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Study results of single nucleotide polymorphisms (SNPs)
and cancer susceptibility are often conflicting, possibly
because of the analytic challenges of testing for multiple
genetic and environmental risk factors using traditional
analytic tools. We investigated the relationship between
DNA repair gene SNPs, smoking, and bladder cancer sus-
ceptibility in 355 cases and 559 controls enrolled in a
population-based study of bladder cancer in the US. Our
multifaceted analytical approach included logistic regres-
sion, multifactor dimensionality reduction, and hierarch-
ical interaction graphs for the analysis of gene–gene and
gene–environment interactions followed by linkage dis-
equilibrium and haplotype analysis. Overall, we did not
find an association between any single DNA repair gene
SNP and bladder cancer risk. We did find a marginally
significant elevated risk of the XPD codon 751 homozygote
variant among never smokers [adjusted odds ratio (OR)
2.5, 95% confidence interval (CI) 1.0–6.2]. In addition, the
XRCC1 194 variant allele was associated with a reduced
bladder cancer risk among heavy smokers [adjusted OR
0.4, 95% CI 0.2–0.9)]. The best predictors of bladder can-
cer included the XPD codon 751 and 312 SNPs along with
smoking. Interpretation of this multifactor model revealed
that the relationship between the XPD SNPs and bladder
cancer is mostly non-additive while the effect of smoking is
mostly additive. Since the two XPD SNPs are in significant
linkage disequilibrium (D0 ¼ 0.52, P ¼ 0.0001), we estim-
ated XPD haplotypes. Individuals with variant XPD
haplotypes were more susceptible to bladder cancer [e.g.
adjusted OR 2.5, 95% CI 1.7–3.6] and the effect was
magnified when smoking was considered. These results
support the hypothesis that common polymorphisms in
DNA repair genes modify bladder cancer risk and emphas-
ize the need for a multifaceted statistical approach to
identify gene–gene and gene–environment interactions.

Introduction

Cancer is a multifactorial disease that results from complex
interactions between many genetic and environmental factors
(1). This is particularly true for the sporadic forms of cancer
that, in contrast to familial cancer syndromes, tend to be com-
mon in the population. As a result, it is generally believed that
there will not be single genes or single environmental factors
(i.e. silver bullets) that have large effects on disease suscept-
ibility. Rather, each risk factor is likely to contribute to cancer
susceptibility through a combination of nonadditive and addit-
ive interactions with other risk factors. This complex genetic
architecture is consistent with other common diseases such as
cardiovascular disease (2). In fact, it has been suggested that
non-additive interactions are a ubiquitous component of the
genetic architecture of many common human diseases (3).
Given these complexities, a successful research strategy for
identifying risk factors for common human cancers must con-
sider combinations of genetic variations and environmental
exposures. We describe here a large case–control study of
bladder cancer susceptibility that specifically evaluates gene–
gene and gene–environment interactions using a multifaceted
analytical approach that combines traditional statistical meth-
ods with novel computational algorithms.
In 2004, an estimated 60 240 people in the US were dia-

gnosed with bladder cancer and 12 710 died of the disease (4).
In the USA, bladder cancer incidence ranks fourth among men,
and tenth among women. Occupational exposure to chemicals
such as 2-naphthylamine and benzidine, or exposure to 4-
aminobiphenyl, and aromatic amines through tobacco smoke,
plays a significant role in initiation of bladder cancer. Bladder
cancer risk is up to 4-fold higher among cigarette smokers
compared with non-smokers (5). Case–control studies provide
evidence of a familial predisposition to bladder cancer (6–8)
indicating that some susceptibility factors may be heritable.
One such heritable factor is DNA repair polymorphisms that

increase susceptibility to DNA damage resulting from bladder
carcinogens [reviewed in (9)]. Results of our previous study
indicated a 40% reduction in risk of bladder cancer among
those with at least one XRCC1 399 variant allele compared
with those with one or two wild-type alleles (10). However, to
date, epidemiology studies of bladder cancer risk in relation to
these polymorphisms are either conflicting (i.e. for XPD,
XRCC1 and XRCC3 (11–18), rare (i.e. for XPC PAT) (19), or
non-existent (i.e. for APE1). Also some studies raise the pos-
sibility of gene–gene interaction between polymorphisms, i.e.
between XRCC1 194 and XRCC3 241, XRCC1 399/XRCC1
194 and XPD 751/XPD 312 for bladder (18) and lung cancers
(20,21). Available data are largely based on hospital-based
studies, many of insufficient size to evaluate potential gene–
exposure interactions. Additionally, differential findings could
be related to population admixture. Differences could also be
due to the presence of gene–gene and gene–environment
interactions that are not well understood due to the analytic
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challenges of testing for multiple genetic and environmental
risk factors using traditional analytical tools (22).
To expand on our prior XRCC1 results and clarify the role of

polymorphisms in DNA repair genes in bladder cancer sus-
ceptibility, we examined multiple single nucleotide poly-
morphisms (SNPs) in the base excision repair (BER),
nucleotide excision repair (NER) and double strand break
(DSB) repair pathways in a population-based study of 355
bladder cancer cases and 559 controls from New Hampshire.
We specifically evaluated the presence of gene–gene and
gene–environment effect modification using both traditional
and novel analytic approaches.

Materials and methods

Study group

We identified all cases of bladder cancer diagnosed among New Hampshire
residents, ages 25–74 years, from July 1, 1994 to June 30, 1998 from the State
Cancer Registry. Within 15 days of diagnosis, the state mandated rapid report-
ing system requires submission of an initial report of cancer, and a definitive
report within 120 days. To be eligible for the study, subjects were required to
have a listed telephone number and speak English. We sought physician
consent before contacting eligible bladder cancer patients. We interviewed a
total n ¼ 459 bladder cancer cases, which was 85% of the cases confirmed to
be eligible for the study. Non-participants included (n ¼ 10) whose physician
denied patient contact, (n ¼ 63) were reported as deceased by a household
member or physician, (n¼ 3) no answer after 40 attempts distributed over day,
evenings and weekends, (n ¼ 75) declined participation and (n ¼ 8) were too
ill to take part. A standardized histopathology review was conducted by the
study pathologist, and from this review we excluded eleven subjects who were
initially reported to the cancer registry as bladder cancer.

All controls were selected from population lists. Controls 565 years of age
were selected using population lists obtained from the New Hampshire Depart-
ment of Transportation. The file contains the names and addresses of those
holding a valid driver’s license for the state of New Hampshire. Controls
65 years of age and older were chosen from data files provided by the Centers
for Medicare & Medicaid Services (CMS) of New Hampshire. The method of
control selection used in our study has been successfully employed in other
case–control studies conducted in the region [e.g. (23)]. For efficiency, we
shared a control group with a study of non-melanoma skin cancer conducted
covering an overlapping diagnostic period of July 1, 1993 to June 30, 1995
(23). We selected additional controls for bladder cancer cases diagnosed from
July 1, 1995 to June 30, 1997 frequency matched to these cases on age (25–34,
35–44, 45–54, 55–64, 65–69, 70–74 years) and gender. Controls were ran-
domly assigned a reference date from among the diagnosis dates of the case
group to whom they were matched. We interviewed a total n ¼ 665 controls
(the total shared control group and additional controls), which was 70% of the
controls confirmed to be eligible for the study. Of the potential participants,
(n ¼ 18) were reported as deceased by a member of the household, (n ¼ 17)
no answer after 40 attempts distributed over day, evenings and weekends,
(n ¼ 261) declined, (n ¼ 29) were mentally incompetent or too ill to take part.

Personal interview

Informed consent was obtained from each participant and all procedures and
study materials were approved by the Committee for the Protection of Human
Subjects at Dartmouth College. Consenting participants underwent a detailed
in-person interview, usually at their home. Questions covered sociodemo-
graphic information (including level of education), lifestyle factors such as
use of tobacco (including frequency, duration and intensity of smoking),
family history of cancer and medical history prior to the diagnosis date of
the bladder cancer cases or reference date assigned to controls. Recruitment
procedures for both the shared controls from the non-melanoma skin cancer
and additional controls were identical and ongoing concomitantly with the case
interviews. Case–control status and the main objectives of the study were not
disclosed to the interviewers. To ensure consistent quality of the study inter-
viewer, interviews were tape recorded with the consent of the participants and
routinely monitored by the interviewer supervisor. To assess comparability of
cases and controls, we asked subjects if they currently held a driver’s license or
a Medicare enrolment card.

Genotyping

DNA was isolated from peripheral circulating blood lymphocyte specimens
harvested at the time of interview using Qiagen genomic DNA extraction kits

(QIAGEN, Valencia, CA). We chose to examine DNA repair genes with
polymorphisms that have previously been examined in relation to bladder
cancer (XRCC1, XRCC3, XPD, XPC) as well as other pathway members
that physically interact with these genes (APE1). Genotyping for non-synon-
ymous SNPs XRCC3 C/T at position 241, APE1 T/G at position 148, XPD G/
A at position 312 and A/C at position 751, XRCC1 C/T at position 194 was
performed by Qiagen Genomics using their SNP mass-tagging system. For
XRCC1G/A at position 399 and XPC PAT�/þ, genotyping was performed by
PCR–RFLP as described previously (10). Of the 1113 participating cases and
controls, genotyping was performed on DNA isolated from blood on 914
(82%). For quality control purposes, laboratory personnel were blinded to
case–control status. These assays achieved 495% accuracy as assessed using
and negative and positive quality controls (including every 10th sample as a
masked duplicate). Data were missing on 103 individuals for XRCC1 194, 70
for XRCC1 399, 2 for XRCC3, 111 for XPD 312, 53 for XPD 751, 131 for
XPC and 3 for APE1.

Statistical analysis

The goal of the statistical analysis was to assess the relationship between DNA
repair gene SNPs, smoking and bladder cancer susceptibility. To assess the
independent main effects of each SNP, we conducted logistic regression
analyses for individuals with one or two variant alleles in comparison to
those homozygous wild-type for each individual SNP. Assessment of gene–
gene and gene–environment interactions was carried out using both logistic
regression and Multifactor Dimensionality Reduction (MDR). In addition, we
employed a third method that uses information theory to build interaction
graphs for confirming, visualizing and interpreting gene–gene and gene–
environment interactions identified using logistic regression and MDR.
Finally, we carried out linkage disequilibrium and haplotype analyses to assess
the allelic effects of predictive SNPs. Each method is described in detail below.

We computed the odds ratio (OR) for the joint effects of gene pairs using
individuals who are homozygous wild-type at both loci as the referent group
and evaluated interactions between bladder cancer risk factors [gender, smok-
ing variables [(e.g. never,535 pack-years,�35 pack-years)], and genotype by
including interaction terms in a logistic regression model. The pack-year cut-
point was chosen based on the median number of pack-years overall. Statistical
significances of the interactions were assessed using likelihood ratio tests
comparing the models with and without interaction terms.

The nonparametric MDR approach was selected to complement logistic
regression for the analysis of gene–gene and gene–environment interactions.
We briefly describe MDR here. The details of MDR are described elsewhere
(24–27) and reviewed by (28). MDR is a data reduction (i.e. constructive
induction) approach that seeks to identify combinations of multilocus geno-
types and discrete environmental factors that are associated with either high
risk or low risk of disease. Thus, MDR defines a single variable that incorpor-
ates information from several loci and/or environmental factors that can be
divided into high risk and low risk combinations. This new variable can be
evaluated for its ability to classify and predict outcome risk status using cross-
validation and permutation testing. With n-fold cross-validation, the data are
divided into n equal size pieces. An MDR model is fit using (n � 1)/n of the
data (i.e. the training set) and then evaluated for its generalizability on the
remaining 1/n of the data (i.e. the testing set). The fitness or value of an MDR
model is assessed by estimating accuracy in the training set and the testing set.
Accuracy is a function of the percentage of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) and is defined as (TP þ
TN)/(TPþ TNþ FPþ FN). This process is repeated for all n pieces of the data
and the n testing accuracies are averaged to provide an estimate of predictive
ability or generalizability. We also estimate the degree to which the same best
model is discovered across n divisions of the data. This is referred to as the
cross-validation consistency or CVC (24,29). A CVC of n in n-fold cross-
validation is optimal. Here, we selected the best MDR model as the one with
the maximum testing accuracy. A testing accuracy of 0.5 is expected under the
null hypothesis. Statistical significance is determined using permutation test-
ing. Here, the case–control labels are randomized m times and the entire MDR
model fitting procedure repeated on each randomized dataset to determine
the expected distribution of testing accuracies under the null hypothesis. It is
the combination of cross-validation and permutation testing that reduces the
chances of making a type I error due to multiple testing (30,31). In this study,
we used 10-fold cross-validation and 1000-fold permutation testing. MDR
results were considered statistically significant at the 0.05 level. The MDR
software is open-source and freely available from http://www.epistasis.org.

A third approach based on information theory was used to confirm, visualize
and interpret the results obtained by logistic regression and MDR. Jakulin and
Bratko (32) have provided a metric for determining the gain in information
about a class variable (e.g. case–control status) from merging two variables
together over that provided by the variables independently (32,33). This
measure of information gain allows us to gauge the benefit of considering
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two (or more) attributes as one unit. While the concept of information gain is
not new (34), its application to the study of variable interactions has been the
focus of several recent studies (32,33,35). Consider two variables, A and B, and
a class label C. Let H(X) be the Shannon entropy [see (36)] of X. The
information gain (IG) of A, B and C can be written as (1) and defined in
terms of Shannon entropy (2 and 3).

IGðABCÞ ¼ IðA; BjCÞ� IðA; BÞ ð1Þ

IðA; BjCÞ ¼ HðAjCÞ þ HðBjCÞ�HðA, BjCÞ ð2Þ

IðA; BÞ ¼ HðAÞ þ HðBÞ�HðA, BÞ ð3Þ
The first term in (1), I(A; B|C), measures the interaction of A and B. The

second term, I(A; B), measures the dependency or correlation between A and B.
If this difference is positive, then there is evidence for an interaction that
cannot be linearly decomposed. If the difference is negative, then the informa-
tion between A and B is redundant. If the difference is zero, then there is
evidence of conditional independence or a mixture of synergy and redundancy.

These measures of entropy are particularly useful for building interaction
graphs that facilitate the interpretation of the relationship between variables.
Interaction graphs are comprised of a node for each variable with pairwise
connections between them. The percentage of entropy removed (i.e. informa-
tion gain) by each variable is visualized for each node. The percentage of
entropy removed for each pairwise Cartesian product of variables is visualized
for each connection. Thus, the independent main effects of each SNP, for
example, can be quickly compared to the interaction effect. Additive and non-
additive interactions can be quickly assessed and used to interpret MDR
models that consist of distributions of cases and controls for each genotype
combination. A positive entropy (plotted in green) indicates interaction while a
negative entropy (plotted in red) indicates redundancy. Interaction entropy
analysis was performed using the Orange software package (37). Since the
MDR and interaction entropy analysis tools do not permit missing values,
missing values were imputed 10 independent times using S-plus and analyses
were performed using each of the 10 datasets. The results reported were
consistent across all 10 datasets.

Interaction dendrograms are also a useful way to visualize interaction (32).
Here, hierarchical clustering is used to build a dendrogram that places strongly
interacting attributes, as determined by interaction entropy, close together at
the leaves of the tree. Jakulin and Bratko (32) define the following dissimilarity
measure, D(A, B), that is used by a hierarchical clustering algorithm to build
a dendrogram. The value of 1000 is used as an upper bound to scale the
dendrograms.

DðA;BÞ ¼ jIðA; B; CÞj�1
if jIðA; B; CÞj�151000

1000 otherwise:

Wilke,R.A., Reif,D.M., Moore,J.H. (2005) and Moore,J.H., Gilbert,J.C.,
Tsai,C.T., Chiang,F.T., Holden,T., Barney,N. and White,B.C. (manuscript
submitted) have suggested that this approach will be useful for the analysis
and interpretation of gene–gene and gene–environment interactions in genetic
and epidemiologic studies (38).

For the two genes with more than one SNP: XPD and XRCC1, we assessed
linkage disequilibrium in homozygotes using a chi-square test and inferred
haplotypes using PHASE 2.0. This Bayesian method reconstructs the haplo-
type using Markov chain Monte Carlo techniques by statistically inferring the
phase at linked loci from the genotype (39). PHASE is reported to show lower
error rates than either the maximum likelihood [expectation maximization
algorithm], or the parsimony method (Clark algorithm) (40). Analyses were
stratified by age (550, �50), sex and smoking status (ever, never), (never,
former, current) or the median smoking intensity (never, 535 pack-years,
�35 pack- years). We further analyzed the association between genotype and
tumor invasiveness (non-invasive versus invasive tumors) using logistic
regression, excluding in-situ tumors.

Results

The study population contained more men than women, and
the age distribution was comparable among cases and controls
among both sexes (Table I). The majority of the study popu-
lation was Caucasian (Table I), representing the ethnic make-
up of the New Hampshire population. The prevalence of
smoking was higher among the cases, as was a first-degree
family history of bladder cancer (Table I). The variant allele
frequencies for the study population were BER: APE1 148
(0.475), XRCC1 194 (0.07); DSB: XRCC3 241 (0.385); NER:
XPD 751 (0.37), XPD 312 (0.35), XPC PAT (0.42).
We began by evaluating the independent effects of each

DNA repair SNP on bladder cancer susceptibility using
logistic regression. We did not observe that the main effects
of the BER polymorphisms at APE1 148 and XRCC1 194 were
related to bladder cancer risk. Among heavy smokers, how-
ever, XRCC1 194 was associated with a significantly reduced
risk of bladder cancer [XRCC1 194 heterozygote adjusted
OR 0.4, 95% confidence interval (CI) 0.2–0.9]. APE1 148
also conferred a slightly reduced risk in the heavy smoking
group. Overall the ORs for bladder cancer were not related to

Table I. Selected characteristics of bladder cancer cases and controls by gender

Men Women Overall

Controls
(n ¼ 360) N (%)

Cases
(n ¼ 279) N (%)

Controls
(n ¼ 199) N (%)

Cases
(n ¼ 76) N (%)

Controls
(n ¼ 559) N (%)

Cases
(n ¼ 355) N (%)

Reference age
540 7 (1.9) 3 (1.1) 19 (9.6) 4 (5.3) 26 (4.7) 7 (2.0)
40–55 62 (17.2) 36 (12.9) 39 (19.6) 18 (23.7) 101 (18.1) 54 (15.2)
55–70 198 (55.0) 159 (57.0) 95 (47.7) 32 (42.1) 293 (52.4) 191 (53.8)
470 93 (25.8) 81 (29.0) 46 (23.1) 22 (29.0) 139 (24.9) 103 (29.0)

Race
White 348 (96.7) 271 (97.1) 195 (98.0) 74 (97.4) 543 (97.1) 345 (97.2)
Non-white 12 (3.3) 8 (2.9) 4 (2.0) 2 (2.6) 16 (2.9) 10 (2.8)

Education
High school or less 173 (48.1) 169 (60.6) 105 (52.8) 44 (57.9) 278 (49.7) 213 (60.0)
�College 187 (51.9) 110 (39.4) 94 (47.2) 32 (42.1) 281 (50.3) 142 (40.0)

Family history of bladder cancer
No 359 (99.7) 264 (94.6) 194 (97.5) 70 (92.1) 553 (98.9) 334 (94.1)
Yes 1 (0.3) 15 (5.4) 5 (2.5) 6 (7.9) 6 (1.1) 21 (5.9)

Smoking status
Never 85 (23.6) 48 (17.2) 84 (42.2) 22 (29.0) 169 (30.2) 70 (19.7)
Former 213 (59.2) 150 (53.8) 77 (38.7) 27 (35.5) 290 (51.9) 177 (49.9)
Current 62 (17.2) 81 (29.0) 38 (19.1) 27 (35.5) 100 (17.9) 108 (30.4)
535 Pack yearsa 137 (40.2) 79 (28.8) 76 (40.2) 21 (28.8) 213 (40.2) 100 (28.8)
�35 Pack yearsa 119 (34.9) 147 (53.7) 29 (15.3) 30 (41.1) 148 (27.9) 177 (51.0)

a37 subjects are missing pack-year data.
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the DSB polymorphism XRCC3 241, nor was there evidence of
a gene–smoking interaction (Table II). In the NER pathway,
the XPD 751, XPD 312 or XPC PAT variant genotypes were
not associated with an increased bladder cancer risk overall;
however, we did observe an elevated risk of the XPD 751
variant among never smokers that was marginally statistically
significant [adjusted OR 2.5, 95% CI 1.0–6.2] with a signific-
ant gene–smoking interaction (P ¼ 0.04) (Table II). Among
individuals who smoked �35 pack-years, homozygous vari-
ants for XPD 312 had a slightly higher bladder cancer risk
[adjusted OR 1.8, 95% CI 0.9–3.9] compared to XPD 312
homozygous wild-types (Table II). XPC PAT, and XPD 751
variant alleles conferred a slightly reduced risk in heavy
smokers, however this effect was not statistically significant
(Table II).
DNA repair is a complex process involving the cooperation

of multiple enzymes in pathways that respond to damage
induced by endogenous or exogenous agents, such as tobacco.
Therefore, we also evaluated the bladder cancer risk associated
with genetic variation in more than one gene and smoking,
as described. In the MDR analysis (Table III), pack-years of
smoking was the strongest single-factor for predicting bladder
cancer risk (average testing accuracy ¼ 0.63, CVC ¼ 10/10).
The combination of XPD 751 and XPD 312 was the best two-
factor model, with a testing accuracy of 0.65 and a CVC of

8.7/10 (P ¼ 0.001). The three-factor model added pack-years
of smoking to XPD 751 and XPD 312 for the most accurate
(0.66) model that remained highly consistent in the cross
validation (8.6/10) (Table III). All of the four-factor models
included XPD 751, XPD 312, and pack-years of smoking.
XPC PAT was the most common fourth factor across the 10
datasets, however the addition of this factor decreased the
testing accuracy (0.65) and CVC (4.5/10).
After identifying the high risk combinations of factors using

MDR, we applied interaction entropy algorithms to facilitate
interpretation of the relationship between the variables. As
shown in the hierarchical interaction graphs in Figure 1, we
found small percentages of the entropy in case–control status
explained by XPD 751 (0.1%), or XPD 312 (0.15%) con-
sidered independently, but a large percentage of entropy
explained by the interaction between these two loci (5.74%)
(Figure 1A). Pack-years of smoking had a large independent
effect (3.78%), however we did not detect a substantial
non-additive interaction between smoking and the XPD SNPs
considering them individually (Figure 1A), or as a single
genotype combination (Figure 1B).
Likewise, the interaction dendrogram (Figure 2) placed

XPD 751 and XPD 312 on the same branch. Their position in
the diagram indicates that this is the strongest interaction.
Pack-years of smoking is located on a different branch than

Table II. Main effects of genotype on bladder cancer risk overall and by smoking status

Controls N (%) Cases N (%) Adjusteda

OR (95% CI)c
Never smokerb

n ¼ 239
Pack-years 535b

n ¼ 313
Pack-years �35b

n ¼ 325

BER pathway
APE1 148
TT 152 (27.3) 101 (28.5) 1.0 Refd 1.0 Ref 1.0 Ref 1.0 Ref
TG 285 (51.2) 186 (52.5) 1.0 (0.7–1.4) 1.3 (0.7–2.5) 1.1 (0.6–1.9) 0.8 (0.5–1.4)
GG 120 (21.5) 67 (18.9) 0.8 (0.5–1.2) 1.0 (0.4–2.4) 1.0 (0.5–2.1) 0.6 (0.3–1.1)

XRCC1 399
GG 225 (41.8) 118 (38.6) 1.0 Ref 1.0 Ref 1.0 Ref 1.0 Ref
GA 227 (42.2) 155 (50.7) 1.4 (1.0–1.9) 1.4 (0.7–2.7) 1.0 (0.6–1.8) 1.6 (1.0–2.6)
AA 86 (16.0) 33 (10.8) 0.8 (0.5–1.2) 0.8 (0.3–2.1) 0.6 (0.3–1.5) 0.8 (0.4–1.8)
GG or GA 452 (84.0) 273 (89.2) 1.0 Ref 1.0 Ref 1.0 Ref 1.0 Ref
AA 86 (16.0) 33 (10.8) 0.6 (0.4–1.0) 0.7 (0.3–1.6) 0.6 (0.3–1.4) 0.6 (0.3–1.3)

XRCC1 194
CC 448 (87.5) 267 (89.3) 1.0 Ref 1.0 Ref 1.0 Ref 1.0 Ref
CT 60 (11.7) 29 (9.7) 0.8 (0.5–1.3) 1.7 (0.7–4.1) 1.0 (0.5–2.3) 0.4 (0.2–0.9)
TT 4 (0.78) 3 (1.0) 2.0 (0.4–10.5) 4.8 (0.3–82) — 0.5 (0.0–5.3)
CT or TT 64 (12.5) 32 (10.7) 0.8 (0.5–1.3) 1.8 (0.8–4.2) 1.1 (0.5–2.4) 0.4 (0.2–0.8)

DSB pathway
XRCC3 241
CC 211 (37.9) 146 (41.1) 1.0 Ref 1.0 Ref 1.0 Ref 1.0 Ref
CT 272 (48.8) 160 (45.1) 0.9 (0.6–1.2) 0.8 (0.4–1.5) 1.1 (0.7–2.9) 0.7 (0.4–1.1)
TT 74 (13.3) 49 (13.8) 0.9 (0.6–1.4) 0.7 (0.3–1.9) 1.1 (0.5–2.3) 1.0 (0.5–1.9)

NER pathway
XPC PAT
�/� 142 (32.6) 132 (37.9) 1.0 Ref 1.0 Ref 1.0 Ref 1.0 Ref
þ/� 220 (50.6) 158 (45.4) 0.8 (0.6–1.1) 1.0 (0.5–1.9) 0.8 (0.5–1.5) 0.7 (0.4–1.2)
þ/þ 73 (16.8) 58 (16.7) 0.9 (0.6–1.4) 1.3 (0.5–3.0) 1.1 (0.5–2.3) 0.6 (0.3–1.2)

XPD 312
GG 205 (39.7) 113 (38.0) 1.0 Ref 1.0 Ref 1.0 Ref 1.0 Ref
GA 251 (50.3) 145 (49.1) 1.0 (0.8–1.4) 0.9 (0.5–1.8) 0.7 (0.4–1.3) 1.4 (0.8–2.3)
AA 51 (10.0) 38 (12.9) 1.2 (0.7–2.0) 1.2 (0.4–3.7) 0.7 (0.3–1.7) 1.8 (0.9–3.9)

XPD 751
AA 210 (38.7) 130 (41.0) 1.0 Ref 1.0 Ref 1.0 Ref 1.0 Ref
AC 268 (49.5) 145 (46.2) 0.9 (0.7–1.2) 1.0 (0.5–1.9) 1.1 (0.6–1.8) 0.8 (0.5–1.2)
CC 66 (11.8) 42 (12.8) 1.0 (0.6–1.6) 2.5 (1.0–6.2) 0.8 (0.3–1.9) 0.6 (0.3–1.3)

aAdjusted for age, gender, and smoking (pack-years) (37 subjects are missing pack-year data).
bAdjusted for age and gender.
cOR, odds ratio; CI, confidence interval.
dRef, reference.
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the XPD SNPs, supporting the evidence from the interaction
entropy graphs that show that there is not a strong relationship
between these factors (Figure 2).
We then fit logistic regression models for the independent

and joint effects of the XPD polymorphisms in models
adjusted for age, gender, and smoking. Compared with indi-
viduals who were wild-type at both loci, bladder cancer risk
was elevated in individuals who were XPD variant at the 751
locus only [adjusted OR 3.6, 95% CI 2.2–6.3] or XPD variant
at the 312 locus only [adjusted OR 5.2, 95% CI 3.0–9.0], but
was not as high for variants at both loci (gene–gene interaction
P 5 0.0001). We re-applied interaction entropy algorithms
using the XPD 751, XPD 312 genotype combination. The
XPD SNPs explained 4.13% of the entropy in case–control
status and did not indicate an interaction with pack-years of
smoking (Figure 1B). A chi-square test indicated that these
two XPD loci were in linkage disequilibrium (P 5 0.0001,
D¼ 0.12,D0 ¼ 0.52), (while XRCC1 399 and XRCC1 194 were
not). Because of the linkage disequilibrium, we analyzed
the XPD haplotypes estimated by PHASE in relation to
bladder cancer risk using logistic regression with adjustment
for age, gender and smoking (shown in Table IV). As in the
joint SNP analysis, we found an increased risk for haplotypes
with a variant allele at one loci [XPD 312 G/751 C, frequency
0.07, adjusted OR 1.7, 95% CI 1.2–2.4; XPD 312 A/751 A,
frequency 0.05, adjusted OR 2.5, 95% CI 1.7–3.6]. Bladder
cancer risk was consistently elevated for individuals with the
low frequency haplotypes regardless of smoking status.
Among the heavy smokers, bladder cancer risk was associated
with a 4-fold bladder cancer risk among those with the XPD
312 A/751 A haplotype [adjusted OR 4.4, 95% CI 2.2–8.8].
Risk estimates were not altered significantly when analyses

were stratified by level of tumor invasiveness (e.g. invasive
versus non-invasive), by type of cancer (e.g. transitional cell
versus other), by gender, or restricted to white ethnicity.

Discussion

The current study demonstrates a comprehensive analytical
strategy for investigating risk factors for diseases with a

complex genetic architecture. We investigated the hypothesis
that prevalent SNPs in DNA repair genes modify genetic
susceptibility to bladder cancer. We used a multifaceted ana-
lytical approach that combines traditional statistical methods
with novel computational algorithms to evaluate gene–gene
and gene–environment interactions. The relationship between
DNA repair polymorphisms and cancer risk may be particu-
larly complex because the effects of genetic variation in the
repair process may depend on the presence of a DNA lesion
(e.g. gene–environment interaction) or the presence or absence
of polymorphisms in other genes in the same or a different
pathway. Thus, we suspect that some of the conflicts between
the results of previous studies might be due to uncharacterized
gene–gene or gene–environment interactions. We addressed
this issue by evaluating multiple SNPs in the NER, BER and
DSB repair pathways and observed variant allele frequencies
that were consistent with those reported in the literature
(9,11,41,42). We further assessed the association between
genotype, genotype combinations and haplotype with smoking
status and bladder cancer risk using multiple traditional and
novel statistical approaches.
As more and more studies evaluate risk associated with

multiple genes and environmental factors, it has become
clear that traditional logistic regression analysis approaches
are not adequate for modeling complex multi-factor interac-
tions (43). For this reason, we utilized the recently developed
MDR and interaction entropy strategies to assess and interpret
potential interactions. This approach improves statistical
power to efficiently identify potential gene–gene and gene–
environment interactions. The results of these novel algorithms
were consistent with our logistic regression analysis for the
two-way interaction models. We attempted to test three way
interactions to replicate our findings from the MDR analysis in
logistic regression; however, the model failed to converge due
to the small number of individuals in some cells. Thus, our
experience highlights the need for alternative, more powerful
methods. Out of all of the possible two-factor combinations
tested, MDR analysis selected XPD 751 and XPD 312 as the
best two predictors of bladder cancer risk. The three-factor
model including XPD 751, XPD 312, and pack-years of

Table III. MDR models

Best modela Low risk High risk Cross-validation
consistencyb

Avg. testing
accuracy

P-value Range OR
(95% CI )

One factor
Pack-years Never smoker or

535 pack-years
�35 pack-years 10/10 0. 63 50.002 2.6–2.7 (2.0–3.6)

Two factors
Xpd_751 Both homozygous wild type,

both heterozygous, or both variant
Any other combination 8.7/10 0.65 50.001 1.7–3.5 (1.5–4.8)

Xpd_312
Three factors

Xpd_751 Both homozygous wild type,
both heterozygous, or both variant

Never smoker or 535 pack-years

Any other combination
�35 pack-years

8.6/10 0.66 50.001 2.2–4.2 (2.0–5.8)

Xpd_312
Pack-years

Four factors
Xpd_751
Xpd_312
Pack-years
XPC PAT

Any other combination - Xpd_751 wt, 312 het, XPC wt,
smoking

- Xpd_751 wt, 312 het, XPC het,
�35 pack-years

4.5/10 0.65 50.029 2.1–3.2 (1.8–4.3)

aData points for missing values were imputed into 10 independent datasets and these results were consistent for 10/10 imputed datasets.
bAverage of most common model over all 10 datasets.
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smoking was the strongest model overall since it had the
highest level of testing accuracy and showed good CVC
(Table III). Adding other factors (e.g. the four-factor model)
lowered the CVC, reduced the testing accuracy and raised the
P-value. The MDR three-factor model indicated that XPD 751,
XPD 312, and pack-years of smoking are a high risk combina-
tion of factors, but did not specify whether or not there is a
synergistic relationship. The interaction entropy and interac-
tion dendogram analyses (Figures 1 and 2) helped us interpret
the nature of the interactions in these multifactor models, and
revealed that the relationship between the XPD SNPs and
bladder cancer is mostly non-additive while the effect of
smoking is mostly additive.
XPD is an enzyme in the NER pathway that removes

certain DNA crosslinks, UV photolesions, and bulky chemical
adducts (44). Non-synonymous SNPs in the XPD gene result in
the substitution of glutamine in place of lysine at position
751 and asparagine for aspartic acid at position 312. As repor-
ted previously (45), we found that the two SNPs were in
linkage disequilibrium, with a higher frequency of XPD 312
Asp, XPD 751 Lys and as such, also examined the risk asso-
ciated with XPD haplotypes using the PHASE estimation
software. Prior, smaller hospital-based studies produced incon-
sistent results and to date have not examined the bladder
cancer risk associated with XPD haplotype (13,15). As in our
study, interactions have previously been observed for XPD 312
and 751 in relation to lung cancer risk, and several studies
found that the risk of lung cancer associated with the variant
allele was higher among non-smokers than among smokers
(9,45). In lymphoblastoid cell lines, double variants had an
enhanced apoptotic response to UV-induced damage, possibly
explaining our findings of an increased risk among those with
a variant allele in either XPD 312 or XPD 751 but not for those
variant at both loci (20,46). We also observed elevated bladder
cancer risk for individuals with the low frequency haplotypes
and the bladder cancer ORs for XPD haplotypes also did not
vary dramatically by smoking status (Table IV). Thus, future,
larger studies of XPD haplotype using more SNPs may be
informative.
We also looked at SNPs in other repair pathways, including

BER and DSB repair. XRCC1 mediates interactions with

A

B

Fig. 1. Orange canvas interaction models. These interaction models
describe the percent of the entropy in case–control status that is explained
by each factor or two-way interaction. Each gene or environmental factor
is shown in a box with the percent of entropy below the label (XPD.751 ¼
XPD 751, XPD.312 ¼ XPD 312, APE1 ¼ APE1, XRCC3 ¼ XRCC3,
XRCC1.399 ¼ XRCC1 399, XRCC1.194 ¼ XRCC1 194, male ¼ gender,
pack.yr ¼ pack-years of smoking, age.50 ¼ age, XPD.751.312 ¼ XPD
751/312 genotype combination). Two-way interactions between factors are
depicted as an arrow accompanied by a percent of entropy explained by
that interaction. Redundancy is depicted as a line between factors accom-
panied by a negative percent of entropy. (A) The two XPD SNPs (XPD
312 and XPD 751) are included separately in the model, while (B) includes
the XPD SNPs as a single genotype combination, since they are linked.

Fig. 2. Interaction dendrogram.
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its BER partners, including APE1, and thereby modulates
enzymatic activity throughout the pathway (47). A common
amino acid substitution (Arg to Gln) occurs in the BRCT1
domain at codon 399, a region involved in binding polyAD-
Pribose polymerase (PARP) and APE1 (47). The relatively
uncommon non-synonymous SNP in XRCC1 at position 194
was unrelated to bladder cancer risk overall in our study and
others. We observed a lower risk among heavy smokers, sim-
ilar to what was reported for breast cancer risk (17,48), but
with wide confidence intervals. APE1 148, XRCC1 194, XPC
PAT and XPD 751 variants also conferred a slightly reduced
risk in heavy smokers; however, with the exception of the
XRCC1 194 heterozygotes, these effects were not statistically
significant.
DSBs may result from replication errors or the action of

exogenous agents (9). XRCC3 is required for stabilization of
the RAD51 complex in repair of DSBs and cross-links, and for
maintaining chromosome stability during cell division (45,49).
Results of independent analyses of the DSB pathway XRCC3
241 polymorphism and bladder cancer risk have been incon-
sistent (13–15,18) and we did not observe an increased risk of
bladder cancer associated with this polymorphism in our
study population, although with limited statistical power. It is
possible that XRCC3 has another biologic function that is
modified by the codon 241 amino acid substitution or 241
may be in linkage disequilibrium with another causal poly-
morphism. Larger studies of multiple SNPs and haplotypes
are needed.
Compensatory activity between different DNA repair pro-

teins probably exists (9). Indeed, we observed only a few
individuals that were completely wild type for all four of the
common DNA repair genes with polymorphisms studied
(6 controls and 3 cases). This emphasizes the importance of
considering the implications of genetic variation in multiple
genes simultaneously. Investigating multiple SNPs also neces-
sitates careful consideration of multiple comparisons issues,
a benefit of using the MDR and interaction entropy
approaches. Our study involved a number of comparisons,
and associations arising out of chance must be considered
as a possible explanation for statistically significant results.
Further, some of the differences in observed associations
across studies may be due to population stratification. The
population of New Hampshire is relatively homogeneous
and primarily Caucasian, thus, the likelihood of extensive
population stratification in our study is generally lower
than in more ethnically diverse locations. Restriction to
self-reported Caucasian race did not affect our results (data
not shown). Future studies employing similar analytic

strategies may help to elucidate the impact of population
stratification.
In summary, our data indicate that there are potentially

important effects of common variations in individual DNA
repair genes, particularly in XPD on bladder cancer risk and
that this risk may be modified by exposure history. We dem-
onstrate the application of a multifaceted analytical approach
that produces concordant results and emphasizes the utility of
novel bioinformatic analysis tools that make the investigation
of gene–gene and gene–environment interactions feasible in
a study of reasonable size. Our findings highlight the import-
ance of considering the genetic susceptibility of individuals to
complex diseases such as cancer using data on multiple poly-
morphisms along with a spectrum of potential carcinogenic
exposures.
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