease and a multi-pathway
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diffuse neurodegenerative process, within which every indi-

vidual with Parkinson’s disease is located.

Limitations and strengths

Some limitations of this study should be noted. Follow-up

duration of PPMI is still relatively short (53 years), so we

could not assess prognosis of subtypes over longer periods.

Generalizability might be limited by the characteristics of

the PPMI cohort; for example, people with overt cognitive

impairment or significant early postural instability were

excluded. Furthermore, the PPMI population is generally

highly educated and highly motivated (i.e. the demands of

the study may select out those with apathy). These factors

could potentially lead to underrepresentation of the diffuse

malignant form compared to the general Parkinson’s dis-

ease population. The lack of an objective assessment for

some features (e.g. no polysomnographic documentation

of RBD) may have also masked larger differences. Many

imaging and CSF biomarkers had missing values, which

may lead to underestimation of their importance in cluster-

ing. Like all such analyses, our recommended Parkinson’s

disease subtyping needs to be validated in other cohorts.

Moreover, longer follow-up of the PPMI cohort will allow

continued assessment of changes in brain-imaging and

other biomarkers, as well as migration between subtypes.

On the other hand, the current study and particularly the

PPMI database upon which it is based have several

strengths. This is the largest study both in terms of

sample size and comprehensiveness to explore Parkinson’s

disease subtypes. Given that PPMI recruited a drug-naı̈ve

early Parkinson’s disease population from multiple sites,

our findings should still be mostly generalizable to de

novo Parkinson’s disease. They also can be applied in

real clinical practice; rather than only a statistical cluster

report, we provided discrete clinical criteria to define dif-

ferent subtypes of Parkinson’s disease. Finally, this is one of

only a few studies to compare longitudinal trend of pro-

gression between different subtypes.

Conclusion
In summary, based on an extensive analysis of PPMI, we

introduce three clinical subtypes of Parkinson’s disease:

‘mild motor-predominant’, ‘intermediate’ and ‘diffuse ma-

lignant’. Patients with the diffuse malignant subtype have

more prominent dopaminergic deficit, more atrophy in

Parkinson’s disease-specific brain networks, a more

Alzheimer’s disease-like CSF profile and progress more rap-

idly. Further exploration of the underlying pathophysiolo-

gic differences between various Parkinson’s disease

subtypes will shed light on the underlying mechanisms for

this variability. Ultimately, this knowledge could be used to

develop a more efficient personalized approach for clinical

trials and treatment strategies for individuals with different

subtypes of Parkinson’s disease.
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