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One form of defence against cancer development involves
a series of genes whose role is to metabolize and excrete
potentially toxic compounds and to repair subtle mistakes
in DNA. Much laboratory and epidemiological research
over the past decade has concentrated on the identification
of these genes and an assessment of their role in cancer
aetiology. Of particular interest has been whether the
risk of cancer associated with a particular environmental
exposure differs with respect to functionally different
polymorphisms of these genes, i.e. gene–environment inter-
action. A large number of studies have been conducted for
numerous genes and also for all common cancer sites,
although results have been very inconsistent and therefore
inconclusive. This is partially due to the inadequate sample
size of most studies to detect modest effects and the over-
reporting of positive associations identified in subgroups
of the dataset. There is also much confusion about the
meaning of ‘gene–environment interaction’, what type of
studies should be conducted to study it and also how it
should be measured. Furthermore, the very purpose of
these studies is not clear; are they attempting to identify
high-risk individuals, or are they simply trying to further
understand the cancer process? This review will explore
these questions and provide some recommendations to help
ensure that the next phase of gene–environment interaction
studies, which are likely to be much larger and based on
many more genes, also provide some clearer answers.

Introduction

A malignant tumour is the result of a series of DNA alterations
in a single cell, or clones of that cell, which lead to loss of
normal function, aberrant or uncontrolled cell growth and often
metastases. Several of the genes, which are frequently lost or
mutated, have been identified including those whose function
is to induce cell proliferation under specific circumstances
(e.g. ras and myc proto-oncogenes) and genes which are
programmed to halt proliferation in damaged cells (e.g. p53
and APC tumour suppressor genes). Other mutations are also
necessary, including in genes involved in DNA repair, cell-
cycle control, angiogenesis and telemorase production. The
pattern of losses and mutations is complex, although mutation
or loss of at least one proto-oncogene and one or more tumour
suppressor genes in a single cell, resulting in uncontrolled and
unchecked cellular proliferation, is likely to occur in nearly
all tumours (1).

With the exception of rare familial cancers which are

Abbreviations: OR, odds ratio; PAHs, polycyclic aromatic hydrocarbons;
UC, ulcerative colitis.
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primarily caused by a germline inheritance of a specific
mutation, a sporadic cancer may acquire mutations as a result
of genotoxic exposure to external or internal agents (such as
tobacco carcinogens, dietary factors, infectious agents and
sex hormones) and consequent DNA adduct formation. The
likelihood of a mutation occurring and persisting in subsequent
clones may be heavily dependant on the efficiency with which
potentially toxic exposures are metabolized and excreted,
and also the efficiency with which small mistakes in DNA
replication are rectified. It is this ‘caretaker’ role of carcinogen-
esis that is likely to vary strongly between individuals because
of the population variability in polymorphic genes that regulate
these processes. Much effort has been focused on the identi-
fication of these low risk but highly prevalent genes, although
success has been very limited. This review will explore some
of the main problem areas in the search for low-risk cancer
genes, and propose some solutions for future studies.

Which common polymorphisms may modify the multistage
cancer process?

Some examples of genes that are currently attracting interest
are included in Table I, and include genes that are responsible
for conversion of exogenous exposures into intermediate meta-
bolites (phase 1 enzymes), notably genes of the cytochrome
P450 family (2). Parodoxically, most of these intermediate
metabolites are highly reactive with DNA and are responsible
for adduct development and subsequent DNA mutations, and
their metabolization and excretion is necessary via a further
group of phase II enzymes including those from the glutothione
and N-acetyltransferase families (3,4). Another potentially
important source of inter-individual variability in relation to
the development of cancer is DNA repair capacity (5). There
is substantial variation in DNA repair capacity between indi-
viduals although it appears to vary little between identical
twins (6), indicating that it is largely under genetic control. A
fourth group of cell-cycle control genes includes tumour
suppresser genes such as p53 codon 72 polymorphism, and
genes thought to regulate apoptosis such as Cyclin D1
(CCND1). Some DNA repair genes such as XPD may also be
involved in regulating apoptosis (7) although the extent of
functional differences in most cell-cycle control and DNA
repair polymorphisms is currently unclear. Similarly, genes
involved in regulation and development of the immune system
may be important for viral and haematopoetic neoplasms,
although little data are available. Finally, genes that influence
behaviour, such as smoking, alcohol consumption and excess
calorie intake have the potential to substantially affect cancer
risk. For example, several genes have been suggested to be
associated with the ability to quit smoking, including CYP2A6
and the dopamine D2 receptor gene (8,9).

Why are we interested in genes with a low risk?

Functional variation in the families of genes listed in Table I
is likely to have a subtle effect on cancer risk for an individual,
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Table I. Preliminary list of candidate genes that may influence the risk of developing various cancers

Type of gene Gene

Phase I polymorphisms CYP1A1, CYP1A2, CYP2A6, CYP2D6, CYP2E1, ADH2, ADH3, MPO mEH
Phase II polymorphisms GSTM1, GSTT1, GSTP1, NAT1, NAT2, ALDH2, NQO1, SULT1A1, SOD2
DNA repair genes XRCC1, XRCC3, XPD, XPF, ERCC1
Immune function genes IL1A, IL1B, IL2, IL6, TNF, HLA Class I/II
Cell-cycle control genes TP53, HRAS
Nicotine addiction and CYP2A6, DAT1, DRD2, DRD4, RARA
other receptor genes

Table II. Population attributable risk (PAR) and sample size requirements
for various combinations of OR and prevalence of polymorphism (P)

Prevalence OR

1.25 1.5 2.0 5.0 25

50% 11 20 33 66 92
1267 387 136 30 13

20% 4.8 9.1 16.7 44.0 82.8
1850 535 172 28 8

5% 1.2 2.4 4.8 16.6 54.5
6020 1689 516 69 11

Population attributable risk (in bold) and sample size (in italic) required to
detect each OR assuming a power of 80% and P � 0.05.

but may have a large population impact because the relevant
polymorphisms may be highly prevalent. For example, a
polymorphism which increases risk by only 50% but is also
present in half of the population would account for 20% of
all cases, similar to a high-risk gene with an increased risk of
5-fold which is present in only 5% of the population (Table II).

Identifying low-risk cancer genes will also be important for
increasing our knowledge of carcinogenicity. Most exogenous
and endogenous exposures (e.g. diet, tobacco, alcohol, air
pollution and hormones) are complex mixtures and we are
still unclear about the process by which they exert their
carcinogenic effect. Identifying metabolizing and DNA repair
genes involved with these exposures will help to clarify the
process by which a cancer develops, and may thus indirectly
lead to prevention. For example, exposure to polycyclic aro-
matic hydrocarbons (PAHs) may be important causes of
colon cancer, with possible exposure mainly from tobacco
consumption and dietary consumption of charred meat (10).
The glutathione S-transferase M1 and T1 genes code for
enzymes which may be involved in PAH metabolism and a
role for these genes in colon cancer would enhance the
credibility of a causal association with PAHs, especially if this
association was restricted to smokers, or those who were likely
to consume well cooked meat. A similar example involves the
alcohol and aldehyde dehydrogenase genes (mainly ADH2,
ADH3 and ALDH2) and their possible role with oro-pharyngeal
and laryngeal cancer. ADH2 and ADH3 are primarily respons-
ible for the metabolization of ethanol to acetaldehyde and the
speed at which the metabolization occurs is dependant upon
various ADH alleles, with ADH2*2 and ADH3*1 alleles
representing fast metabolizers (11). If an association between
head and neck cancers and these ADH alleles is confirmed this
will provide strong evidence that the metabolite acetaldehyde, is
the causative agent in alcohol-related carcinogenesis, and
provide evidence against the main alternative hypotheses (e.g.
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that alcohol acts merely as a solvent for tobacco-related
carcinogens).

Will identification of many low-risk genes allow identifica-
tion of high-risk individuals?

Although of importance on the population level, another
argument to justify the identification of susceptibility genes is
that they may also be useful in identifying individuals who
are at a very high cancer risk because of their increased genetic
susceptibility in response to a genotoxic exposure, or because
they have inherited several low-risk types whose combined
effect results in a high risk. The implications of such findings
are unclear although one assumption is that they could lead to
chemoprevention programmes directed to high-risk individuals,
perhaps to enable them to quit smoking, reduce alcohol
consumption, adopt dietary changes or avoid particular occupa-
tional exposures. This strategy is problematic on both pragmatic
and theoretical grounds. On a pragmatic level, as was pointed
out by Rose (12), modest behavioural changes which occur
on a population level are likely to lead to a greater public
health impact than larger behavioural changes which are
restricted to a small high-risk group. On a theoretical level, it
is far from certain that even complete knowledge of all
genes potentially involved in cancer development would allow
identification of population subgroups at a particularly high
risk if exposed to a particular carcinogen. An alternative
viewpoint is that sporadic cancers may have a strong stochastic
element, and a deterministic approach that attempts to accur-
ately predict risk based on complete knowledge of genetic
susceptibility may not be appropriate.

The inherent stochastic nature of cancer is supported by
several observations in animal and twin studies. Genetically
identical animals kept in as similar an environment as possible
will not behave the same upon exposure to environmental
carcinogens. While it is possible to estimate the proportion of
animals that will develop a malignancy at a particular exposure
level, there appears to be a random element determining which
particular animals will develop tumours. The closest possible
controlled situation among humans is the twin study. A recent
Scandinavian study analysed 44 788 pairs of twins and reported
that the correlation of sporadic cancers within monozygotic
twins is not particularly striking, especially when compared
with non-identical twins (13). For example, in pairs where one
male twin developed a lung cancer, the other twin developed
a lung cancer by the age of 75 years in 11% of monozygotic
pairs and 10% of dizygotic pairs. Given that the lifetime risk
of current smokers is ~15% (14), and assuming that these
twins were over-represented by smokers, which is also known
to correlate strongly within twins (15), the results provide little
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Fig. 1. Two possible causal pathways for colorectal cancer, including likely
mutations and potential genetic and environmental exposures.

evidence of a genetically susceptible population at a high risk
of developing lung cancer.

It is possible that the current model incorporating genetic
susceptibility and environmental exposures may have to be
extended to include a stochastic element, similar to the three
dimensional biologic model proposed by Lewontin (16). Given
previous observations from twin studies, it is also possible
that the stochastic element may be just as important, if not more
important, than the environmental and genetic components.

How can we measure gene–environment interaction?

A possible definition of gene–environment interaction is that
it occurs when a genetic and environmental exposure work
together to cause a disease outcome in some or all cases. If
either exposure is absent then the disease will not occur in
these cases. The assumption, which is commonly used to test
for interaction, is that if the joint effect for two exposures is
greater than the product of the individual effects then interaction
is present. However, an alternative model of interaction, which
is often ignored, is the additive model. In order to demonstrate
how both of these models of interaction may be relevant in
carcinogenesis, the colorectal model of tumour growth is
presented in Figure 1.

Based on analysis of intestinal biopsy samples from different
stages of malignant growths, Vogelstein et al. found that both
copies of the APC tumour suppressor gene on chromosome 5
were typically mutated in dysplastic lesions and early aden-
omas, and the mutated RAS oncogene was often detected in
more advanced adenomas. Still more advanced polyps tended
to have a mutated tumour suppressor gene termed DCC, with
p53 tumour suppressor genes being most commonly mutated
only at the end of the carcinogenic process (17). Potential
genetic and environmental exposures, which may be related
to specific mutations, have been introduced into this model
(e.g. E1, E3, E4, G1, G2, G3, G4). A second alternative pathway
for colorectal cancer also exists and is included in Figure 1,
along with hypothetical environmental and genetic causes for
each stage of colorectal cancer development. Ulcerative colitis
(UC) is an autoimmune disease leading to chronic inflammation
of the colon mucosa and an increased risk of colorectal cancer
(18). The mutation pattern of UC-linked colon cancer appears
to be distinct to adenoma-linked colon cancer with very few
APC mutations being detected and an excess of p16 mutations,
as well as a high proportion of p53 mutations being detected
in UC dysplastic lesions (19). Similarly, it is probable that
there are distinct causes of UC-related colorectal cancer, which
are completely independent of adenoma-related colorectal
cancer (an example from Figure 1 includes G1 and E1 for
adenoma-related colon cancer and G2 and E5 for UC-related
colon cancer). In this scenario risk factors, which appear on
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distinct causal pathways, are independent risk factors for the
cancer and do not interact. Importantly, the combined risk for
having two independent risk factors (e.g. G1 and E5 or G2
and E1) can be shown to be additive (20):

i.e. OR(G1,E5) � OR(G1) � OR(E5) – 1

A further conclusion is that joint effects, which depart from
an additive model, involve exposures on the same causal
pathway. For example, the exposure E1 will increase the
mutation rate of the APC gene, resulting in a larger number
of modified clones with APC mutations, and increasing the
probability that one of these will develop further and pick up
a sufficient number of mutations to become malignant. Expo-
sure E1 will interact with all other genetic and environmental
exposures which operate later in this pathway (G2, G3, G4,
E3, E4) and the joint risk of E1 with any of these may be
predicted by the multistage cancer model to be the product of
their individual risks (21). The results provide an initial
framework for testing for interaction between two causes in
that a departure from an additive effect for two exposures
implies that they are both involved in the same causal pathway,
although possibly at different mutation sites. A measure of
departure from the additive model is the relative excess risk
due to interaction (RERI), which may be calculated as:

RERI � OR(GE) – OR(E) – OR(G) � 1

A third situation exists when two exposures are acting on
the same mutation (e.g. E2 and G2 in the development of UC
and subsequent p16 mutations). In this case the resulting joint
effect is not possible to predict and may be multiplicative,
greater than multiplicative or even less than multiplicative.
This relationship will be dependant upon how the risk of a
particular mutation changes with changing carcinogenic dose.
If, as may be the case for many metabolic polymorphisms, the
mutation rate is proportional to the dose, then a multiplicative
effect is likely to be observed. Alternatively, a greater then
multiplicative effect will be observed when the mutation rate
is disproportionately increased with dose. Another typical
situation where a greater than multiplicative effect may be
observed is when one risk factor is completely dependant on
the other for its carcinogenic potential, i.e. there is no increased
risk for one risk factor in the absence of the other. Other
possible scenarios are also feasible including thresholds with
a less than additive effect being observed. A more extreme
situation may result from exposures which are protective at
one dose level and risk factors at another dose level, a possible
example being beta-carotene and lung cancer. In summary,
there is no reason to expect that a greater than multiplicative
effect will be observed for interaction between exposures at a
single mutation site and several other possibilities may be
equally plausible. Also, it may not be possible to distinguish
this form of interaction for a specific mutation from an
interaction between causes at different sites on a pathway
when a multiplicative effect between exposures is observed.
However, a greater than multiplicative effect will strongly
imply simultaneous interaction acting on a specific mutation
(Table III).

Finally, the existence of separate causal pathways for any
particular cancer, as depicted for colorectal cancer in Figure 1,
is likely to be the exception rather than the rule indicating that
additive interaction between established risk factors will be
rare. Another possible example of separate causal pathways
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Table III. Interpretation of joint OR regarding type of statistical interaction, which is present

(E) (G) OR Possible interpretations of OReg

– – 1
� – OReg’ OReg � OReg’ � ORe’g – 1. Consistent with additive model. E and G likely to be involved in different causal pathways
– � ORe’g OReg � OReg’ * ORe’g. Consistent with multiplicative model. E and G likely to be involved in same causal pathway,

possibly at different mutation site
� � OReg OReg � OReg’ * ORe’g. Greater than multiplicative model. E and G likely to act simultaneously at same mutation site

(E), Environmental exposure; (G), genetic exposure; OReg’, OR for E in absence of G; ORe’g, OR for G in absence of E; OReg, OR in presence of both E and
G.

may include pharyngeal cancers, a high proportion of which
are HPV positive and which do not appear to be related to the
traditional risk factors for HPV negative pharyngeal cancers
including alcohol and tobacco (22).

Why have previous studies of genetic polymorphisms pro-
vided such inconsistent results?

The literature on genetic polymorphisms and cancer is vast
with hundreds of studies being published each year on possible
gene–cancer relationships. The total sum of knowledge
obtained from this effort is however disappointing, with very
little consensus on which positive associations are likely to be
true. This lack of consistency of study findings, and confusion
in their interpretation, is probably due to several reasons
including small sample size of studies conducted up to now,
publication bias by both authors and journal editors and also
over-interpretation of subgroup findings.

The average size of current case-control studies for genetic
polymorphisms is in the region of 150–300 cases and a similar
number of controls. As can be seen from Table II, these
sample sizes would be appropriate for detecting common
polymorphisms which increase risk by ~2-fold, although they
are not sufficient for detecting such increased risks for rarer
polymorphisms (e.g. 5%) or for common polymorphisms which
increase risk by �100%. This is problematic as recent large
meta-analysis of published studies indicates that when an
increased risk does exist for a particular polymorphism it is
likely to be very moderate. For example, two recent meta-
analyses of NAT2 slow acetylation and bladder cancer risk
have been conducted on 22 published studies comprising over
2000 cases and 3000 controls (23,24). Both meta-analyses
found an increased risk of ~40% for slow acetylators, with a
95% confidence interval (CI) of between 20 and 60%. Given
that ~40% of Caucasian populations are slow acetylators, this
increased risk is important. However, none of the studies that
investigated this relationship had a sufficiently large sample
size to detect this. Similarly, a recent meta-analysis of the
GSTM1 null polymorphism and lung cancer comprising 43
studies and over 8000 cases and 11 000 controls reported an
increased risk of 17% for the GSTM1 null polymorphism,
with a 95% range between 7 and 27% (S.Benhamou, W.J.Lee,
A.-K.Alexandrie et al., submitted for publication). Again, even
this small increased risk may be important on the population
level because of the high proportion of the population who
carry the GSTM1 null genotype. Given their biological func-
tion, NAT2 and GSTM1 were two of the strongest candidate
genes for bladder and lung cancer, respectively, and future
studies on common polymorphisms should anticipate that if
an increased risk does exist it is likely to be in the range 20–
60%, and not 100–200% as previous studies have assumed,
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and the sample size of future studies should be sufficiently
large to detect such small risks.

The conduct of small studies may not be such a major
problem if the results of all studies were published in a format
that allows subsequent pooling with similar studies. Instead,
what appears in the literature is known to be a biased
representation of studies that have been conducted, with
positive findings being more likely to be reported than negative
findings (25). This is due to both selection by the investigator
choosing which findings to report or simply putting off
submission of negative findings because of other priorities.
The problem is also partly due to journal editors who more
eagerly accept for publication positive rather than negative
findings. There are several possible approaches to lessening
the potential for publication bias, including statistical and
graphical tests when conducting meta-analysis (26), contacting
investigators and asking for access to unpublished data and
pooling this with published data (27) and also special sections
in journals for the reporting of non-positive findings. While
all of these provide useful information they cannot exclude
the possibility of publication bias. Instead it is probable that
the most reliable evidence will come from large single studies,
or coordinated multicentre studies which test hypotheses of
genetic susceptibility, and which undertake to report all geno-
typing results.

Another complicating factor in interpreting results from
genetic studies is that many studies will report no overall
positive findings with the exception of one particular subgroup,
e.g. among women, among lightly exposed, among squamous
cell cancer cases only, etc. Subsequent reporting of the findings
may concentrate strongly on the subgroup analysis and an
appropriate biological model for why any increased risk should
be restricted to this group. What such reports often ignore is
that if no overall effect is observed (OR � 1.0) then an
increase in one group implies a similar decrease in risk in the
remaining group (e.g. among men, among heavily exposured,
among adenocarcinomas). Also, such findings are rarely replic-
ated in subsequent studies. As a general rule, and especially
in the absence of a strong a priori biological model, it is
therefore prudent to establish a main effect for a particular
polymorphism before attempting to identify whether the risk
is increased in particular subgroups. If this rule were adopted
then the frequency of reporting false positive findings would
decrease substantially.

Another potential reason for discrepant results is that geno-
typing laboratories may vary with respect to the sensitivity
and specificity of the technique used resulting in different
levels of misclassification in genotype data. The effect of even
moderate levels of misclassification (e.g. a sensitivity and
specificity of 90%) can sharply attenuate any true increased
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Table IV. Sample size required to provide an 80% power to detect (i) departure from additive interaction and (ii) 2-fold gene–environment interaction under
assumption of multiplicative model between a dichotomous environmental (E) and genetic (G) risk factor

Prevalence OR and sample size under additive model OR and sample size under multiplicative model

E G ORe’g OReg’ OReg
a OReg

b n (P�0.05) n (P�0.001) OReg
c n (P�0.05) n (P�0.001)

0.4 0.4 2.0 2.0 3.0 4.0 1344 2648 8.0 609 1200
0.4 0.1 2.0 2.0 3.0 4.0 2971 5849 8.0 1144 2260
0.1 0.1 2.0 2.0 3.0 4.0 4713 9195 8.0 2336 4684
0.4 0.4 1.5 1.5 2.0 2.25 10 224 20 134 4.5 566 1116
0.4 0.1 1.5 1.5 2.0 2.25 23 751 46 752 4.5 1185 2340
0.1 0.1 1.5 1.5 2.0 2.25 50 267 98 618 4.5 2555 5099
0.4 0.4 1.0 10.0 10.0 10.0 N/A N/A 20.0 1032 2037
0.4 0.1 1.0 10.0 10.0 10.0 20.0 1027 2037
0.1 0.1 1.0 10.0 10.0 10.0 20.0 2442 4899

OReg’, OR for e in absence of g; ORe’g, OR for g in absence of e.
aOReg, OR in presence of both e and g. Expected under additive model.
bOR under assumption of multiplicative model.
cOR expected under 2-fold interaction. Sample size formulas taken from: Garcia-Closas M and Lubin J, 1999 (38). Assumes equal number of controls.

risk resulting in a significantly lower study power, especially
for detecting any gene–environment interaction (28). Control-
ling for genotype misclassification is, however, feasible through
good study design. The extent of random misclassification
may be controlled through blindly genotyping a proportion of
samples twice, whereas systematic errors may require inclusion
of ‘gold standard’ previously sequenced DNA cell lines, or at
least the inclusion of a separate laboratory with a different
genotyping methodology. As the use of high-throughput geno-
typing based on various technologies become routine, prior
validation and the inclusion of a sample of doubles throughout
the genotyping process should become a standard part of the
conduct and reporting of genotyping studies.

How big should gene–environment interaction studies be?

The sample size estimates in Table II indicate that future
studies will have to be significantly larger than the current
average of 150–300 case-control pairs if they are to accurately
detect moderate effects of genetic susceptibility, and that
sample sizes in the range of 500–2000 case-control pairs are
required as an initial step in order to detect the possible main
effects of genes. A second stage of analysis may concentrate
on detecting departures from both additive and multiplicative
interactions for the effects of genes with particular exposures,
as well as for assessment of groups of genes together and also
the effect of genes in particular subgroups. As can be seen
from Table IV, such studies will require significantly larger
sample sizes. When relatively large independent effects are
observed for both genetic and environmental exposure then a
sample size in the range of 1500–5000 case-control pairs will
be sufficient to detect departures from additive interaction,
with an alternative hypothesis of multiplicative interaction.
However, when the risk for either environmental or genetic
factor is close to 1.0 then the expected OR under both additive
and multiplicative model are very similar (equivalent when
OReg’ or ORe’g � 1.0), and the sample size required to
differentiate between additive and multiplicative models
quickly becomes unrealistic. Sample sizes to detect for moder-
ate departures from multiplicative interaction (e.g. �2-fold
excess) do, however, remain fairly stable under a number of
assumptions and indicate that studies in the range of 1000–
5000 case-control pairs will be required. Studies of this
magnitude for most common cancers are currently being
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planned, although conducting such large studies for rarer
cancer sites present difficulties which may be best overcome
through the coordination of multicentre studies, or through
establishing consortia of independent investigators who start
individual studies (D.Hunter, M.Bray, D.Burns et al., submitted
for publication).

Multiple testing and the penalty for peeking

While recent studies have restricted analysis to one or a
few genes of primary interest, the various high-throughput
genotyping techniques allowing for the analysis of large
numbers of SNPs will result in an increase of between
10- and 100-fold of the number of genes being tested. For
example, a DNA microarray including SNPs for known relevant
polymorphisms of all the genes listed in Table I may be
constructed and genotyping conducted for a cost in the region
of $100 per subject (assuming an average of five SNPs per
gene and $0.5 per genotype). A potential concern in such
studies is multiple testing and the worry that it will not be
possible to distinguish the few true positive results from the
abundance of false positive results. Several solutions to this
have been proposed in the past including correcting for the
overall significance level by incorporating the Bonferroni
correction, keeping a part of the study sample to retest positive
findings, and Bayesian techniques which incorporate previous
results. While all three possibilities are problematic, the pro-
position to keep separate a retest sample is distinctly inefficient
and cannot be recommended (29). Regarding the Bonferroni
coefficient, often described as ‘the penalty for peeking’, this
can have the practical advantage that if planned in advance a
study sample size can be increased to allow for multiple
testing. As can be seen from Table IV, the sample size required
if a 0.1% significance level is adopted instead of 5% is to
roughly double the sample size. Therefore, in order to test 50
hypotheses with an overall null P-value of 0.05, the sample
size only has to be increased 2-fold. This ratio will depend on
various parameters although it is never more than a 3-fold
increase (30). While the Bonferroni coefficient is crude and
not intuitively appealing, there is no substitute for a large
study when testing multiple hypotheses.

A third potential methodology for analysing large numbers
of hypotheses, are Bayesian techniques, which incorporate a
prior belief of strength of evidence for particular genetic
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associations. The rationale is that genes with a positive
association but little prior support are more likely to represent
false positive associations than genes with substantial prior
support. The Bayesian analysis incorporates this prior know-
ledge resulting in stronger associations for genes with substan-
tial prior support. Bayesian techniques are, however, little used
in the context of multiple testing. One drawback is that the
prior is subjective and investigators may differ strongly in the
perceptions of the validity of previous results. In practice, the
level of prior support is informally included in the discussion
of results, and should play a major role in the interpretation
of positive findings. In general, if more emphasis were placed
on interpretation of results in the light of number of hypotheses
tested and the strength of previous findings then a Bayesian
calculation of posterior evidence would not be necessary.

An alternative pharmacokinetic model has also been pro-
posed for the joint modelling of large numbers of metabolizing
genes and exposures, allowing for the inclusion of pheno-
typic and functional genetic information (D.C.Thomas and
V.Cortessis, submitted for publication). This approach aims to
model metabolic pathways including multiple genetic and
environmental factors instead of individual genes or simple
two-way gene–gene/gene–environment interactions. While
intuitively appealing, it does suppose a good understanding of
the underlying pathway and its successful application has yet
to be demonstrated.

Do we need other study designs?

While nearly all studies of genetic susceptibility and cancer
are from case-control studies, several other study designs have
been proposed including family-based designs and case-only
designs (31,32). Family-based designs involve typing not only
the affected individuals but their parents as well. The genotype
which an individual does not inherit provides a virtual control
that is perfectly matched for ethnic group and removes the
possibility of bias from this source (31). A comparison of
actual and observed genotype frequencies may be used to
calculate genotype relative risks. This method may also be
extended for cases with information on only one parent.
A specific case of family-based studies is the transmission
disequilibrium test (TDT), which identifies parents who are
heterozygous for a risk allele. This may again be interpreted
as a matched case-control study and the OR associated with
the risk allele is simply the number of times the affected
offspring inherits the risk allele from a heterozygous parent
divided by the number of times the affected offspring inherits
the alternative allele. Parents who are not heterozygous for
the risk allele offer no information for this comparison. A
variation on this design includes unaffected sibs as controls (31)

Family-based designs are usually proposed to counteract the
possibility of confounding by ethnicity between cases and
controls. They do however involve considerable extra effort
in obtaining parental genetic information and whether this
is a worthwhile use of resources is questionable. Similar
information can be obtained from a well-conducted matched
case-control with a minimal possibility of ethnic differences
between cases and controls biasing the results. Also, recent
simulation exercises have shown that even under quite extreme
circumstances confounding by ethnicity is likely to have a
very minor effect (�10%) (33). For most planned studies of
cancer the question is academic, as both parents of most cases
will have died. However, in family-based studies where the
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information is available the TDT test does provide an attractive
study design for testing association.

The ‘case-only’ and ‘control-only’ design

A major problem when conducting studies which attempt to
obtain an accurate measure of interaction is that the sample
size required increases sharply (Table IV). A recently proposed
study design, which aims to be more efficient for assessing
gene–environment interaction is the case-only study (32). A
group of cases are stratified into a 2�2 table on the basis of
two exposure variables and, provided that these exposures are
unrelated in the population, the ‘case-only’ OR (ORca) is
related to the unmeasured individual OR for each exposure
separately by the following formula:

ORca � ORge / (ORge’ * ORg’e)

For example, a recent case-only study of GSTM1 null
genotype and environmental tobacco smoke exposure among
106 never smoking women identified a case-only OR of 2.6,
95% CI 1.1–6.1 (34). This indicates that ORge is about two
times greater than the product of the individual effects (ORge’
*ORg’e) implying substantial simultaneous interaction.

The number of subjects required in a case-only study is
substantially smaller than the number that would be required
for a traditional case-control study for the same power to
detect greater than multiplicative interaction (35). An extra
strength is that genotyping may be conducted on archived
tumour tissue allowing large groups of rare cases to be
collected. However, the study design also has several limita-
tions. First of all, it is not possible to assess the individual
effects of exposure or genotype, and case-only studies where
the main effect of the gene or exposure is not known provide
only limited information. Secondly, it is based on a statistical
model measuring departures from multiplicative interaction
and provides no information on departures from an additive
model. Thirdly, the assumption of independence between the
exposure and the genotype cannot be evaluated. Modifications
to this design incorporating some control information have
been proposed (36), although in general the case-only design
is only of limited use for identifying gene–environment inter-
action. An exception to this is when one is investigating risk
factors for subgroups of a particular cancer, e.g. exposure to
PAHs and the development of lung tumours with a p53
mutation versus lung tumours without such a mutation (37).
In this situation the case-only study has reverted back to a
case-control study with case-control status defined according
to some tumour characteristic.

Another alternative study design, which is probably under-
utilized is the cross-sectional study of genetic determinants of
behaviour in non-diseased population (‘control-only’ design).
Genes that influence lifestyle factors such as smoking or
alcohol consumption, or anthropometric factors such as weight
control, or endogenous factors such as sex hormone levels,
are also prime candidate genes for cancer development. The
same approach may be used to investigate genetic determinants
of markers for increased cancer risk such as markers of
chromosome instability or poor DNA repair (7). Such studies
have the potential to provide important functional information
on candidate genes and are of much interest.

Future perspectives and recommendations for assessing
gene–environment interaction

Previous gene–environment interaction studies have been based
on a relatively limited sample size, have analysed only one or
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several genes and have been of only limited success. It is
likely that the defining feature of future studies will be much
larger samples of cases and controls, and the simultaneous
analysis of large numbers of candidate genes. In the absence
of a strong a priori biological hypothesis, it may be prudent
to establish a main effect for a particular polymorphism using
stringent criteria before attempting to identify whether the risk
is increased in particular subgroups. Also with an increasing
awareness of the strong detrimental effect of misclassification
it is likely that more genotyping studies will include a validation
component and will publish the results of this along with the
main results. Any random misclassification may be assessed
by including a sample of blind doubles and systematic variation
may be assessed by re-genotyping a sample in another laborat-
ory. It is also likely that studies to identify the function of
particular genotypes using non-cancer outcomes (e.g. DNA
repair, hormone levels), which can aid the interpretation of
subsequent cancer studies, will probably be given a higher
priority.

Finally, in order to test the repeatability of findings, consortia
of investigators working on particular cancer sites may need
to be established. Similarly, for rarer cancer sites, the conduct
of large studies may be most efficiently planned by coordination
of multicentre studies, or through establishing consortia of
independent investigators who start individual studies.
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