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It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and

which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to

the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel

framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved

by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an

average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and

2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of

an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circa-

dian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information

(combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for

implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algo-

rithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be imple-

mented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application.

The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for

increased quality of life and improved safety for patients with epilepsy.
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Introduction
The unpredictability of seizures often constitutes the most

disabling component of epilepsy, and has a profound

impact on safety. Accurate seizure prediction would greatly

improve an individuals’ quality of life, potentially enabling

pre-emptive administration of therapies or allowing steps

to ensure personal safety to be undertaken. It is well estab-

lished that seizures in many patients are preceded by a

measurable change in brain state (Litt and Echauz, 2002;

Badawy et al., 2009) providing a rationale for designing

predictive algorithms. Previous attempts at seizure predic-

tion have shown promise, yet many suffer from poor gen-

eralizability, chiefly due to the relatively short duration of

available datasets (Mormann et al., 2007). The first human

trial for an implantable warning system demonstrated the

viability of seizure forecasting in long-term recordings for

patients with intractable epilepsy (Cook et al., 2013). The

increasing availability of long-term data has inspired a re-

newed focus on building predictive algorithms that are both

patient- and seizure-specific (Freestone et al., 2015;

Gadhoumi et al., 2016; Mormann and Andrzejak, 2016),

and which incorporate sophisticated neural modelling

(Kuhlmann et al., 2015). More recently, engagement with

the machine learning community through open-source

Kaggle competitions has demonstrated alternative strategies

are available to further improve seizure prediction algo-

rithms (Brinkmann et al., 2016; Kaggle.com, 2016).

Given the shortcomings in previous studies attempting seiz-

ure prediction (Mormann et al., 2007), it is clear that a

crucial step towards translating predictive algorithms into

clinical devices is a framework to evaluate the prospective

online performance in addition to the classification of data

segments.

In this work, we propose a probabilistic approach to

seizure prediction that incorporates prior knowledge

about underlying patterns in seizure occurrence with re-

spect to time of day. There is overwhelming evidence that

epilepsy adheres to cyclic patterns that modulate seizures

and seizure susceptibility at certain times of day (Bercel,

1964; Shouse et al., 1996; Carney et al., 2011;

Loddenkemper et al., 2011; Fernandez et al., 2013). The

periods of highest seizure likelihood vary greatly between

patients, but on an individual level remain consistent over

many years (Karoly et al., 2016). Tracking and utilizing

circadian patterns of seizures presents an exciting oppor-

tunity to enhance patient management. This straightfor-

ward, patient-specific timing information can be used to

titrate treatment (Thome-Souza et al., 2016) and improve

the performance of seizure advisory systems (Schelter et al.,

2006, 2011a; Sedigh-Sarvestani et al., 2012; Sedigh-

Sarvestani and Gluckman, 2013).

A forecasting approach that expresses the current degree

of belief as a likelihood or probability (and incorporates

prior information) is grounded in a probabilistic Bayesian

epistemology. Traditional assessment metrics for seizure

prediction are based on categorical statements—a seizure

either will or will not happen—and are inappropriate for

assessing probabilistic forecasts. However, in reality, the

brain can enter a state of high seizure likelihood that

does not necessarily terminate in a clinical seizure

(Badawy et al., 2012; Ly et al., 2016), challenging the trad-

itional definition of a false positive prediction. The chal-

lenge of assessing probabilistic forecasts was addressed in

the meteorological community by Brier (1950), who intro-

duced the Brier score to measure the probability error of

weather forecasts. Since Brier’s seminal work, meteorolo-

gists have spent decades refining attributes of forecasting

‘goodness’, and developing metrics to measure these differ-

ent attributes (Murphy, 1973b, 1993).

Assessment of seizure prediction can benefit by applying

additional probabilistic metrics using techniques from wea-

ther forecasting. There are several statistically robust

approaches that are used to assess seizure prediction per-

formance compared to chance outcomes (Winterhalder

et al., 2003; Kreuz et al., 2004; Snyder et al., 2008;

Mader et al., 2014); however, these methods are based

on a categorical, rather than probabilistic prediction.

Henceforth, the terms ‘forecast’ and ‘prediction’ will be

used to differentiate between probabilistic and categorical

statements about whether a seizure will occur within some

future period. Ultimately, the final categorical prediction is

the most clinically relevant outcome; however, it may also

be possible, and even preferable, to improve prediction al-

gorithms by first optimizing aspects of forecasting perform-

ance. The Brier score measures the difference between a

continuous, probabilistic forecast and the observed rate of

seizures, without requiring an explicit prediction to be

made. The Brier score assesses an arbitrarily long sequence

of consecutive forecasts over a continuous recording

period, providing an excellent framework to assess and

compare predictive models without additional tuneable par-

ameters, such as true and false positive rates. Minimizing

the number of tuneable parameters reduces the risk of in-

sample optimization, thus increasing confidence that

observed results will generalize to future data (Andrzejak

et al., 2003).

The Brier score has previously been used to evaluate seiz-

ure forecasting (Jachan et al., 2009; Schelter et al., 2011b);

however, it is difficult to implement for rare event forecast-

ing unless large amounts of observation data are available

(Murphy, 1973a; Murphy and Winkler, 1987). Previous

seizure prediction results have been based on short-term

(typically 1 week) recordings from patients undergoing pre-

surgical monitoring (Mormann et al., 2007), and this lim-

ited time span is insufficient to build patient-specific models

of seizure likelihood. Furthermore, there are acute and sub-

acute effects of device implantation and hospitalization

(Ghougassian et al., 2004; Polikov et al., 2005; Van

Kuyck et al., 2007); so short-term data may not provide

a reliable test case scenario for building implantable predic-

tion algorithms.
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In this work, we used long-term data from a previous study

(Cook et al., 2013) (a total of 900 days for algorithm train-

ing, and 2879 days for testing) to evaluate patient-specific

forecasting models, including the model originally reported

in Cook et al. (2013). The recording duration provides an

excellent opportunity to evaluate probabilistic performance

and gain new insights into different aspects of seizure fore-

casting. The large amount of testing data also provides con-

fidence that the predictive models were not simply optimized

for a small number of seizures. The resulting analyses present

a proof-of-concept for updating seizure forecasts based on

patient-specific circadian information. Forecasts were com-

pared using a range of probabilistic and traditional perform-

ance measures. As technology for long-term implantable

recording devices becomes readily available, the use of indi-

vidualized prior information and probabilistic metrics can

benefit seizure prediction algorithms.

Materials and methods
The following sections describe the NeuroVista data (Cook
et al., 2013) and then outline the steps that were used to
build and test forecasting models. To provide a straightfor-
ward proof-of-concept, we trained logistic regression classifiers
to forecast seizure likelihood, and then evaluated their per-
formance both with and without incorporating prior informa-
tion based on time of day. All analysis was performed using
MATLAB and Statistics Toolbox Release 2016 (The
MathWorks, Inc., Massachusetts, USA) on computer clusters
based at the Victorian Life Sciences Computation Initiative.

Data

Data for the study were collected from a clinical trial of an
implantable seizure warning device (Cook et al., 2013) and

accessed from the International Epilepsy Electrophysiology
Portal (ieeg.org). All subjects had focal onset seizures, with a
seizure onset zone identified from pre-existing medical records
and neuroimaging. Intracranial electrode arrays with a total of
16 platinum iridium contacts were implanted around the seiz-
ure onset zone. The electrocorticography (ECoG) was sampled
at 400 Hz and wirelessly relayed to an external, portable, per-
sonal advisory device. Seizure detection was automated using a
proprietary detection method. All detections were verified by
expert investigators with the aid of audio recording from the
handheld device and subjects’ seizure diaries. Seizures were
classified as being either clinical (type 1) or clinically equivalent
(type 2). Type 1 events were associated with clinical symptoms;
type 2 events had no verified clinical symptoms but were elec-
troencephalographically indistinguishable from clinical seizures.
Based on the similarity of the ECoG, type 2 seizures were con-
sidered relevant for developing methods of seizure prediction
(Cook et al., 2013), and types 1 and 2 seizures are treated
equivalently in this work. Additionally, subclinical (type 3) seiz-
ures were detected in the Cook et al. (2013) study, but these
were excluded from the current analysis. Type 3 events were
not clinically manifest and had an electroencephalographic sig-
nature that differed from type 1 and 2 events. Prior to the
following analyses, the ECoG was filtered between 1 Hz–
140 Hz (zero-phase second-order Butterworth bandpass filter).

Figure 1 shows a schematic of the study design. The first 100
days of recording were discounted from the analysis due to
disruption of the signal resulting from device implantation
(Sillay et al., 2013). The second 100 days of data were used
for the algorithm design phase to compute and validate fore-
casting models. The remaining data (from Day 200 onwards),
which ranged from 6 months to 41 year of continuous
recording for each subject, were used to evaluate the pseudo-
prospective forecasting performance of each model. Algorithm
design used lead seizures only (seizures preceded by at least a
5-h seizure-free interval). Subjects with 10 or more lead seiz-
ures during the 100-day design phase were selected for the
study, resulting in a total of nine subjects. Subjects had an

Figure 1 Schematic of the seizure prediction procedure. The first 100 days of data were discarded. Logistic regression classifiers were

then trained and validated (10-fold cross-validation) on selected segments of data taken from the subsequent 100 days of recording using the

average AUC. The circadian probability was initialized over the 100-day design phase, then used to update the weights of the logistic regression

classifiers (combined circadian logistic regression). Continuous forecasts from all three models were evaluated on the remaining data (from Day

200 onwards). Forecast evaluation used the Brier skill score (BSS), reliability curves, sensitivity (S), sensitivity improvement-over-chance (S�SC),

and time-in-safety (tS).
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average of 38 lead seizures in the 100-day training phase, and
an average of 116 lead seizures during the remaining evalu-
ation period (all seizure numbers are given in Supplementary
Table 1).

Forecasting models

Performance was evaluated for three models: combined circa-
dian logistic regression, logistic regression only, and circadian
probability only. Forecasting models output the probability
that a seizure would occur within the next 30 min (the pre-
ictal period), and made a forecast every 30 s (a 60-s sliding
window with 50% overlap). The following sections provide
further detail on each model.

Logistic regression

Logistic regression classifiers were trained on select segments
of data taken from the 100-day algorithm design phase. Data
were chosen from interictal and pre-ictal periods. Pre-ictal per-
iods were defined as being a 30-min window ranging from
31 min to 1 min prior to a lead seizure. Interictal segments
were chosen to be 30-min periods at least 6 h clear of a seizure
(before or after). The number of interictal segments was
matched to the number of pre-ictal segments, giving a balanced
training dataset. Balanced training data can lead to the model
being biased towards over-identifying pre-ictal segments.
The bias can be adjusted by shifting the logistic regression
intercept (Bishop, 2006).

A library of 80 signal features was computed for every data
segment. Features were similar to the algorithm used in the
original NeuroVista clinical trial (Cook et al., 2013). The fea-
ture metrics were signal energy in four frequency bands (8–16
Hz, 16–32 Hz, 32–64 Hz, 64–128 Hz) and line length. These
five metrics were calculated separately for the 16 electrode
channels (5 metrics � 16 channels = 80 features). Features
over a 10 s window (50% overlap) were computed from the
pre-ictal and interictal segments. The features were then
smoothed by taking an average over a 60 s moving window.
For each subject the entire set of smoothed and labelled feature
vectors were assigned into chronologically ordered training
and test subsets (consisting of 90% and 10% of the data,
respectively). Division was repeated 10 times (subsets chosen
sequentially without replacement) to assess average perform-
ance (10-fold cross-validation). For each fold of the validation,
a set of 16 features was selected (from original 80 features) by
maximizing the relative entropy (also known as the Kullback-
Leibler distance) for the training subset. The training feature
vectors were then used to fit the weights of the logistic regres-
sion function. To validate the classification performance, we
calculated the area under the curve (AUC) on the test set for
each stage of cross-validation. If validation gave above-chance
performance, the final logistic regression classifier was trained
using all the pre-ictal and interictal feature vectors obtained
from the 100-day training period. The final classifier was eval-
uated in a pseudo prospective manner using the remaining
data (after Day 200).

Circadian probability

A circadian profile was created for each subject based on their
seizure times (in 24-h UTC time) during the 100-day algorithm
design phase. The probability density function was estimated
from the histogram of seizure times using kernel density

estimation. Circular Gaussian kernels (von Mises functions,
see Supplementary material for further details) were used to
represent the time as the variable. The probability density
functions were initialized with a uniform (uninformative)
prior to avoid any zero weights appearing in the distribution.
The probability was then updated every time a seizure
occurred, providing a progressive estimation of the circadian
profile. The probability functions were created from histo-
grams with a bin width of 1 h, which governed the time sen-
sitivity of the model.

Circadian logistic regression

The logistic regression and circadian models were combined by
iteratively updating the weights of the logistic regression clas-
sifier. The weight update was based on the subject-specific es-
timate of the probability of seizure occurrence given the time
of day (the derivation of this weight update is provided in the
Supplementary material).

Metrics

A range of metrics was used for performance assessment, each
of which addressed distinct questions. During algorithm valid-
ation, performance was assessed using the area under the re-
ceiver-operating characteristic curve (AUC). The AUC
addresses the ability of a classifier to discriminate between
interictal and pre-ictal data (Brinkmann et al., 2016).
Additional measures were used to evaluate the pseudo pro-
spective performance.

The following metrics were used to measure probabilistic
forecast quality. (i) Reliability curve: how well do the predicted
probabilities of an event correspond to their observed frequen-
cies?; (ii) Brier score: what is the magnitude of the probability
forecast errors?; and (iii) Brier skill score: what is the relative
skill, or performance, of different probabilistic forecasts?

Investigating more traditional notions of prediction quality
required an additional prediction rule for each forecasting
model. We used a high and low probability threshold to trig-
ger high and low risk warnings, as outlined by Snyder et al.
(2008) for the prediction rule. We then applied the same per-
formance metrics of the Cook et al. (2013) study, which were:
(i) time in safety: what is the maximum amount of time a
patient could be assured of low-risk status without a seizure
occurring? (ii) prediction sensitivity: how many seizures were
correctly identified to occur during high-risk periods? and
(iii) sensitivity improvement-over-chance: how valuable was
the high-risk warning light, considering the length of time
spent in warning?

Brier score

To calculate the Brier score, the forecast of seizure likelihood is
first quantized into probability bins (typically 0–10% and so
on until 90–100%). The quantization step size reflects mean-
ingful increments for a device and is limited by the number of
seizures that occur. After quantization, the forecast is com-
pared to observation data, which are coded into either 0 or
1 (a seizure does or does not occur in the next 30 min pre-ictal
period). The quantization approach enables reliability curves
to be constructed, as discussed below. A perfect Brier score is 0
(a forecast of 100% for every seizure), and the worst possible
score is 1. Essentially the Brier score measures the mean
squared error over every forecast; however, a more useful
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decomposition is given by:

BS ¼ Reliability� Resolutionþ Uncertainty ð1Þ

Uncertainty accounts for the baseline rate of seizures. The
Resolution quantifies the average predictive power above the

baseline rate. Reliability describes how close the forecast prob-

ability is to the observed data, i.e. the true rate of seizures,

given a certain forecast is made. Each term is computed by:

Reliability ¼
1

N

XNf

i¼1

ni fi � bið Þ
2;

Resolution ¼
1

N

XNf

i¼1

bi � bð Þ
2;

Uncertainty ¼ bð1� bÞ

ð2Þ

Where N is the total number of forecasts (number of 60-s

windows), Nf is the number of forecast bins (10 was used), b
is the baseline rate of seizures (Supplementary Table 1), bi is

the actual seizure occurrence rate when the forecast was in the

ith bin, and fi is the average forecast for the ith bin, and ni is
the number of forecasts made within each bin.

Brier skill score

It is difficult to use the Brier score to compare different fore-
casts if the data have a very low baseline rate of events (low

uncertainty), because simply forecasting lower probabilities

can greatly improve the Brier score. It has been shown that
the naı̈ve approach of always forecasting a constant, small

probability (the baseline rate of seizures) gives impressive

Brier scores due to the rarity of seizures (Schelter et al.,
2011b). For this reason, we used the Brier skill score to pro-
vide a relative measure for performance comparison. The Brier

skill score is computed as

BSS ¼ 1�
BS

BSref
; ð3Þ

where BS and BSref are the Brier scores for a given forecast

and some reference forecast. The Brier skill score measures

improvement over a reference (where 1 is perfect, 0 shows
no improvement, and negative values indicate worse perform-

ance than the reference).

Weather models typically use either the constant baseline,

or the historical climatological forecast as a reference.
However, here we want to explicitly evaluate the forecast

based on an historical record of seizure times. Therefore, we

used the Brier score derived from surrogate forecasts as a
reference. Surrogate forecasts were constructed for each

model by randomly drawing probabilities from the same

distribution as the actual forecast made by that model. In

this way, 1000 surrogate forecasts were generated to find
the mean Brier skill score for each model (combined circa-

dian logistic regression, logistic regression only, and circa-

dian only). The use of forecast surrogates also handles the
difficulty of comparing forecasts to the constant baseline

model, as any constant forecast has a Brier skill score of

zero.

Reliability curves

The reliability curve is a useful visualization tool for the Brier
score components, showing a plot of the forecast seizure rate
versus the actual seizure occurrence rate. Actual seizure rate
was determined by how often a seizure occurred in the pre-
ictal period following every forecast. An ideal reliability curve
is the diagonal line where forecast probabilities are equal to
the actual outcomes.

Seizure prediction

To validate the utility of circadian-weighted forecast in a pre-
dictive setting, we also evaluated performance using the same
metrics that were used for the NeuroVista device trial.
To calculate these statistics, it was necessary to set an upper
(lower) probability threshold to trigger a high (low) seizure
likelihood advisory period. We used the same threshold trigger
scheme described by Cook et al. (2013) and based on the
process outlined by Snyder et al. (2008). For the range of
possible high risk thresholds, we calculated the amount of
time spent in warning, tw, as well as the sensitivity, S twð Þ,
and sensitivity improvement-over-chance, S twð Þ � SC twð Þ,
where SC twð Þ is the sensitivity of a time-matched chance
indicator. These assessment metrics can be mathematically
related to the seizure prediction characteristic outlined by
Winterhalder et al. (2003). Sensitivity improvement-over-
chance compares the accuracy of a predictor to the perform-
ance of a time-matched chance prediction (based on a Poisson
process), thereby penalizing methods where the seizure warn-
ing light is on for a high percentage of time. The P-values for
the hypothesis that ‘the sensitivity is significantly better than
chance performance’, were also calculated for the sensitivity
improvement-over-chance metric (see Supplementary material
for further details).

For the low-risk threshold, we tuned the prediction horizon
(between 30 and 60 min) and threshold so that no seizures
would occur within the resultant safety advisory period (mea-
sured during the 100-day design phase). We then used the
remaining data to evaluate the time spent in safety, ts, and
the number of seizures that occurred during the safety
advisory.

Note that prediction sensitivity was calculated for lead seiz-
ures only (defined as seizures with a preceding seizure-free
interval of at least 5 h). All seizures were used to evaluate
the rate of false negatives.

Results
In the following sections, we include previous results from

the Cook et al. (2013) study as a baseline. However, it was

not possible to make a direct comparison. The previous

trial reported on a 4-month prospective evaluation period

following a training period, yet recording continued for

months to years beyond the initial evaluation phase.

Therefore, the current results are based on new data.

Circadian profiles

Figure 2 shows raster plots of every subject’s seizures with

respect to time of day, as well as the circadian probability
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distributions constructed from the seizure times. The circa-

dian distribution (probability of seizure with respect to time

of day) was initialized after the 100-day training period

and then updated every time a seizure was observed.

Figure 2 shows the initial (after training) and final (at the

completion of the trial) estimates of the circadian probabil-

ity. Although we updated the probability with every seizure

for most subjects, the training period was sufficient to

obtain an excellent approximation of the circadian profile.

The stability of the seizure probability curves demonstrates

that reliable prior information can be obtained after a rela-

tively short training period.

Classifier training and validation

The logistic regression classifier was trained over 100 days

of recording. To ensure the model provided reasonable

accuracy we measured the average AUC after 10-fold

cross-validation (90% training, 10% test, segments chosen

sequentially without replacement). The AUC provides a

measure of sensitivity and specificity, and has been used

to assess seizure prediction competitions (Brinkmann

et al., 2016; Kaggle.com, 2016). All subjects had AUC per-

formance above chance (note that the AUC for chance per-

formance is 0.5, and a perfect score is 1). The average AUC

across the nine subjects was 0.79, and Subjects 11 and 15

had impressive results of 0.90 (all AUC results are shown in

Supplementary Table 2). Reasonable baseline performance

with logistic regression classifiers was necessary to demon-

strate that improvements using time of day were not trivial.

We also noted that the final features selected for the classi-

fiers were relatively stable across the 10 folds of cross-val-

idation, although the most important features varied

between subjects (Supplementary Figs 1 and 2).

Seizure forecasting

In this section, we extend our analysis to evaluating the

forecasts and predictions in the pseudo prospective case

using the entire remaining day after Day 200. Figure 3

shows an example output of the two forecasting models

over a 72-h period. Forecasts were made every 30 s

(black dots), and an example prediction threshold is

shown at the 95th percentile for each model (red dots);

although during later prediction analyses all thresholds

were evaluated. Seizures are marked by red vertical lines.

Note that the combined circadian logistic regression model

(Fig. 3B) can reduce the number of erroneous threshold

crossings.

Forecasting quality

The Brier skill score (mean and standard error) calculated

from every forecast made by the four different models is

given in Fig. 4. The maximum possible score is 1. For all

Figure 2 Circadian patterns of seizures. Each subplot contains a raster showing the hour (y-axis) of each seizure recorded over the entire

trial (x-axis). The line graph (inset) shows the estimated probability density after training (200 days, solid line), compared with the end of the trial

(dashed red line). Note that the trial period varied between 1 and 2 years for different subjects. Note that times here are reported in UTC, and

do not reflect the correct time zone.
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subjects the combined circadian logistic regression showed

the most improvement compared to surrogate data, and

significantly outperformed all other models. All forecasting

models performed better than the naı̈ve constant baseline

forecast, which would give a Brier skill score of 0.

Figure 5 shows the reliability curves of each forecast.

A perfectly calibrated forecast is a diagonal line (where

forecast probability is equal to actual probability). Also

shown in the figure is the line of no-reliability (equivalent

to the calibration levels of a constant baseline forecast), and

the line of no-skill (the point where the Brier skill score is

not higher than the constant baseline forecast). Forecasts

above the no-reliability (no-skill) line show improved cali-

bration (skill) compared to the constant baseline forecast.

Figure 5 also shows forecast histograms, which are used as

a measure of sharpness (how many forecasts are made at

different levels of seizure likelihood). Note that the circa-

dian only forecast makes no predictions for high probabil-

ity values. This reflects the fact that a cyclic forecast is not

capable of providing good calibration for rare events, and

the intuition that forecasts need to outperform a repetitive

model to be clinically useful.

We begin by addressing the potential concern that fore-

casts were predominately below the no-skill line. This

result does not demonstrate that the forecasting models

are poor. In fact, the no-skill line highlights the difficulty

of evaluating forecasts for very rare events, since the base-

line constant forecast (a model that always predicts a very

low chance of seizure) is a close match to reality, and

provides reasonable forecasting skill despite having no

practical utility for patients (Schelter et al., 2011b). Note

that the Brier skill score addressed this challenge, showing

improvements above the constant forecast for all subjects,

especially for the combined circadian logistic regression

model (Fig. 4).

Figure 5 shows that most subjects outperformed a con-

stant forecast in terms of reliability (exceptions were

Subjects 1, 6 and 15). Subject 3 shows high forecasting

skill, and Subjects 9, 10, and 13 show some skill within the

high likelihood of seizure regime. Furthermore, the com-

bined circadian logistic regression model (Fig. 5, blue

line) has superior calibration (closer to diagonal) for all

subjects, except Subjects 1, 6, and 15.

It can be seen from the inset histograms that the com-

bined circadian logistic regression forecasts were more

heavily skewed towards low probability of seizure. We

also note that the very poor performers (Subjects 1, 6

and 15) all had logistic regression models that were

skewed towards higher probability of seizures (inset

histograms, Fig. 5), indicating that performance was

compromised by false positives. It is important to make

note of several points about these subjects. Subject 1 had

Figure 3 Example forecast with high-alert threshold crossings. The predicted seizure probability from two forecasting models for

Subject 3. Forecasts marked in red were above a prediction threshold (set to the 95th percentile of the forecasts) that initiates the high-risk

advisory light. Red vertical line indicates seizure onset. (A) Logistic regression model only and (B) combined circadian logistic regression model.

Figure 4 Brier skill score for different forecasts. Each forecast

was a vector of probabilities that were made in 30-s intervals (60 s

forecasting window with 50% overlap). The skill score shows the

average improvement compared to 1000 surrogate forecasts. The

standard error of the mean with a 95% confidence interval is shown as

a black dot above each bar. Exact values for the mean and standard

deviation of the scores are given in the Supplementary material.
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a highly unusual medication regime. During the initial 4-

month algorithm design phase (during which no warning

lights were enabled), the subject experienced an average

of 10 seizures per month. Following this period, the al-

gorithm and warning lights were enabled. During the

subsequent 20-month period, in accordance with the in-

vestigators directions and in addition to their normal

medications, the subject took medications in response

to activation of the warning light. During this recording

period, the subject experienced significantly less seizures,

with an average of 5.2 seizures per month (P5 0.01

using a Wilcoxon rank sum test). Therefore, for Subject

1, results may be confounded by false positives (seizures

that were forestalled by medication). Subject 6 was not

included in the Cook et al. (2013) trial due to insufficient

performance during algorithm cross-validation. Subject

15 had low seizure numbers and spent a relatively high

proportion of time in warning, in both the current and

previous study.

Prediction quality

It is worth noting that the following prediction results can

be interpreted in a way that is analogous to a traditional

confusion matrix. We report on true positive rates (predic-

tion sensitivity), and false negative rates (number of seiz-

ures that occur during safety advisory periods). The times

in warning and safety advisory periods are reported in lieu

of the false positive rate and true negative rate, as rates are

considered less useful than time in warning for evaluating

seizure prediction devices (Mormann et al., 2007;

Gadhoumi et al., 2016; Freestone et al., 2017).

The Cook et al. (2013) study measured the amount of

time subjects spent in a high alert phase and corresponding

prediction sensitivity In the current work, we matched the

time in warning to the original Cook et al. (2013), then

measured the corresponding sensitivity (see Supplementary

material for exact corresponding time in warning of each

forecasting model). Table 1 shows both the results from the

Cook et al. (2013) study, along with the sensitivity for the

combined circadian logistic regression, logistic regression

only, and circadian only forecasts.

It is important to point out that it is not possible to make

a direct comparison to the Cook et al. (2013) results, as

current results were based on a different test period, incor-

porating more seizures for each subject (Table 1). However,

the sensitivity of the new models was equal to or greater

Figure 5 Reliability curves for three different forecasts. Subpanels show the forecast versus actual seizure probability for each subject,

based on three different forecasting models. Insets show the quantized forecast histograms for each model (the probability that forecasts were

between a given interval of seizure likelihood, from 0–10% to 90–100%). The line of no reliability is the same as the baseline rate of seizures, and

reflects the fact that a constant forecast has no calibration (slope). The line of no skill reflects the point where a forecast has a Brier skill score of

zero compared to the constant baseline forecast. A perfect forecast would fall on the diagonal line.
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than the original trial for all subjects, except Subject 1. For

eight of nine subjects, the combined circadian logistic re-

gression model showed the highest sensitivity, indicating

that prior information based on time of day improved

performance.

Table 2 shows the time spent in the low-risk advisory

phase (note that no seizures occurred during low-risk ad-

visory phase unless indicated by an asterisk). For all sub-

jects, the circadian only or combined circadian logistic

regression model provided the most time in the low-risk

phase. In the Cook et al. (2013) study, only three of the

subjects had this feature enabled. Therefore, it can be con-

cluded that using seizure timing provides new insight into

times of safety.

To establish improvement using circadian weighting for a

range of operating points, we plotted the true positive rate

against the time spent in warning, tw (Fig. 6). The range of

time in warning was obtained by exploring all possible

thresholds. In this way, the plotted curves are similar to a

receiver operating characteristic curve; however, the time in

warning is plotted rather than the false positive rate

We tested the prediction sensitivity at the maximum sen-

sitivity above chance (S� SC for each subject labelled in

Fig. 6). These true positive rates ranged from 49% to

91%, demonstrating good prospective performance out-

comes for most subjects. The maximum sensitivity was ob-

tained by the combined circadian logistic regression models

for all subjects except Subjects 3 and 6 (where the logistic

regression model had the best performance). Furthermore,

for most subjects, the combined circadian logistic regression

model has superior performance across the entire operating

spectrum of a prospective device (highest curves in Fig. 6).

Exceptions are Subject 13, where the combined circadian

logistic regression has the best performance only at the

maxima rather than over the entire range.

Discussion
The aim of this work was to test the predictive benefits of

including patient-specific circadian information in a fore-

casting model for seizures. For most subjects, circadian pat-

terns were pronounced and consistent, although there was

significant variation between individuals in the shape of the

circadian distribution (as shown in Fig. 2). We presented a

framework that enables arbitrary (patient-specific) circadian

patterns to be combined with any form of probabilistic

prediction, and robustly demonstrated predictive improve-

ment for the case of a logistic regression classifier. Including

circadian information resulted in superior forecast and pre-

diction quality compared to purely EEG-based logistic re-

gression, and when compared to the results from the Cook

et al. (2013) study. All subjects demonstrated clinical pre-

diction performance significantly better than a chance

Poisson prediction (Fig. 6). Furthermore, the time-matched

sensitivity results (Table 1) demonstrate that the signal fea-

tures used in the original trial can provide comparable

Table 1 Prediction performance and results

Subject Time in

high risk (%)

Cook et al. (2013) results New results (sensitivity)

Total

seizures

Sensitivity Lead

seizures

Circadian Logistic

regression

Circadian

logistic

regression

1 27 13 0.77 56 0.34 0.54 0.61

3 29 106 0.45 129 0.36 0.53 0.55

6 NA NA NA 21 0.52 0.61 0.65

8 28 86 0.62 177 0.58 0.71 0.76

9 11 52 0.17 102 0.28 0.29 0.45

10 17 164 0.51 96 0.36 0.38 0.52

11 15 39 0.39 186 0.43 0.57 0.58

13 28 113 0.50 242 0.61 0.78 0.76

15 41 24 0.71 36 0.71 0.51 0.60

The number of seizures and trial results during the 4-month assessment phase of the original clinical trial. The number of seizures used for assessment in the current study (lead

seizures defined as having a preceding seizure free interval of at least 5 h). The new results for the three forecasting models are reported based on a matched proportion of time in

warning (see Supplementary material for exact time in warning data). Sensitivity was calculated according to Cook et al. (2013), using lead seizures only. The highest sensitivity for

each subject is highlighted in bold.

Table 2 Time in low risk (%) for each forecasting model

Patient Circadian

logistic

regression

Circadian Logistic

regression

Cook

et al.

(2013)

1 0 0 0 7

6 24 0 0 NA

8 11 19 0 NA

9 30 31 19 48

10a 17 11 10 NA

11 34 30 0 26

15 38 30 30 NA

Low risk activation was modelled using the triggering scheme described in Cook et al.

(2013). Zero indicates a threshold could not be found based on the design phase data

(Day 100�Day 200). NA indicates that the low risk advisory state was not enabled in

the NeuroVista trial. Note that no threshold could be found for Subjects 3 and 13 in

either the current or previous study.
aSubject 10 had one seizure during their low-risk advisory test period (after Day 200).

All other subjects had no seizures during their low-risk advisory test period.
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prediction performance over many years (whereas previ-

ously reported results were based on a 4-month period).

For all patients, the combined circadian logistic regres-

sion showed superior performance to the logistic regression

only and circadian only models in terms of probabilistic

measures (Brier skill score, Fig. 4; calibration, Fig. 5).

The combined circadian logistic regression model also pro-

vided the best predictive performance for a majority of

subjects in a realistic clinical use scenario (Table 1 and

Fig. 6). Overall, we conclude that using circadian informa-

tion improves forecasting accuracy regardless of the precise

shape of the circadian distribution, which is highly patient-

specific (Fig. 2). Furthermore, circadian information pro-

vides additional benefits in terms of informing patients of

low-risk periods (Table 2). To fully investigate the benefits

of using circadian information for low-risk periods it is

necessary to further investigate the interaction between

the high-risk and low-risk alert systems, and the relation-

ship between a low-risk advisory and times of sleep.

The sensitivity performance at the greatest improvement

above chance ranged from 49% to 91% (Fig. 6), demon-

strating excellent performance for some subjects. At the

original operating points (based on time in warning), the

prediction sensitivity ranged from 45% to 76%, higher

than compared to previous prediction algorithms on the

same dataset (Cook et al., 2013). The low-risk advisory

phase was enabled for more patients, and for longer peri-

ods with the inclusion of circadian patterns (Table 2).

Crucially, only one subject had one seizure during their

pseudo prospective evaluation of the low-risk advisory

phase. This result is highly meaningful to patients, as

knowing times of safety may sometimes be even more valu-

able than knowing times of seizure risk. For a majority of

subjects, the combined circadian logistic regression models

had the best prediction sensitivity across all operating

thresholds of a prospective implant device (Fig. 6). This is

an important result, as patients have different requirements

for device specificity, related to the amount of time that

they are prepared to spend in warning. These results

show that regardless of how the forecasting model was

implemented, time-of-day information improved prediction

sensitivity.

Validation

Improvement using time-of-day information was shown

here for a predictive model that used relatively simple

ECoG features. However, we hypothesize that more sophis-

ticated classification algorithms will also reap the benefits

of using an informative prior. In support of this hypothesis,

we note that the logistic regression classifiers showed excel-

lent classification performance based on cross-validation

results (average AUC, see Supplementary Table 2). The

only performance benchmark for classification of long-

term seizure data is from recent Kaggle competitions

using canine data (Brinkmann et al., 2016) and human

data (Kaggle.com, 2016), where the winning algorithms

achieved AUC results of 0.84 and 0.81, respectively. The

AUC performance of the current logistic regression classi-

fiers ranged from 0.69 to 0.9. While results are not directly

comparable, reaching similar values as state-of-the-art ma-

chine learning algorithms provides some assurance that

Figure 6 True positive rate of seizure prediction for a range of times spent in warning. Panels show the plots for nine subjects across

a range of possible time in warning, tW (x-axis). The time in warning was calculated by exploring all possible prediction thresholds. The prediction

sensitivity (true positive rate) at the maximum sensitivity above chance (S – SC) is labelled for each subject (and colour-coded according to the

model that achieved maximal improvement above chance). Data are only plotted where the sensitivity improvement-over-chance obtained

significance (P5 0.05).
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circadian information was not merely beneficial because the

original classifiers were weak.

Despite impressive validation results, AUC was not a re-

liable indication of clinical performance. For instance,

Subjects 9 and 15 had excellent AUC results (0.75 and

0.90, respectively), yet had the worst sensitivity following

pseudo prospective evaluation (Table 1). A potential pitfall

of the AUC as a performance metric is that it is typically

derived from balanced data (50% interictal and 50% pre-

ictal). However, during continuous forecasting the data are

highly skewed towards interictal segments. Therefore,

forecast specificity may be overestimated, as seen with the

reliability curves (Fig. 5), which all demonstrated overcon-

fidence. We also noted from the reliability curves that dif-

ferent attributes of poor prediction performance (affecting

Subjects 1, 6 and 15) were all unambiguously detected by

the reliability curves, but not necessarily by AUC results, or

sensitivity analysis (Table 1). These mismatched perform-

ance scores highlight the necessity of evaluating predictive

algorithms on continuous data, and underscore the rele-

vance of using probabilistic methods of assessment.

Furthermore, to simplify the comparison using the Brier

skill score, we formulated the problem as a binary classifi-

cation task; however, it may be more appropriate to de-

velop a model that can be regressed on the time since last

seizure. An avenue of future investigation is to devise more

suitable training data or classifiers for rare events to ad-

dress the skewed probability of seizures. The trade-off in

constructing training data this way is that it becomes ne-

cessary to address other design questions, such as the rela-

tive importance of false positives and false negatives

(Bishop, 2006). With more tuneable design parameters,

in-sample optimization can become problematic

(Andrzejak et al., 2003; Kreuz et al., 2004).

Forecasting

In all cases where seizure forecasts did provide a reasonable

level of accuracy, they were consistently overconfident.

We speculate that, in some cases, this overconfidence is

due to homeostatic mechanisms or exogenous environmen-

tal adjustments that could forestall an imminent seizure.

For instance, during data collection, subjects were using

medication that may have affected seizure rates. Subject 1

(who had poor performance), selectively used medication

during the Cook et al. (2013) trial, increasing their usage

at times when the high-risk advisory light was turned on.

It is highly likely that these behavioural modifications con-

tributed to a high rate of false positives, and poor perform-

ance following the initial 4-month assessment phase.

Another possibility is that false positives arise because of

subclinical events or other epileptic activity, such as spike-

wave discharges (Cook et al., 2016; Karoly et al., 2016).

In a system where homeostatic mechanisms may correct

abnormal activity, it is possible to enter a state of high

seizure likelihood without a corresponding seizure

(Badawy et al., 2012; Ly et al., 2016). Therefore, it is

important to take a more nuanced approach to reducing

false positives in seizure prediction, for instance by using

algorithms that can distinguish between different classes of

epileptic activity. Forecasting models that are trained with

the entire spectrum of epileptiform activity may extract

additional information relevant to detecting periods of

high seizure likelihood. This approach would provide a

large volume of training data, while also being intuitively

reasonable for a homeostatic system like the brain, where

there are numerous ‘necessary but not sufficient’ conditions

for seizure.

The use of forecasting metrics can provide useful diag-

nostic information before designing clinical prediction rules

(i.e. implementing seizure warning lights). For instance, a

clear message from the reliability plots (Fig. 6) was that

predictive power could be primarily attributed to forecast

calibration rather than skill. Therefore, we conclude that

improving skill is a more promising avenue to advancing

the field of seizure prediction. The use of an informative

prior based on time of day increased the forecast calibra-

tion. However, improving the skill requires a more precise

input than coarse-grained probabilistic information.

Increased skill should be derived from improved extraction

of information from the ECoG (or brain) itself, rather than

lower resolution, typically cyclic meta-data. Therefore, to

improve forecasting skill, we speculate that the search for

better pre-ictal features from the EEG signal is important;

and, given the variability in patient skill levels, this search

is likely to require patient-specific features. The reported

prediction results were based on commonly used line-

length and energy features for all patients; however, the

performance and stability of these features was patient-

specific (Supplementary Figs 1 and 2). In future, more com-

plex features could be investigated to increase forecasting

skill. We were also interested to note from Fig. 3 that seiz-

ures appeared to be preceded by a peak in seizure likeli-

hood that was followed by a steady decrease. It is possible

that the brain goes through a series of state changes prior

to seizures, which were not adequately captured by features

within a 60-s window. Including circadian information in

our algorithm provided some ability to use patterns over

longer time scales. However, it may also be beneficial to

calculate signal features over a longer time scale.

Reliability curves can also be used to design warning

light thresholds. The key features of these curves are their

range and monotonic increase. Monotonicity enables vari-

ation in the range of forecasts to be mapped to some pa-

tient-specific level of seizure likelihood (i.e. for a device that

provides a graded warning of low, medium, and high risk

of seizure). Better calibration suggests that a probabilistic

model has a greater chance of being converted into a useful

prediction rule, with patient-specific thresholds for high and

low risk levels of seizure. Therefore, based on their superior

calibration, the combined circadian logistic regression

model should result in a more clinically useful seizure

warning system. Probabilistic evaluation results were con-

sistent with pseudo prospective prediction outcomes.
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Future work

Machine learning techniques, such as deep convolutional

neural networks, have made impressive inroads with previ-

ously intractable classification problems (LeCun et al.,

2015), such as image recognition (Krizhevsky et al.,

2012), speech processing (Graves et al., 2013), and decod-

ing motor signals from EEG (Nurse et al., 2016). However,

these techniques are still in their infancy with respect to

integrating temporal information across many orders of

magnitude. For instance, in seizure prediction, signal fea-

tures from 24 h ago may be as relevant as those from 1 min

ago. Neural networks are not yet well equipped to deal

with this problem. In contrast, weather forecasters have

spent decades developing techniques to incorporate multi-

scale spatiotemporal information into models (Richardson,

2007). An appealing approach for seizure prediction is to

unite these fields, for instance using deep learning for fea-

ture extraction, while conditioning a neural network with

temporal information.

While advanced machine learning techniques have shown

promise (Brinkmann et al., 2016), algorithms based on

simpler features have the distinct advantages of being

easy to iteratively train, incorporate up-to-date prior infor-

mation, and interpret. In this work, we have demonstrated

that time-of-day information can be used to improve fore-

cast calibration and performance. However, there are no

limitations on the sources of prior information that can

be combined to improve performance (Bishop, 2006;

Satopaa et al., 2014). In future, predictive inputs should

include additional biometrics and statistics that may be

relevant to seizure prediction, such as heart rate

(Valderrama et al., 2010; Fujiwara et al., 2016), interictal

spike rate (Li et al., 2013), and other temporal information

(day of week, month, etc.) (Cook et al., 2014; Karoly et al.,

2016). Another key factor in improving forecasting accur-

acy is the ability to make regular predictions to update the

model based on previous performance (Kalman, 1960;

Schiff, 2012; Mellers et al., 2015). A promising avenue

for seizure prediction is to begin implementing rudimentary

warning systems for minimally invasive devices, where al-

gorithms are reliant on simple, linear features and measur-

able environmental factors, such as time of day.

Conclusion
We have outlined a probabilistic framework for developing

and improving patient-specific seizure forecasting models

using circadian patterns of seizures. The most promising

step towards making probabilistic seizure forecasting a clin-

ically relevant process is the development of implantable

devices that continuously record and store neural data.

These devices will enable prediction algorithms to be rap-

idly developed, tested, and calibrated on an individualized

basis. We have made many analogies between weather

forecasting and seizure prediction, though the dynamics

of brain activity and epileptic processes are not directly

comparable to the earth and meteorology. Nevertheless,

the brain, like the earth, is an immensely complex non-

linear system; and, like the weather, epileptic dynamics ex-

hibit consistent cyclic patterns. We have presented a

method for exploiting these dynamics to improve the fore-

casting accuracy using a weighting based on each patient’s

seizure history. The simplicity of this method is its greatest

advantage; as it requires almost no additional computation

(simply recording seizure times), and can be implemented

for an arbitrary prior distribution with any other probabil-

istic measure of seizure likelihood. This framework shows

promise for improving the quality of life and safety for

patients with epilepsy.
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