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R. Ryan Darby,1,2,3 Juho Joutsa2,4,5,6 and Michael D. Fox2,3,4

Studies of the same disease often implicate different brain regions, contributing to a perceived reproducibility crisis in neuroi-

maging. Here, we leverage the normative human brain connectome to test whether seemingly heterogeneous neuroimaging

findings localize to connected brain networks. We use neurodegenerative disease, and specifically Alzheimer’s disease, as our

example as it is one of the diseases that has been studied the most using neuroimaging. First, we show that neuroimaging

findings in Alzheimer’s disease occur in different brain regions across different studies but localize to the same functionally

connected brain network. Second, we show that neuroimaging findings across different neurodegenerative diseases (Alzheimer’s

disease, frontotemporal dementia, corticobasal syndrome, and progressive non-fluent aphasia) localize to different disease-

specific brain networks. Finally, we show that neuroimaging findings for a specific symptom within a disease (delusions in

Alzheimer’s disease) localize to a symptom-specific brain network. Our results suggest that neuroimaging studies that appear

poorly reproducible may identify different regions within the same connected brain network. Human connectome data can

be used to link heterogeneous neuroimaging findings to common neuroanatomy, improving localization of neuropsychiatric

diseases and symptoms.
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Introduction
Neuroimaging studies designed to localize a disease, symp-

tom, or psychological process often fail to identify the same

brain region across different studies (Button et al., 2013;

Poldrack et al., 2017). For example, neuroimaging studies

of Alzheimer’s disease identify different brain regions de-

pending on the imaging modality (Schroeter and Neumann,
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2011). Similarly, studies of specific symptoms within

Alzheimer’s disease (e.g. delusions) have been highly incon-

sistent (Ismail et al., 2011). This heterogeneity has raised

concerns of a ‘reproducibility crisis’ in neuroimaging, simi-

lar to concerns regarding reproducibility of neuroscience

research in general (Open Science Collaboration, 2015;

Baker and Penny, 2016). Given the importance of this

issue, much effort has gone towards identifying factors re-

sponsible for this lack of reproducibility such as sample

size, bias, study design, data processing, selective reporting,

and a variety of statistical issues (Carp, 2012; Button et al.,

2013; Eklund et al., 2016; Poldrack et al., 2017).

One factor that has received less attention is our assump-

tions regarding what exactly should be reproducible. In

neuroimaging, a common assumption is that findings

should replicate to the same brain region (Eickhoff et al.,

2009; Yarkoni et al., 2011). However cognitive functions,

neuropsychiatric symptoms, and diseases may better local-

ize to brain networks than single brain regions (Fox et al.,

2005; Dickerson et al., 2009; Seeley et al., 2009; Bickart

et al., 2014). For example, brain lesions causing the same

symptom routinely occur in multiple different brain loca-

tions (Boes et al., 2015; Fischer et al., 2016; Laganiere

et al., 2016; Darby and Fox, 2017; Darby et al., 2017,

2018a, b; Fasano et al., 2017). If lesions causing the

same symptom do not localize to the same brain region,

then why should neuroimaging findings?

Recently, we showed that the normative human brain

connectome can be used to link heterogeneous lesion loca-

tions causing the same symptom to a common brain net-

work (Boes et al., 2015; Fischer et al., 2016; Laganiere

et al., 2016; Darby and Fox, 2017; Darby et al., 2017,

2018a, b; Fasano et al., 2017). This approach has helped

localize lesion-induced hallucinations (Boes et al., 2015),

delusions (Darby and Fox, 2017; Darby et al., 2017),

coma (Fischer et al., 2016), movement disorders

(Laganiere et al., 2016; Fasano et al., 2017), and criminal-

ity (Darby et al., 2018a) to symptom-specific brain net-

works. Here, we test whether a similar approach can help

reconcile heterogeneous neuroimaging findings across dif-

ferent studies.

As an initial test of this hypothesis, we focus on neuroi-

maging findings in Alzheimer’s disease. We chose

Alzheimer’s disease because it is one of the most studied

brain disorders using neuroimaging (Weiner and Veitch,

2015), has major public health implications (Prince et al.,

2013), and because existing evidence suggests that

Alzheimer’s disease pathology may localize better to a

brain network than a single brain region (Seeley et al.,

2009; Zhou et al., 2012; Fornito et al., 2015; Seeley,

2017). We hypothesize that: (i) neuroimaging abnormalities

in Alzheimer’s disease across different studies and imaging

modalities (atrophy, metabolism, perfusion) will share a

common network localization; (ii) neuroimaging findings

in Alzheimer’s disease will have distinct network localiza-

tion compared to neuroimaging findings reported in other

neurodegenerative diseases; and (iii) neuroimaging

correlates of a specific symptom within Alzheimer’s disease

(delusions) will show symptom-specific network

localization.

Materials and methods

Study selection

We identified studies reporting neuroimaging abnormalities in
patients with Alzheimer’s disease versus controls using struc-
tural atrophy (nine studies), hypometabolism (nine studies), or
hypoperfusion (eight studies) from a recently published coord-
inate-based meta-analysis using activation likelihood estima-
tion (ALE) (Schroeter and Neumann, 2011). We next
identified structural atrophy studies of patients with
Alzheimer’s disease, behavioural variant frontotemporal de-
mentia (bvFTD), corticobasal syndrome (CBS), and progressive
non-fluent aphasia (PNFA) through a literature search. We
selected these non-Alzheimer’s disease dementia syndromes
based on a prior study showing that these syndromes also
localized to distinct functional brain networks (Seeley et al.,
2009). Finally, we identified studies reporting neuroimaging
abnormalities in dementia patients with versus without delu-
sions. Inclusion required whole brain analysis with coordinates
for significant differences reported in MNI or Talairach space.
Talairach coordinates were converted into MNI coordinates
using the automated transformation implemented in
GingerALE software(version 2.3.3 www.brainmap.org).

Replication of activation likelihood
estimation results

We first replicate the findings from Schroeter and Neumann
(2011) by performing an ALE analysis using GingerALE.
Briefly, a 3D Gaussian probability distribution is created
centred on each individual foci and modified by the sample
size from each study in order to estimate the spatial uncer-
tainty surrounding each focus. These distributions are then
combined across all experiments to arrive at the activation
likelihood estimate maps. Finally, a cluster-level inference is
used to determine significance. The true convergence on the
ALE is compared against a null distribution of 1000 simulated
datasets with identical number of foci, experiments, and sub-
jects, but with the foci randomly distributed. Cluster-forming
threshold was set at P5 0.001 and cluster-level inference
threshold was set at P50.05.

Network localization meta-analysis

This prior meta-analysis concluded that neuroimaging findings
in different imaging modalities are distinct (Schroeter and
Neumann, 2011). Here, we instead test the hypothesis that
these neuroimaging abnormalities are all functionally con-
nected to the same network of brain regions. Spherical seeds
(4 mm) were created centred at each reported coordinate and
were added together to generate a study-specific combined
seed, similar to the methods in other neuroimaging meta-ana-
lysis techniques (Eickhoff et al., 2009; Yarkoni et al., 2011).
To ensure results were independent of sphere size, analyses
were repeated using 2 mm and 6 mm spheres. Next, we
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identified regions functionally connected to each study’s com-
bined seed using a publicly available connectome of 1000
normal subjects from the Brain Genomics Superstruct Project
(https://dataverse.harvard.edu/dataverse/GSP) (Yeo et al.,
2011; Holmes et al., 2015). This approach is similar to
other recent connectome-based studies (Darby and Fox,
2017; Horn et al., 2017; Darby et al., 2018a). Connectivity
maps were thresholded at t45, which corrects for multiple
comparisons on a voxel-wise basis using a family-wise error
(FWE) rate of P5 0.05 (uncorrected P510–6). Note that
voxel-based correction is more conservative than cluster-
based correction (Eklund et al., 2016). To ensure results
were not dependent on threshold, analyses were repeated for
thresholds of t4 7 and t4 10. Binarized maps from each
study were then added together to identify regions significantly
connected to all, or most, studies. We specifically tested:
(i) whether network localization was consistent within each
neuroimaging modality; and (ii) whether network localization
was consistent across different neuroimaging modalities. To
provide a quantitative measure, we also calculated a dice
index of similarity between each pair of binarized connectivity
maps, defined as 2 � (volume overlap) / (volume map
#1) + (volume map #2).

Specificity of network localization
meta-analysis

Specificity of network localization of neuroimaging findings
was assessed by comparing the unthresholded connectivity
maps from studies of Alzheimer’s patients with connectivity
maps from studies of patients with FTD, CBS, and PNFA
using a two-sample t-test. To demonstrate generalizability,
we also computed a network localization for neuroimaging
abnormalities in bvFTD, CBS, and PNFA by comparing con-
nectivity maps from each syndrome versus all other neurode-
generative syndromes. We hypothesized that each
neurodegenerative disorder would localize to unique brain net-
works (Seeley et al., 2009), with the null hypothesis that net-
work localization would not differ according to dementia
syndrome. Statistical comparison between diseases was con-
ducted using Statistical Parametric Mapping software
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/),
unthresholded connectivity maps, voxel-wise whole-brain ana-
lysis, and the default parameters for cluster-based FWE correc-
tion for multiple comparisons (cluster defining threshold of
P50.001, FWE-corrected threshold of P50.05). To ensure
that the results were not dependent on the selected statistical
approach, analyses were repeated using permutation-based
correction implemented in Statistical non-Parametric
Mapping software (SnPM13, http://warwick.ac.uk/snpm, clus-
ter defining threshold of P50.001, FWE-corrected threshold
of P50.05).

Network localization of specific
symptoms

Finally, we demonstrate that our approach can be used to
localize specific symptoms within a neurodegenerative disease.
We generated connectivity maps based on neuroimaging
abnormalities reported in studies of Alzheimer’s patients with
delusions (versus patients without delusions, n = 12 studies).

We compared these maps to connectivity maps derived from
neuroimaging abnormalities reported in studies of patients
with Alzheimer’s disease in general (versus subjects without
Alzheimer’s disease, n = 26 studies) using a two-sample t-test
implemented in SPM12, as described in the previous
paragraph.

We next assessed whether network localization of neuroima-
ging abnormalities in dementia patients matched network lo-
calization in lesion-induced delusions. We created an a priori
region of interest in the right ventral frontal cortex based on
our lesion network mapping localization of delusions follow-
ing focal brain lesions (Darby et al., 2017). Functional con-
nectivity between this a priori region of interest and
neuroimaging coordinates from each study of patients with
Alzheimer’s disease with delusions was computed.
Specifically, functional MRI time courses were extracted for
the a priori region of interest and the coordinates, Pearson’s
correlation coefficient between time-courses were computed, r-
values were transformed into a normal distribution using the
Fischer’s r to z transformation, and Fischer z-values were aver-
aged across all subjects in our normative 1000 subject dataset.
Differences in connectivity strength to our a priori region of
interest were assessed between studies of patients with
Alzheimer’s disease with versus without delusions using a
two-tailed t-test. Statistics for our a priori region of interest
analysis were computed using the statistical package STATA
(College Station, TX, version 14.0).

Data availability

Data are available from the corresponding authors upon
request.

Results

Network localization of
neuroimaging findings in Alzheimer’s
disease is reproducible within and
across imaging modalities

We identified 26 studies reporting neuroimaging abnormal-

ities in patients with Alzheimer’s disease based on struc-

tural imaging (nine studies), metabolism (nine studies), or

perfusion (eight studies; Supplementary Table 1). To avoid

bias, we used the same studies selected for a recent coord-

inate-based meta-analysis of neuroimaging findings in

Alzheimer’s disease (Schroeter and Neumann, 2011).

Using standard meta-analytic methods (Eickhoff et al.,

2009), these neuroimaging findings were heterogeneous

(Schroeter and Neumann, 2011). Within an imaging mo-

dality, some brain regions appeared more often than ex-

pected by chance (Fig. 1A). However, only 6/9 structural

studies (67%), 3/9 metabolic studies (33%), and 4/8 perfu-

sion studies (50%) contributed to the most consistent find-

ing within each modality. Across the three different

imaging modalities, no consistent neuroimaging abnormal-

ities were present (Fig. 1A, right).
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Next, we tested whether these heterogeneous neuroima-

ging findings localized to a common brain network. For

each study, a 4-mm sphere was generated at each coordin-

ate to obtain a study-specific map of neuroimaging

abnormalities (Fig. 2A). Next, brain regions functionally

connected to each study-specific map were identified using

a large (n = 1000), publicly available normative connec-

tome (FWE-corrected P5 0.05; Fig. 2B). Finally, network

maps from each study were overlaid to identify any

common and reproducible connections across studies

(Fig. 2C). When we applied this approach to our 26 studies

of Alzheimer’s disease, we found that 100% of studies re-

ported neuroimaging abnormalities that were connected to

the same set of brain regions, both within and across ima-

ging modalities (Fig. 1B and Supplementary Table 2).

Results were independent of specific methodology such as

sphere size (spatial correlation40.99) or map threshold

(spatial correlation4 0.97; Supplementary Fig. 1.)

To quantify the consistency of these network patterns

across individual studies, we calculated the dice index be-

tween each pair of network maps (a higher dice index in-

dicates more similar maps). The mean dice index for all

Figure 1 Network localization improves reproducibility of neuroimaging findings across modalities in Alzheimer’s disease.

(A) Replication of prior ALE meta-analysis (Schroeter and Neumann, 2011) showing neuroimaging findings in Alzheimer’s disease patients based

on structural (MRI), metabolic (PET), and perfusion (single-photon emission computed tomography, SPECT) imaging. No neuroimaging findings

were reproducible across modalities (Combined). (B) In contrast, network localization of these same neuroimaging findings showed high

reproducibility within and across modalities, with 100% of studies showing connectivity to the same set of brain regions. L = left; R = right.
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pairs was 0.58 (standard deviation 0.15, Supplementary

Fig. 2), which was significantly higher than the null hypoth-

esis of 0 (t = 69, P5 0.0001). Dice indices were signifi-

cantly higher within a modality versus between modalities

(0.62 versus 0.56, t = 3.5, P = 0.0005).

Network localization of
neuroimaging findings is specific for
different dementia disorders

To determine whether this network localization was specific

to Alzheimer’s disease, we compared neuroimaging findings

in Alzheimer’s disease to neuroimaging findings in other neu-

rodegenerative disorders. For this analysis we focused on

structural atrophy, as it was the most commonly used ima-

ging modality and avoids bias that could stem from use

of different imaging modalities in different neurodegenerative

diseases. We compared neuroimaging findings in Alzheimer’s

disease (31 studies), to those in bvFTD (21 studies), CBS (12

studies), and PNFA (eight studies; Supplementary Table 1).

Network localization to regions including the mesial

temporal lobes, temporal-parietal lobes, and precuneus was

specific for Alzheimer’s disease compared to other neurode-

generative disorders (FWE-corrected P5 0.05; Fig. 3A and

Supplementary Table 3). Neuroimaging findings from each

of the other disorders also showed network specificity,

including fronto-insular and orbitofrontal cortex in

frontotemporal dementia (Fig. 3B); intraparietal sulcus in

corticobasal syndrome (Fig. 3C); and left inferior frontal

gyrus in PNFA (Fig. 3D). Results were independent of the

statistical method used (Supplementary Fig. 3). Network

overlap maps for each syndrome are shown in

Supplementary Fig. 4.

Network localization of
neuroimaging findings in dementia
patients with delusions

Finally, we tested whether our network localization method

would be useful for specific symptoms within patients with

Alzheimer’s disease. We focused on delusions because neuroi-

maging studies of this symptom in Alzheimer’s disease have

been inconsistent (Ismail et al., 2011) and we had a clear a

priori hypothesis regarding the network localization of delu-

sions based on a recent study of focal brain lesions (Darby

and Fox, 2017; Darby et al., 2017). We identified 12 studies

reporting neuroimaging abnormalities in patients with

Alzheimer’s disease with delusions (atrophy, metabolism,

and perfusion) (Supplementary Table 1). Standard coordin-

ate-based meta-analysis using ALE identified two regions

where abnormalities occurred above chance, but again the

results were heterogeneous, with only 2/12 (16%) of studies

contributing to each peak (Supplementary Fig. 5). Further,

Figure 2 Network localization of neuroimaging findings method. (A) Spherical seeds (4 mm) were generated at each reported

significant coordinate for each study, then added together to create a combined map of neuroimaging findings for each study. (B) Regions

significantly connected to each study’s neuroimaging findings were calculated using a large (n = 1000) normative connectome (maps thresholded at

t 4 5 corresponding to voxel-wise FWE-corrected P 5 0.05). (C) Network maps from each study were overlaid to identify functional con-

nections common to the greatest number of studies.
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neither peak aligned with our a priori localization of delusions

based on focal brain lesions.

Using network localization, we found that the neuroima-

ging abnormalities from 90% of studies were functionally

connected to right frontal cortex (Fig. 4A). Connectivity of

neuroimaging abnormalities to the right frontal cortex was

specific to studies of patients with Alzheimer’s disease with

delusions (n = 12) versus studies of patients with

Alzheimer’s disease without delusions (n = 26; FWE cor-

rected P5 0.05; Fig. 4B). This location in the right frontal

cortex matched our a priori localization of delusions almost

exactly (Fig. 4C). To confirm this match quantitatively, we

determined the strength of connectivity between the loca-

tion of neuroimaging abnormalities in patients with

Alzheimer’s disease and our a priori region of interest in

the right frontal cortex. Coordinates from neuroimaging

studies of patients with Alzheimer’s disease with delusions

were significantly connected to this a priori region (Fisher

r to z = 0.14, P5 0.001), and significantly more connected

to this a priori region of interest than coordinates from

neuroimaging studies of patients with Alzheimer’s disease

without delusions (P5 0.005; Fig. 4D).

Discussion
By looking at the set of regions functionally connected to

each neuroimaging finding, rather than just the coordinates

themselves, we show that neuroimaging findings that seem

poorly reproducible localize to specific brain networks. To

validate our method, we show network localization of het-

erogeneous neuroimaging findings (i) within a disease

across different imaging modalities; (ii) within an imaging

modality across different diseases; and (iii) for a specific

symptom within a disease. These results suggest that net-

work localization may help reconcile heterogeneous neuroi-

maging findings across studies, improving our ability to

link brain symptoms or diseases to neuroanatomy.

Comparing neuroimaging results
across studies

By far the most common approach for comparing neuroima-

ging results across studies is coordinate-based meta-analysis

(Eickhoff et al., 2009; Yarkoni et al., 2011). Because the

majority of neuroimaging studies report the location of sig-

nificant findings as x, y, z coordinates in a standardized

brain space, coordinate-based meta-analysis gives researchers

a powerful tool to investigate the reproducibility of neuroi-

maging findings. Many approaches have been developed,

including ALE (Eickhoff et al., 2009), multi-level kernel dens-

ity analysis (MKDA) (Wager et al., 2004), and signal differ-

ential mapping (SDM) (Radua et al., 2012). These

Figure 4 Common network localization for delusions in

dementia and focal brain lesions. Neuroimaging findings from

studies of Alzheimer’s disease patients with delusions were function-

ally connected to the right frontal cortex (A), a connectivity pattern

that was specific compared to neuroimaging findings from studies of

Alzheimer’s disease patients without delusion (B). Lesion locations

causing delusions are also connected to the right frontal cortex

(Darby et al., 2017), providing an a priori region of interest for the

present study (C). Neuroimaging findings from studies of Alzheimer’s

disease patients with delusions were significantly connected to this

region of interest (Fischer’s r to z), and significantly more connected

than neuroimaging findings in Alzheimer’s disease patients without

delusions (D). *P < 0.005, **P < 0.001. L = left; R = right; ROI = region

of interest.

Figure 3 Network localization of neuroimaging findings is

distinct for different neurodegenerative disorders. Specificity

of network localization for each dementia syndrome versus all other

syndromes (FWE-corrected P < 0.05) for Alzheimer’s disease (AD)

(A), bvFTD (B), CBS (C), and PNFA (D). L = left; R = right.
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techniques can all help determine whether coordinates iden-

tified across different studies appear more commonly (or in

closer anatomical proximity) than might be expected by

chance.

Recently, neuroimaging meta-analysis techniques have

begun to incorporate the concept of network localization

using meta-analytic connectivity modelling (Lancaster et al.,

2005; Neumann et al., 2005; Robinson et al., 2010, 2012).

Meta-analytic connectivity modelling determines whether dif-

ferent brain regions are coactive across different functional

neuroimaging studies (functional MRI and PET) using either

the same task (Lancaster et al., 2005; Neumann et al., 2005),

or many different tasks (Robinson et al., 2010, 2012). Brain

networks derived from meta-analytic connectivity modelling

are similar to those derived from resting state functional

connectivity (Smith et al., 2009), supporting the hypothesis

that regions activated by the same tasks fall within the same

functionally connected brain network.

However, all of these prior meta-analytic techniques

assume that neuroimaging findings should reproduce to

the same brain location(s). Even meta-analytic connectivity

modelling, which focuses on brain networks, relies on the

similar coordinates appearing across different studies. If

different studies identify coordinates in completely different

brain locations, as occurred in Alzheimer’s disease or delu-

sions within Alzheimer disease, we would conclude that the

neuroimaging results are not reproducible. In many ways,

the analysis approach is similar to classical lesion analysis,

which assumes that lesions causing the same symptom

should overlap in the same location(s) (Adolphs, 2016).

Our approach is fundamentally different from prior neu-

roimaging meta-analysis techniques. Rather than assume

that coordinates from individual studies should occur in

the same brain location, we assume that they should

occur within the same brain network. This approach has

proven valuable in lesion mapping, where brain lesions

causing the same symptom often occur in different brain

locations, but are part of the same brain network (Boes

et al., 2015; Fischer et al., 2016; Laganiere et al., 2016;

Darby and Fox, 2017; Darby et al., 2017, 2018a; Fasano

et al., 2017). Here, we show that this approach is equally

valuable for neuroimaging findings across different studies.

By shifting our hypothesis from regional localization to

network localization, we show that seemingly inconsistent

findings are, in fact, reproducible.

Network localization in
neurodegenerative disorders

Although our technique can theoretically be applied to neu-

roimaging findings for any disease, symptom, or brain

function, we focused on Alzheimer’s disease for initial

methodological validation due to documented heterogeneity

in neuroimaging findings (Schroeter and Neumann, 2011)

and accumulating evidence that this disease localizes to

a connected brain network (Buckner et al., 2009;

Seeley et al., 2009; Greicius and Kimmel, 2012; Zhou

et al., 2012). If one identifies an area of peak atrophy in

patients with Alzheimer’s disease, other brain regions con-

nected to this peak region will likely also show atrophy

(Seeley et al., 2009; Raj et al., 2012), and show progression

of atrophy over time (Mandelli et al., 2016; Torok et al.,

2018). Similarly, this same network also shows changes on

functional neuroimaging (Jack et al., 2010; Zhou et al.,

2010). As such, the novel contribution of the current

study is not suggesting that Alzheimer’s disease localizes

to a brain network or even the identification of this net-

work. Rather, we used Alzheimer’s disease to validate a

new method for linking heterogeneous neuroimaging find-

ings across different studies to a common brain network in

a data-driven manner.

Beyond Alzheimer’s disease, our technique appears to be

useful for neurodegenerative diseases in general, with dis-

ease-specific localization of neuroimaging findings in

Alzheimer’s disease, FTD, CBS, and PNFA. Our results

are consistent with prior work suggesting these syndromes

localize to distinct brain networks (Seeley et al., 2009;

Zhou et al., 2012). There are multiple hypotheses as to

why neuroimaging findings in neurodegenerative disease

might localize to functionally connected brain networks,

including prion-like spread of pathological protein through

synaptic connections (Zhou et al., 2012), or that network

dysfunction itself might contribute to neurodegeneration

(Buckner et al., 2009; Zhou et al., 2012; Jones et al.,

2016, 2017; Wiepert et al., 2017). An important caveat is

that network localization corresponds to a patient’s clinical

diagnosis, but not necessarily to the underlying neuropath-

ology causing that clinical syndrome. Multiple different

pathologies can cause the same clinical syndrome (e.g. tau

and TDP-43 pathology causing the clinical syndrome of

bvFTD), and a single pathology can affect several different

networks, resulting in different clinical syndromes (e.g.

Alzheimer’s disease pathology can be associated with the

clinical syndrome of Alzheimer’s disease, but also CBS, pos-

terior cortical atrophy, or logopenic primary progressive

aphasia in different patients).

While the current study addressed heterogeneity in neu-

roimaging findings across different studies, there is also

heterogeneity in neuroimaging findings across individual

patients. Whether network localization can be used to ex-

plain this heterogeneity at the individual level remains un-

known. Prior studies have found that individual-specific

models of atrophy progression, based on diffusion-weighted

connectivity, are better than disease-specific models in pre-

dicting longitudinal changes in atrophy progression in

Alzheimer’s disease (Torok et al., 2018).

Imaging is also increasingly being used as a biomarker

and secondary endpoint in therapeutic trials in dementia.

Our results suggest that the sensitivity of these biomarkers

may be increased if one looks for imaging changes within

specific target networks rather than specific target regions.

Further development of network localization of neuroima-

ging abnormalities in individual dementia patients may
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therefore be critical to the potential use of neuroimaging

biomarkers in clinical trials.

Finally, an important contribution of the current paper is

the finding that neuroimaging correlates of specific symp-

toms localize to specific brain networks. Despite extensive

research suggesting that neurodegenerative syndromes lo-

calize to specific brain networks (Lehmann et al., 2013),

there has been little to no evidence showing that specific

symptoms within neurodegenerative disease localize to spe-

cific brain networks. As neuroimaging correlates of specific

symptoms tend to be more variable across studies than

neuroimaging correlates of specific diseases, this may

prove particularly valuable.

Network localization of similar
symptoms across aetiologies

An emerging theme in neurology and psychiatry is that

specific symptoms may share a common neurobiological

substrate independent of the underlying disease process

(Insel et al., 2010). For example, lesions that cause hemi-

chorea are connected to the same region in the basal gang-

lia that is thought to cause chorea in Huntington’s disease

and chorea from hyperglycaemia (Laganiere et al., 2016).

Here, we applied this same concept to identify a shared

neuroanatomical substrate for delusions. Recently, we

found that lesions causing delusions occurred in multiple

different brain locations, but were all connected to a

common location in the right frontal cortex (Darby and

Fox, 2017; Darby et al., 2017). We now show that neuroi-

maging correlates of delusions in patients with Alzheimer’s

disease occur in multiple different brain locations, but these

locations are connected to the same neuroanatomic sub-

strate in the right ventral cortex. This convergence suggests

that not only is our technique useful in comparing neuroi-

maging correlates of specific symptoms across different stu-

dies, but that our method may be useful for comparing

neuroimaging correlates of specific symptoms across differ-

ent disease aetiologies.

Prior work has shown that the therapeutic efficacy of

invasive and non-invasive brain stimulation targets in

neurological and psychiatric diseases depends on that tar-

get’s connectivity to disease-related brain networks (Fox

et al., 2012, 2014; Horn et al., 2017). Our current results

show common network localization for neuroimaging find-

ings within a disease, and for a specific neuropsychiatric

symptom (delusions) across diseases. Symptom-specific

brain networks derived using the current method can pro-

vide testable therapeutic targets for future brain stimulation

trials.

Limitations

There are several limitations to our study. First, we focused

on neuroimaging findings in Alzheimer’s disease and neu-

rodegenerative disease, which may have a higher probabil-

ity of localizing to a common brain network than

neuroimaging findings in other diseases. Similarly, we

applied our method to just a single symptom, delusions.

Whether our method is equally useful for other diseases

such as depression, or for other symptoms, remains to be

tested. That said, we are optimistic that our method for

network localization of neuroimaging findings will prove

broadly applicable. First, many brain functions (Fox and

Raichle, 2007), brain diseases (Fox and Greicius, 2010;

Fornito et al., 2015), and symptoms (Fox and Greicius,

2010; Fornito et al., 2015) appear to localize better to spe-

cific networks than single brain regions. Diseases such as

depression, which are known for highly heterogeneous neu-

roimaging findings, are now thought to localize to brain

networks (Gong and He, 2015), and the current technique

might be used to test these hypotheses. Similarly, there is

good reason to believe that individual symptoms will local-

ize to specific brain networks (Insel et al., 2010). This is

perhaps most obvious for symptoms caused by focal brain

lesions, in which an identical connectome-based approach

to the one presented here for focal neuroimaging findings

has proven broadly applicable (Boes et al., 2015; Fischer

et al., 2016; Laganiere et al., 2016; Darby and Fox, 2017;

Darby et al., 2017, 2018a; Fasano et al., 2017).

A second potential limitation is that we used a normative

group level connectome to determine network localization

of neuroimaging findings. The advantage of a normative

connectome is that it is large (in this case, n = 1000), pub-

licly available, and provides a standardized template for use

across neuroimaging studies. However, it is possible that

results could be improved by using a connectome better

matched to the disease, gender, or average age of the pa-

tients that generated the original neuroimaging findings.

That said, prior work from our group suggests that using

age-matched or disease-matched connectomes makes little

difference with respect to network localization (Fox et al.,

2014; Boes et al., 2015; Horn et al., 2017).

Third, we used a limited set of statistical approaches to

provide a simple, ‘proof of concept’ demonstration of net-

work localization. More advanced statistical approaches

similar to those used by coordinate-based meta-analysis

techniques (Eickhoff et al., 2009; Yarkoni et al., 2011)

and graph theory measures of network function

(Bullmore et al., 2009) could be incorporated into our net-

work localization approach in future studies. Similarly, in-

dividual studies selected for our meta-analyses differed in

their power and statistical approach, leading to heterogen-

eity in which peaks were reported as significant. While this

heterogeneity should bias us against finding reproducible

network localization across studies, future work accounting

for these sources of variance may further improve the cur-

rent method.

Fourth, we found that heterogeneous neuroimaging find-

ings across studies share connectivity to common brain re-

gions, but this does not mean there are not important

differences between studies. Indeed, the region of shared

connectivity across all studies was small relative to the net-

work derived from each individual study (Fig. 2 and
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Supplementary Fig. 4). This is expected as individual stu-

dies differ in neuroimaging modality, statistical approach,

and clinical population including age, disease severity, and

co-morbid symptoms. The current paper focused on what

these studies share, but future work using network local-

ization to better understand differences between studies

may prove equally valuable.

Finally, the current results should not be used to minim-

ize concerns regarding poor sample size, study design, and

statistical analysis that limit reproducibility in neuroima-

ging studies (Carp, 2012; Button et al., 2013; Eklund

et al., 2016; Poldrack et al., 2017). In the current study,

we varied parameters to show that results were independ-

ent of methodological choices such as seed size, threshold,

and statistical approach. Additionally, we used a single

software package (SPM), FWE rather than FDR (false dis-

covery rate) correction, and the default settings for FWE

cluster-based correction within SPM in accordance with

existing best practice recommendations (Poldrack et al.,

2017). These choices reduce but don’t eliminate the risk

of false positives (Eklund et al., 2016; Poldrack et al.,

2017). Continued efforts to address these concerns in sci-

ence in general (Open Science Collaboration, 2015), and

neuroimaging in particular (Poldrack et al., 2017), will be

critical to advance the field. The current study complements

these initiatives by suggesting that challenging our assump-

tions regarding how findings should reproduce may also be

valuable.
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