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Abstract Echocardiography is a reliable and reproducible method to assess non-invasively cardiac function in clinical and experi-
mental research. Significant progress in the development of echocardiographic equipment and transducers has led to
the successful translation of this methodology from humans to rodents, allowing for the scoring of disease severity
and progression, testing of new drugs, and monitoring cardiac function in genetically modified or pharmacologically
treated animals. However, as yet, there is no standardization in the procedure to acquire echocardiographic measure-
ments in small animals. This position paper focuses on the appropriate acquisition and analysis of echocardiographic
parameters in adult mice and rats, and provides reference values, representative images, and videos for the accurate
and reproducible quantification of left ventricular function in healthy and pathological conditions.
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1. Introduction

Monitoring the function of the left ventricle (LV) is a key element in ex-
perimental studies aimed at understanding the pathophysiology of car-
diac diseases and in exploring the beneficial effect of innovative
therapies. Echocardiography is often the technique of choice to evaluate
cardiac function in rodents, with the advantage that it is non-invasive,
safe, reproducible, widely available, and inexpensive. The efficacy of new
therapeutics in small animal models is key for their further application in
larger animal models and humans.1,2 However, only a small percentage
of the therapeutics showing efficacy in small animals actually progresses
to clinical use.3,4 One of the possible reasons for this lack of translatabil-
ity is the nonexistence of standards and minimal requisites to ensure reli-
able and accurate evaluation of cardiac function in rodents. A detailed
description and standardization of the methods used for data acquisition
and analysis would add further value to studies performed by expert
groups.5–8 While some suggestions and recommendations have
appeared in the literature in recent years,9–12 we believe it is crucial to
define the conditions to standardize the evaluation of LV function in
small rodents using echocardiography. Standardized and well-defined
echocardiographic conditions will aid both authors and reviewers in
evaluating the accuracy of cardiac function data derived from small
rodents.

This paper also includes reference values for adult mice and rats
(Tables 1 and 2), echocardiographic routines for assessing specific

pathologic conditions (Table 3), common pitfalls to avoid in the echocar-
diography of rodents, and reference to scientific literature for specific
methodological details. Although we could not include all publications
available in this expanding field, representative studies supporting our
statements have been cited.

2. Minimal requirements for
echocardiographic evaluation in
rodents

Considerable progress in technology and equipment has made the de-
tailed evaluation of cardiac structure and function possible in small
rodents. While pioneering studies used clinical echocardiographic sys-
tems,13 modern and high-frequency instruments specifically designed for
small animal hearts are now available and capable to acquire both im-
proved high frame rate and near-field images.14,15 For echocardiography
in mice, we recommend transducers with a centre frequency of at least
30 MHz [body weight (BW) >35 g] or 40 MHz (BW <35 g), with a real-
time imaging frame rate of >30 frames per heartbeat.16 For advanced im-
age analysis, such as speckle tracking or myocardial strain, frame rates of
100 frames per heartbeat are recommended in mice.17 For Doppler
studies, the ultrasound (US) probe should be capable of recording a
peak velocity >1500 mm/s in mice. Currently, echocardiographic images
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in rats can be obtained using conventional frequencies in the 10–15 MHz
range.18 However, advances in dedicated small animal echocardiography
can lead to improved image quality using higher frequencies.

Additional equipment is essential for the echocardiographic exam, i.e.
electrocardiography (ECG) electrodes connected to the US machine, a
temperature probe, and either a heating pad or a heat lamp source, to
maintain the animal’s physiological body temperature. Furthermore, a va-
porizer is required to administer volatile anaesthetics, and limited ambient
light during the acquisition is recommended to obtain optimal contrast.

3. Preparation of the animal

3.1 Anaesthesia
A few studies encourage performing echocardiography in conscious
rodents after acclimatizing them to the researcher and the

environment.19 However, unlike humans and large animals, echocardiog-
raphy without anaesthesia is highly stressful for rodents, leading to varia-
tions in stress response between groups that might mask pathology-
induced differences, particularly in diastolic function assessment. In addi-
tion, working with conscious animals can often also be very stressful for
the researchers. Thus, we recommend anaesthetizing the animals to in-
crease the reproducibility of the measurements and to reliably compare
data obtained between groups.11,20 However, it should be taken into
consideration that the induction of the anaesthesia might vary signifi-
cantly with age, strain, liver/lung function, obesity, and other diseases
such as heart failure (HF) and sepsis. For instance, special attention
should be given to models of ischaemia/reperfusion, wherein some
anaesthetics, such as halogenated gases and opioids, have been shown to
interfere with cardioprotection.21,22 Supplementary material online,

......................................................................................................

Table 1 Echocardiographic parameters and indexes of LV
function in control/healthy Wistar Han rats comparing two
types of anaesthesia

Anaesthesia Halogenated gases

(isoflurane or sevoflurane)

(mean 6 SD)

Ketamine: xylazine

(75:5 mg/kg)

(mean 6 SD)

BW (g) 382 ± 26 364 ± 44

HR (b.p.m.) 383 ± 33 340 ± 10

LVmass (mg) 645 ± 93 745 ± 30

LVPWd (mm) 1.44 ± 0.17 1.60 ± 0.23

LVPWs (mm) 2.23 ± 0.40 2.56 ± 0.51

LVIDs (mm) 4.03 ± 0.40 3.53 ± 0.67

LVIDd (mm) 6.88 ± 0.44 6.73 ± 0.43

IVSd (mm) 1.52 ± 0.20 1.58 ±0.05

IVSs (mm) 2.51 ± 0.42 2.63 ±0.43

LVESV (mL) 72.3 ± 17.1 49.9 ±19.0

LVEDV (mL) 247 ± 35 232 ± 34

EF (%) 70.6 ± 5.9 79.9 ± 6.3

FS (%) 41.4 ± 5.0 47.8 ± 7.7

SV (mL) 175 ± 31 182 ± 24

CO (mL/min) 68.3 ± 11.2 62.3 ± 11.6

s0 (mm/s) 53.4 ± 9.7 58.0 ± 5.1

E (mm/s) 774 ± 171 741 ± 155

A (mm/s) 540 ± 136 454 ± 73

E/A 1.44 ± 0.22 1.73 ± 0.40

E slope (mm/s) 19.7 ± 4.5 NA

IVRT (ms) 17.8 ± 4.3 16.4 ± 6.1

MPI (Tei) 0.50 ± 0.14 0.35 ± 0.05

e0 (mm/s) 58.0 ± 14.8 47.4 ± 11.6

E/e0 13.4 ± 2.2 16.7 ± 5.5

LAA (mm2) 29.4 ± 4.1 33.6 ± 3.00

Acquisitions were made with a GE Vivid 7 system or a Siemens Sequoia using a
12-MHz transducer, in over 100 animals. Values are presented as mean ± SD.
A, late diastolic transmitral flow velocity; BW, body weight; CO, cardiac output; E,
early diastolic transmitral flow velocities; e0 , peak early-diastolic annular velocity;
EF, ejection fraction; FS, fractional shortening; HR, heart rate; IVRT, isovolumic re-
laxation time; IVSd, interventricular septum thickness in diastole; IVSs, interventric-
ular septum thickness in systole; LAA, left atrial area; LVEDV, left ventricular end-
diastolic volume; LVESV, left ventricular end-systolic volume; LVIDd, left ventricle
internal diameter in diastole; LVIDs, left ventricle internal diameter in systole; LV
mass, left ventricle mass; LVPWd, left ventricular posterior wall thickness in dias-
tole; LVPWs, left ventricular posterior wall thickness in systole; MPI, myocardial
performance (Tei) index; s0 , peak systolic annular velocity; SV, stroke volume.

......................................................................................................

Table 2 Echocardiographic parameters and indexes of LV
function in control/healthy C57BL/6 mice

Anaesthesia HR �450 b.p.m. HR <450 b.p.m.

BW (g) 25.7±3.6 24.6 ± 2.6

HR (b.p.m.) 535 ± 75 418 ± 19

LV mass (mg) 96 ± 18 99 ± 17

LVPWd (mm) 0.79 ± 0.22 0.58 ± 0.18

LVPWs (mm) 1.12 ± 0.33 0.84 ± 0.12

LVIDs (mm) 2.20 ± 0.50 2.69 ± 0.39

LVIDd (mm) 3.69 ± 0.41 3.95 ± 0.28

IVSd (mm) 0.71 ± 0.15 0.93 ± 0.12

IVSs (mm) 0.97 ±0.19 1.14 ± 0.14

LVESV (mL) 19.35 ± 11.30 29.09 ± 10.40

LVEDV (mL) 57.7 ± 16.5 66.3 ± 11.6

EF (%) 71 ± 11 58 ± 11

FS (%) 43 ± 9 31 ± 8

SV (mL) 35.1 ± 8.5 31.0 ± 6.0

CO (mL/min) 17.7 ± 3.8 14.76 ± 4.32

s0 (mm/s) 46 ± 7 30 ± 17

E (mm/s) 718 ± 109 648 ± 111

A (mm/s) 455 ± 105 427 ± 95

E/A 1.52 ± 0.40 1.42 ± 0.26

IVRT (ms) 17.3 ± 4.2 17.1 ± 2.5

MPI (Tei) 0.66 ± 0.17 NA

e0 (mm/s) 43.2 ± 10.9 26.5 ± 1.2

E/e0 15.2 ± 6.7 24.5 ± 14.3

LAA (mm2) 2.6 ± 0.4 3.5 ± 2.3

All acquisitions were made with mice under halogenated gases anaesthesia (iso-
flurane or sevoflurane). The results presented in this table derive from over 300
exams performed across 10 different laboratories and are shown in separate col-
umns for mice keeping HR in its physiological range (>450 b.p.m.) or depressed
by anaesthesia (<450 b.p.m.). Echocardiographic exams were made with a Vevo
770, 2100, or 3100 Imaging System (VisualSonics) or a Aloka SSD 4000. All values
are presented as mean ± standard deviation.
A, late diastolic transmitral flow velocity; BW, body weight; CO, cardiac output;
E, early diastolic transmitral flow velocities; e’, peak early-diastolic annular veloc-
ity; EF, ejection fraction; FS, fractional shortening; HR, heart rate; IVRT, isovolu-
mic relaxation time; IVSd, interventricular septum thickness in diastole; IVSs,
interventricular septum thickness in systole; LAA, left atrial area; LVEDV, left ven-
tricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVIDd,
left ventricle internal diameter in diastole; LVIDs, left ventricle internal diameter
in systole; LV mass, left ventricle mass; LVPWd, left ventricular posterior wall
thickness in diastole; LVPWs, left ventricular posterior wall thickness in systole;
MPI, myocardial performance (Tei) index; s’, peak systolic annular velocity; SV,
stroke volume.
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Table 3 Echocardiographic views and parameters that should be specifically recorded to characterize cardiac function when
working with distinct animal models

Animal model Echocardiographic views Recording and derived parameters

Chronic pressure

overload

2D B-mode and M-mode, para-

sternal long- and/or short-axis

view

Record diastolic and systolic LV wall thickness and chamber dimensions to

calculate:

– LVESV = [7/(2.4þLVIDs)]�LVIDs3

– LVEDV = [7/(2.4þLVIDd)]�LVIDd3

– FS (%) = (LVIDd-LVIDs)/LVIDd�100

– EF (%) = (LVEDV-LVESV)/LVEDV�100

– LV mass (mg) = 1.04 [(LVIDdþLVAWdþLVPWd)3-LVIDd3]�0.8þ0.6

– Stroke volume, SV (mL) = (LVEDV-LVESV)

– Cardiac output (mL/min): CO = SV�HR

– Relative wall thickness: RWT = (LVPWdþLVIVSd)/(LVIDd)

2D PW Doppler echocardiogra-

phy, supra-sternal or neck

position

Record the pressure gradient across the constricted portion of ascending aorta

and/or the right/left carotid velocity flow ratio (expected to be 5–10)

Pulsed-wave Doppler mode and

tissue Doppler mode, apical

four- or five-chamber views

Record diastolic parameters:

– Early and late mitral filling velocities (E and A wave)

– E wave deceleration time (DT)

– Early diastolic mitral annular tissue velocity (e0)

– Isovolumic relaxation time (IVRT)

– Ejection time (ET)

2D B-mode, apical four-chamber

view

Measure Left atrium area (LAA)

Myocardial infarction 2D B-mode and M-mode, para-

sternal long- and short-axis

views

Record diastolic and systolic LV wall thickness and chamber size and use the

Simpson’s method to calculate:

– LV area at the level of mitral valve (A1, as in Figure 4A) in systole and diastole

– LV area at the level of the papillary muscles (A2, as in Figure 4B) in systole and

diastole

– LV area at the level of the apex (A3, as in Figure 4C) in systole and diastole

– The maximum length of the ventricle in parasternal long axis, in systole

(LVESL) and diastole (LVEDL)

– LVEDV = (A1þA2)�(LVEDL/3)þ(A3/2)�(LVEDL/3)þ(p/6)�(LVEDL/3)3

– LVESV = (A1þA2)�(LVESL/3)þ(A3/2)�(LVESL/3)þ(p/6)�(LVESL/3)3

– EF (%) = (LVEDV-LVESV)/LVEDV�100

– Aortic annulus diameter

Pulsed-wave Doppler and Tissue

Doppler mode, apical four- or

five-chamber view at the me-

dial mitral annulus

Record systolic parameters:

– Isovolumetric contraction time (IVCT)

– Ejection time (ET)

– Myocardial performance index (MPI/Tei) = (IVCTþIVRT)/ET

– LV systolic myocardial velocity (s0) at the level of the septal mitral annulus

Record and calculate aortic parameters:

– Aortic annulus velocity (VTI)

– SV = VTI�aortic annulus diameter

Diastolic dysfunction and

HFpEF

2D B-mode and M-mode, para-

sternal long- and/or short-axis

views

Record diastolic and systolic LV wall thickness and chamber dimensions to

calculate:

– LVESV = [7/(2.4þLVIDs)]�LVIDs3

– LVEDV = [7/(2.4þLVIDd)]�LVIDd3

– FS (%) = (LVIDd-LVIDs)/LVIDd�100

– EF (%) = (LVEDV-LVESV)/LVEDV�100

– LV mass (mg) = 1.04 [(LVIDdþLVAWdþLVPWd)3-LVIDd3]�0.8þ0.6

– Stroke volume, SV (mL) = (LVEDV-LVESV)

– Cardiac output (mL/min): CO = SV�HR

– Relative wall thickness: RWT = (LVPWdþLVIVSd)/(LVIDd)

Pulsed-wave Doppler or Tissue

Doppler mode, apical four-

Record diastolic parameters:

– Early and late mitral filling velocities (E and A wave)

Continued
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Table S1 provides reference values for conscious mice, to be adopted if
the experimental conditions require avoiding the use of any type of
anaesthesia.

Most anaesthetics have negative inotropic and chronotropic effects.
For instance, tribromoethanol (e.g. AvertinTM), pentobarbital (e.g. Eutha
77TM), and ketamine (e.g. KetasetTM) have all shown to depress cardiac
function. The most popular anaesthetics are either a mixture of keta-
mine/xylazine (e.g. RompunTM- ) or halogenated gases, such as isoflurane
(1–2%)11,18,23 and sevoflurane (3--4%).24 These gases should be deliv-
ered in 21% oxygen and 79% nitrogen mixture,25,26 although an oxygen-
enriched gas mixture is widely used and accepted. While ketamine is the
only anaesthetic that increases blood pressure and heart rate (HR),27 its
combination with xylazine results in cardio-depression. On the contrary,
halogenated gases are now preferred, due to their easy titration, fast re-
versibility and, most importantly, minimal cardiovascular depression. For
a more detailed overview of the advantages and limitations of the most
common anaesthetics used during echocardiography in mice, see
Lindsey et al.9,10 In rats, ketamine/xylazine and isoflurane are among the
most commonly used anaesthetics during echocardiographic acquisition.
Their comparison has been essentially performed in healthy rats, in
which cardio-depressive effects, without changes in systolic and LV di-
mension indexes, were induced by ketamine/xylazine but not by isoflur-
ane.28–30 Although useful, the uptake and/or effect of anaesthetics in
diseased rats might differ. While further research is required to precisely
determine the effects of different anaesthetics on hemodynamic, systolic,
LV dimension, and diastolic indexes in both mice and rats, this position
paper suggests the use of halogenate gases as the first-line choice for ro-
dent echocardiography.

3.2 Monitoring physiological parameters
Cardiac function depends on multiple physiological parameters, including
HR, body temperature, respiratory rate, blood pressure, and oxygena-
tion levels, which are all influenced by most anaesthetics. Although the
instrumentation and expertise to accurately monitor blood pressure and
oxygenation levels in rodents is not available in most laboratories, body
temperature, HR, and respiratory rate can be easily monitored during
rodent echocardiography. While blood pressure and oxygenation levels

provide a direct measure of potential anaesthetic cardio-depressant
actions, body temperature, HR, and respiratory rate provide an indirect
estimate of the impact that changes in the autonomic nervous system
might impose during the exam. Body temperature can be measured us-
ing a rectal probe, and maintained within its physiological range (36�C–
37.5�C) using a dedicated heating pad. Anaesthetized animals are unable
to control and maintain their physiological body temperature, which is a
major determinant of several cardiovascular function indexes. Rats, in
particular, are at higher risk for hypothermia due to their high body sur-
face to body mass ratio. In addition to anaesthesia, the resting-state,
shaving, and application of echocardiography gel further increase the risk
of hypothermia. As such, continuous monitoring of body temperature
by a rectal probe is recommended to regulate the heating and maintain
the body temperature.

HR can be monitored by ECG, either by taping electrodes to the
paws or laying the animal on a platform equipped with electrodes. When
monitoring the HR, differences between strains31–33 and specific experi-
mental conditions can have a major impact and should be considered
when performing echocardiography. When starting the measurements,
the transducer should be covered by warm gel and applied gently to
avoid chest compression, thereby minimizing cardiovascular reflexes,
such as bradycardia and hypotension. For the most commonly used ro-
dent models, any intervention/anaesthesia lowering the HR to values
<450 beats per minute (b.p.m.) in mice and 350 b.p.m. in rats is consid-
ered to exert cardio-depression, i.e. concomitant negative inotropic and
chronotropic effects. This compromises the reliability of cardiac parame-
ters assessed, as shown in Table 2, in which reference values are split in
separate columns for mice kept at a physiological HR (>_450 b.p.m.) or
depressed by anaesthesia (HR<450 b.p.m.). While we believe that this
threshold should be applied to most studies to ensure the contextual
evaluation of both systolic and diastolic functions (see also below), a
lower HR could be acceptable in experimental settings that result in de-
creased basal HR, e.g. in the presence of a beta-blocker. However, in
such studies, authors should provide an explanation as to why HR is low.
In any case, consistency of HR values between experimental groups has
to be demonstrated and HR values should always be reported together
with the functional measurements.

..............................................................................................................................................................................................................................

Table 3 Continued

Animal model Echocardiographic views Recording and derived parameters

chamber view at the medial

mitral annulus

– E wave deceleration time

– Isovolumic relaxation time (IVRT)

– Peak mitral annular velocity (É) during early filling at septal or lateral corner of

the mitral annulus.

Record systolic parameters:

– Ejection time (ET)

– LV index of myocardial performance = (IVCTþIVRT)/ET

– Peak systolic tissue velocity (s0) at the medial mitral annulus

2D B-mode, apical four-chamber

view

Measure left atrium area (LAA)

A, late diastolic transmitral flow velocities; BW, body weight; CO, cardiac output; E, early diastolic transmitral flow velocities; e0 , peak early-diastolic annular velocity; EF, ejection
fraction; FS, fractional shortening; HR, heart rate; IVRT, isovolumic relaxation time; IVSd, interventricular septum thickness in diastole; IVSs, interventricular septum thickness in sys-
tole; LAA, left atrial area; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVIDd, left ventricle internal diameter in diastole; LVIDs, left ven-
tricle internal diameter in systole; LV mass, left ventricle mass; LVPWd, left ventricular posterior wall thickness in diastole; LVPWs, left ventricular posterior wall thickness in
systole; MPI, myocardial performance (Tei) index; RWT, relative wall thickness; s0 , peak systolic annular velocity; SV, stroke volume.
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..A description on how to start and finalize the echocardiographic
exam is depicted in Figure 1.

4. Echocardiographic techniques

Similar to humans, echocardiography imaging in rodents can incorporate
five main modalities, in several views and planes: (i) motion mode (M-
mode), (ii) two-dimensional (2D) brightness mode (B-mode), (iii),
Doppler imaging, (iv) speckle-tracking echocardiography (STE), and (v)
three/four-dimensional (3D/4D) imaging.

4.1 M-mode
The M-mode can be used for the assessment of systolic function and LV
size. M-mode tracing can be performed in either the parasternal long- or
short axis (Figure 2). To obtain a parasternal long axis of the heart, the an-
imal is laid in a supine position and the US transducer should be placed
on the left side of the animal’s chest, with the notch pointed towards its
right shoulder. The following features should be considered as indicators
of an appropriate long-axis view: (i) the aortic valve, the proximal course
of aortic root and ascending aorta, and the LV apex are visible; (ii) the LV
is positioned in the centre of the field of view; (iii) the base-to-apex axis
is parallel to the transducer surface, corresponding to the longest axis
(Figures 2 and 3). Usually, the right ventricle (RV) can be partially seen in
this view. From this position, a 90� rotation of the transducer clockwise
generates the short-axis images. From this view, M-mode tracings are
optimally acquired at the level of the papillary muscles, which should be
simultaneously visible in the antero-lateral and postero-medial quadrants
of the heart, respectively.34 In the short-axis view, the LV should have a
round shape, which should be maintained while moving through the long

axis of the LV from base to apex (Figures 2 and 3). If it appears oval, the
LV is most likely being imaged obliquely. Common pitfalls include, but
are not limited to, off-axis views, inclusion of RV trabeculae as part of the
septum, and acquiring a short-axis recording at the papillary muscle
rather than the posterior wall (Figure 3).

4.2 B-mode
The B-mode can be applied to all echocardiographic views. Together
with a four-chamber view, the parasternal long-axis view can be used in
rodents for studying LV volumes and function. While in humans the LV
apex is not included in parasternal long-axis view and is commonly visual-
ized in either the four- or the two-chamber view, the larger size of the
transducer, relative to the size of the heart, permits good visualization of
the apex together with basal and medium segments of the anteroseptal
and posterior LV wall in rodents (Figure 2). Particular attention should be
taken to avoid foreshortened or truncated views with a ‘false’ apex, as
could be suggested by a spherical, not elliptical, shape of the LV
(Figure 3). Based on the parasternal long-axis view, as described in
Section 4.1, LV images are extracted from the cine-loop recordings at
the end of both systole and diastole. These specific time points are rec-
ognized as optimal if the ECG is simultaneously recorded and dis-
played.35 Here, the end of the diastole corresponds to the frame in
which the LV reaches its maximal extension (LV end-diastolic area,
LVEDA), whereas the end of systole corresponds to the minimal size of
the LV area (LV end-systolic area, LVESA).

B-mode imaging is also frequently used for multi-plane evaluations for
several purposes, such as assessment of valve function, cardiac output
(CO), vessel size, and more accurately measured LV volumes (using a
modified Simpson’s rule as described below36). This approach combines
the measurements taken from multiple views, including the parasternal

Figure 1 Recommendations for preparing the animal and finalizing the echocardiographic exam. Do not forget to register: (i) mouse/rat strain, sex,
age, and weight; (ii) equipment used (model and probe); and (iii) anaesthesia type and dose.
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..long axis and at least three short axes (i) at the level of the base, (ii) at an
intermediate position, approximately at the level of the papillary muscles,
and (iii) at the apex level (Figures 2 and 4).

4.3 Doppler analysis
Pulsed-wave (PW) Doppler is used to assess the myocardial and flow-
velocity profiles of moving objects or structures, which are particularly
useful in assessing diastolic function. It is based on the Doppler principle,
by which wave frequencies change every time they are reflected by mov-
ing targets. For instance, when the reflected waves are moving towards
the receiver, each successive wave is reflected from a position closer to
the receiver than the previous one. Hence, the time between the arrivals
of successive waves at the observer is reduced, causing an increase in
their frequency. Conversely, if the target is moving away from the re-
ceiver, each wave is reflected from a position farther from the receiver
than the previous one, so the arrival time between successive waves is
increased, reducing the frequency. This is why any change in blood flow
velocity can be appreciated as a Doppler shift.10,24

In humans, Doppler shift can be assessed either continuously,
when two separated transducers simultaneously emit and receive
Doppler signals, or pulsed, when the same transducer alternatively
emits and receive the signals in a pre-specified volumetric region or

scan line. Colour Doppler indicates the mean velocity in discrete
ranges, which are displayed in different colours. Any movement away
from the transducer is generally indicated in blue and movements to-
wards the transducer are indicated in red. In rodents, PW and colour
Doppler are commonly used to display the velocity of moving
objects inside the heart and blood vessels. In the case of PW and
colour Doppler, the moving objects are blood cells, while in tissue
Doppler imaging (TDI), the moving target is the myocardial tissue. In
both cases, the user has to select the targeted sample blood/myocar-
dial volume by placing the sample volume over this area, and to en-
sure that the Doppler beam is aligned with the direction of the
moving objects to avoid underestimation of their velocity.10,24 Special
attention should be given to the position of the sample volume, as
missing the highest velocities seems to be one of the most common
pitfalls in assessing diastolic function in rodents (Figure 3).

Compared to blood, the velocities of the moving tissue are much
lower and the amplitude of the backscattered signal from tissue is much
larger, therefore the velocity scale must be reduced to values near the
30–60 mm/s and the gain minimized. Myocardial movement analysis by
TDI presents some limitations, in that myocardial structures are con-
stantly moving longitudinally and circumferentially, and passive motion is
difficult to separate from active movement.

Figure 2 Standard echocardiographic views. For each projection, we describe the parameters that should be measured as well as its derived parame-
ters. A, late diastolic transmitral flow velocity; AV, aortic valve; CO, cardiac output; DT, deceleration time; E, early diastolic transmitral flow velocity; e0 ,
peak early-diastolic annular velocity; EF, ejection fraction; ET, ejection time; FS, fractional shortening; HR, heart rate; IVRT, isovolumic relaxation time;
IVSd, interventricular septum thickness in diastole; IVSs, interventricular septum thickness in systole; LAA, left atrial area; LV mass, left ventricle mass; LV,
left ventricle; LVAWd, left ventricular anterior wall thickness in diastole; LVAWs, left ventricular anterior wall thickness in systole; LVEDA, left ventricular
end-diastolic area; LVEDV, left ventricular end-diastolic volume; LVESA, left ventricular end-systolic area; LVESV, left ventricular end-systolic volume;
LVIDd, left ventricle internal diameter in diastole; LVIDs, left ventricle internal diameter in systole; LVPWd, left ventricular posterior wall thickness in dias-
tole; LVPWs, left ventricular posterior wall thickness in systole; MPI, myocardial performance (Tei) index; PW, pulsed wave; RA, right atria; RV, right ven-
tricle; RWT, relative wall thickness; s0, peak systolic annular velocity; SV, stroke volume; VTI, velocity time integral.
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..Usually, PW and TDI analysis are performed at the four-chamber
view, which can be obtained by placing the transducer over the apex and
pointing it medially towards the animal’s head, so that the beam crosses
both ventricles, both atria, and their respective walls and septa. This view
enables both a good orientation of a Doppler mitral and tricuspid flow
signal and the acquisition of tissue Doppler signals near the mitral and tri-
cuspid valve annuli.24 Again, placing the sample volume in the optimal po-
sition guarantees the acquisition of maximal velocities.

4.4 Speckle-tracking echocardiography
Modern small animal instrumentation allows the visualization of myocar-
dial deformations by STE and quantitative evaluation of both global and
regional myocardial functions, independently from both insonation angle

and cardiac translational movements.37 As in humans, accurate STE ac-
quisition in animal models requires images with a clear visualization of
both endocardial and epicardial borders and a high frame rate (at least
100 frames per heartbeat).17

Several tracking points should be placed on the endocardial border to
semi-automatically trace the endocardial and epicardial border, in both
long- and short-axis views at the level of the papillary muscles. Both axes
are automatically divided into multiple segments for the quantification of:
(i) displacement, which defines the distance that each point has moved
between two consecutive frames, (ii) velocity, which reflects displace-
ment per unit of time, (iii) strain, which reflects the deformation of an ob-
ject normalized to its original shape and size, and (iv) strain rate, which
describes the rate of strain or in other words how fast the deformation
occurs. Strain and strain rate are preferable to velocity and displacement

Figure 3 Common pitfalls when assessing systolic and diastolic function in HFrEF and HFpEF animal models. Echocardiographic exams were performed
using a Vevo 3100 Imaging System (VisualSonics). a0, late early-diastolic annular velocity; AET, aortic ejection time; b.p.m., beats per minute; e0 , peak early-
diastolic annular velocity; HR, heart rate; IVCT, isovolumetric contraction time; IVRT, isovolumic relaxation time; IVS, interventricular septum; LA, left
atrium; LV, left ventricle; MV A, late diastolic transmitral flow velocity; MV E, early diastolic transmitral flow velocity; mv, mitral valve; PA, pulmonary ar-
tery; pm, papillary muscle; pv, pulmonary valve; RV, right ventricle.
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..data, as the recording of velocity and displacement is influenced by
movements of the chest during breathing, while strain and strain rate are
not. These parameters allow the discrimination of myocardial active and
passive movements, and the separate assessment of distinct components
of myocardial deformation, such as lengthening, shortening, thickening,
twisting, and torsion.38 Thus, more complex geometric aspects are impli-
cated in the estimation of LV contractility by STE compared to standard
echocardiography.39 Values of strain and strain rate can be obtained for
the longitudinal, radial, and circumferential axes, both globally and in
each segment.

In humans, global longitudinal strain, obtained as the average of the
longitudinal strain of each myocardial segment recorded from the three
apical views, is the most accepted and studied STE-derived parameter of
systolic function.40 Due to its ability to detect and quantify local impair-
ments in cardiac contractility, STE is widely used in the clinics, particu-
larly to detect sub-clinical stages of myocardial dysfunction in a broad
range of pathologies that have not yet resulted in increased volumes or
compromised ejection fraction (EF). These include: (i) the detection of
small, recent, and sub-endocardial myocardial infarction,17,41–45 (ii) the
detection of subtle systolic dysfunction in patients with HF with

preserved ejection fraction (HFpEF),46–48 (iii) the discrimination be-
tween physiological and pathological LV hypertrophy,49 (iv) the early di-
agnosis of chemotherapy-induced cardiac toxicity,50–53 and (v) the
identification of sub-clinical cardiac dysfunction in relatives of patients af-
fected by genetic forms of dilated cardiomyopathy.54,55

While STE is becoming more widely used, most of the rodent studies
published in high-impact journals of general interest do not include strain
analysis.56–66 Since all US-based images have better resolution if acquired
along the US beam, STE is not completely angle-independent67 and values
obtained in the parasternal long-axis view in rodents may be less accurate
compared to those in humans. An additional, current limitation is the ab-
sence of reference values, the definition of which will require more wide-
spread use of this technology in animal models to ensure reproducibility
and accuracy. Examples of STE in healthy, hypertrophied, and infarcted
hearts are depicted in Supplementary material online, Videos S1–S6.

4.5 Three/four-dimensional imaging
Modern instrumentation for both human and small animal echocardiogra-
phy allows the 3D volumetric reconstruction of cardiac chambers. The

Figure 4 Longitudinal and short-axis views in healthy and pathological conditions. All the acquisitions were made at end-diastole as determined with
ECG and respiratory tracing (movies corresponding to each image, showing physiological parameters, are included as Supplementary material online,
Videos S10–S21). Echocardiographic exams were performed using a Vevo 3100 Imaging System (VisualSonics). For each projection, we describe the
parameters that should be measured as well as their derived parameters. A, late diastolic transmitral flow velocity; AV, aortic valve; CO, cardiac output;
DT, deceleration time; E, early diastolic transmitral flow velocity; e0, peak early-diastolic annular velocity; EF, ejection fraction; FS, fractional shortening;
HR, heart rate; IVRT, isovolumic relaxation time; IVSd, interventricular septum thickness in diastole; IVSs, interventricular septum thickness in systole;
LAA, left atrial area; LV mass, left ventricle mass; LV, left ventricle; LVAWd, left ventricular anterior wall thickness in diastole; LVAWs, left ventricular an-
terior wall thickness in systole; LVEDA, left ventricular end-diastolic area; LVEDV, left ventricular end-diastolic volume; LVESA, left ventricular end-sys-
tolic area; LVESV, left ventricular end-systolic volume; LVIDd, left ventricle internal diameter in diastole; LVIDs, left ventricle internal diameter in systole;
LVPWd, left ventricular posterior wall thickness in diastole; LVPWs, left ventricular posterior wall thickness in systole; PW, pulsed wave.RV, right ventri-
cle; s0, peak systolic annular velocity; SV, stroke volume; VTI, velocity time integral.
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software analyses LV geometry (volume and mass) upon the acquisition
of multiple serial images at a pre-defined distance (micrometric slices), us-
ing a motor that moves the transducer along the long axis. These slices
can be eventually merged and combined with a temporal dimension (4D)
through automated respiratory and ECG gating. Volumes at late systolic
and diastolic time points are acquired as post-processing analysis.

Theoretically, 3D/4D imaging appears as the most reliable method for
assessment of cardiac chamber volume and function, being based on
real, image-based endocardial and epicardial tracing and not on geomet-
rical assumptions. The additive value of 3D/4D imaging over B-mode sin-
gle- and multi-plane methods for the evaluation of volumes and systolic
function and its comparison with the gold standard magnetic resonance
imaging has been demonstrated by a few pioneering studies in
rodents.68,69 It has also been applied to genetic models of cardiac dys-
function. However, this echocardiographic technique has several limita-
tions, including the need for accurate ECG and respiratory gating by
sophisticated equipment (often not available in standard laboratories),
the generation of extensive data, requiring powerful computational
resources for analysis, and moderate reproducibility.69 While anatomic
structures (i.e. ribs, sternum, lungs) could interfere with 3D heart recon-
struction, the relatively low cost, rapid acquisition time, and high spatio-
temporal resolution are expected to promote the use of 3D/4D
echocardiography for the evaluation of LV function in small animals.

While reference values for 3D/4D-generated data on human cardiac
dimensions and mechanics have recently been provided,40 large databases
have not yet been built for rodents and it is therefore premature to provide
reference values. 4D videos from healthy mice and well as from hearts sub-
jected to chronic pressure overload and myocardial infarction are provided
(see Supplementary material online, Videos S7–S9, respectively).

5. Evaluation of systolic function

To evaluate systolic function in rodents, three major imaging views are
used: M-mode single-plane evaluation, and B-mode single- and multi-
plane evaluation.

5.1 M-mode (single-plane) parasternal
short-axis view

M-mode tracing on the short axis has been the most commonly used
method to measure systolic function in both mice and rats.56–66,70,71 M-
mode images are displayed as a continuous function of time, allowing op-
timal temporal resolution and precise quantification of wall thickening.72

Measurements have to be taken in both systole and diastole, which
requires simultaneous ECG recording. The start of the QRS complex on
the ECG marks the end of diastole, the time point at which diastolic
measurements should be acquired. Systolic measurements can be made
at either the zenith of the posterior wall motion or the nadir of the ante-
rior wall motion. These two events do not occur exactly at the same
time, neither in humans nor in rodents. However, they can both be used
as a reference for systolic measurements with the same level of accuracy,
which results in comparable values. In the case of a large myocardial in-
farction, the anterior wall motion is often compromised and the use of
the posterior wall peak motion is recommended.

The leading edge method, in which measurements are calculated
from the side closest to the transducer towards the leading edge of
the following echo, allows the quantification of the following LV
parameters both in systole and in diastole (Figure 2): anterior wall
thickness (LVAWs and LVAWd), posterior wall thickness (LVPWs

and LVPWd), and internal diameters (LVIDs and LVIDd).73 From
these values, fractional shortening (FS), LV end-systolic and end-
diastolic volumes (LVESV and LVEDV), and EF can be calculated, ap-
plying the following formulas74:

FS ð%Þ ¼ ðLVIDd – LVIDsÞ=LVIDd x 100;
LVESV ¼ ð7=ð2:4þ LVIDsÞÞ x LVIDs3;

LVEDV ¼ ð7=ð2:4þ LVIDdÞÞ x LVIDd3;
EF ð%Þ ¼ ðLVEDV-LVESVÞ=LVEDV x 100:

However, since M-mode tracing records cardiac contraction on a sin-
gle spatial plane, these calculations rely on geometrical and mathematical
assumptions that do not exactly represent the shape of the heart. In par-
ticular, the change in volume during systole and diastole derives from lin-
ear changes measured on the short axis, without any contribution from
longitudinal contraction. Moreover, the shape of the LV is assumed to be
a modified ellipsoid, whereas the physiological LV often has an irregular
shape, particularly after myocardial infarction, asymmetric septal hyper-
trophy, or RV failure.36

Furthermore, it should be taken into account that any error in the
tracing significantly reduces the accuracy of the data, as the measure-
ments are raised to the third power for the calculation of LV volumes.
Finally, the accuracy of this method is further limited in case of segmental
wall motion abnormalities, i.e. in the post-myocardial infarction, particu-
larly at the apex. Therefore, B-mode evaluation is preferred to properly
evaluate systolic function in most experimental models.

LV mass can be estimated using Devereux’s formula,75 modified for
rodents:

LV mass ¼ 1:04 ½ðLVIDdþ LVAWdþ LVPWdÞ3- LVIDd3� x 0:8
þ 0:6:

The formula to calculate LV mass is derived from the formula applied
in humans, where 1.04 is the estimated specific gravity and the remaining
constants are correction factors. Importantly, the values of LV mass sig-
nificantly correlate with post-mortem LV weight in normal Sprague–
Dawley rats76 and hypertensive Dahl-salt rats.77

Another option when computing LV mass is by using the less
common area-length method.78 Although it seems more accurate, it
warrants validation to determine the degree of correlation with LV
weight or LV mass assessed by 3D-echocardiography. In a simplistic
view, LV mass is estimated by subtracting the volume of an ellipse
corresponding to the LV cavity from the total LV volume (wallþcav-
ity). To accomplish this, one should trace the epicardium and endo-
cardium in mid-ventricular parasternal short-axis view, calculate the
average myocardial wall thickness [(LVAWdþLVPWd)/2], and apply
the following formula:

LV mass ¼ 1:05 x ½5=6 x EpiC x ðLVEDL
þ ðLVAWdþ LVPWdÞ=2Þ� – ð5=6 x EndC xLVEDLÞ;

where EpiC and EndC correspond to epicardial and endocardial areas in
diastole, respectively, and LVEDL is the end-diastolic LV length, corre-
sponding to the distance from the aortic annulus to the endocardial bor-
der of the apex (measured in B-mode, long axis).

5.2 B-mode (single-plane) parasternal long-
axis view
Aortic diameter and left atrial (LA) area can be measured in parasternal
long-axis orientation using the B-mode, although we recommend
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measuring LA area in the four-chamber view. Tilting the transducer
slightly in this position reveals the RV and pulmonary artery, thereby
allowing assessment of the total RV and RV outflow tract dimensions in
M-mode, as well as the pulmonary velocity–time integral (VTI) using PW
Doppler.

Using a mono-plane of the parasternal long-axis view in B-mode, a sig-
nificant number of systolic indexes and volumes can be obtained. This is
achieved by tracing the endocardial border around the LV cavity at the
end of both systole and diastole, thereby generating the LVEDA and
LVESA, respectively and by measuring the LV length at end-diastole and
end-systole, respectively (LVEDL and LVESL), as shown in Figure 2 and
according to the following formulas:

LVEDV ¼ 8 x LVEDA2=3pLVEDL;
LVESV ¼ 8 x LVESA2=3pLVESL:

Based on these calculations, other systolic function parameters can be
determined,79,80 such as stroke volume (SV, volume of blood ejected
from the LV during systole), and CO (volume of blood ejected from the
LV per minute). In the case of large differences in BW, CO should be
normalized to body surface area and expressed as cardiac index. Below,
the corresponding formulas are given:

SV ¼ LVEDV – LVESV;
CO ¼ SV x HR;
CI ¼ CO=BSA;
BSA ¼ 9:8 x BW2=3:

Similar to M-mode images, these calculations are also based on the
geometrical assumption that the LV has a modified ellipsoid shape.36

Again, this can generate inaccuracy, particularly when motion abnormali-
ties are localized in any of the walls, which are not seen in this view.

5.3 B-mode (multi-plane) parasternal
short-axis view
This approach, also referred to as the ‘Simpson’s method’, allows the
measurement of ventricular volumes with a higher accuracy by using an
approach that bears similarities with the clinical biplane method of discs.
In this approach, the total LV volume is calculated from the sum of a
stack of elliptical discs. From the parasternal long-axis view, LVEDL and
LVESL are measured. Then, images of the LV in its short axis are analysed
at the following three levels: (i) at the level of the base, (ii) at an interme-
diate position, approximately at the level of the papillary muscles, and
(iii) at the apex level (Figures 2 and 4). From these acquisitions, a 3D re-
construction of the LV geometry and the calculation of diastolic and sys-
tolic LV volumes are possible using a modified Simpson’s rule36,81,82 (also
called method discs technique):

LVEDV ¼ ðA1þ A2Þ x ðLVEDL=3Þ þ ðA3=2Þ x ðLVEDL=3Þ þ ðp=6Þ
x ðLVEDL=3Þ3;

LVESV ¼ ðA1þ A2Þ x ðLVESL=3Þ þ ðA3=2Þ x ðLVESL=3Þ þ ðp=6Þ
x ðLVESL=3Þ3;

where A1, A2, and A3 are LV areas at the level of mitral valve, papillary
muscles, and apex, in diastole and systole, respectively. However, in
pathological conditions, e.g. after myocardial infarction, papillary muscles
might be either fibrotic and poorly visible or displaced. Thus, an appro-
priate and consistent method for standardization of the short-axis imag-
ing is warranted. This could be achieved by scrolling along the long axis
to set the basal and apical views at the most distant sections in which the

LV chamber is still visible both in systole and in diastole (without the in-
clusion of left atrium at the base) and adding an intermediate recording
halfway. Accurate and consistent positioning of the short-axis views is
crucial to obtain standardized data, especially in myocardial infarction
settings. In each plane, the endocardial border is traced at the end of
both diastole and systole, as described earlier.

Convincing evidence in both humans and rodents83,84 has shown that
in pathological conditions, such as after myocardial infarction, this
method is more accurate to quantify LV volumes and cardiac function
compared to the M-mode, due to variable localization and the segmental
nature of the ischaemic lesion. On the other hand, this method requires
adequate acoustic windows for the accurate visualization of the endocar-
dial border and measurement. This is often difficult to achieve in rodents,
in which myocardial infarction is mostly induced experimentally by surgi-
cal ligation of the proximal left anterior descending coronary artery,
resulting in apical lesions, which severely affect the definition and resolu-
tion of the endocardial border. In addition, the surgical procedure and
the sutures on the chest further reduce the quality of the acoustic win-
dow and often result in major distortion of the heart’s geometry. Thus,
to what extent this method is more reliable and accurate compared to
the B-mode, single-plane evaluation of the long axis (in which apical
lesions can be better visualized) remains an open question.

5.4 PW Doppler echocardiography
PW Doppler provides hemodynamic information and more precise
quantification of SV than 2D echocardiography.85 In particular, PW
Doppler of aortic flow is used to evaluate blood flow velocity at the level
of the LV outflow tract (LVOT) to derive the VTI. While LVOT VTI is
usually assessed with the five-chamber view, the cross-sectional area is
measured with the parasternal long-axis view in B-mode. SV can then be
calculated by applying the following equation:

SV ¼ VTI� CSA;

where CSA refers to the cross-sectional area of the LVOT and can be
derived by measuring the LVOT diameter (D) on long-axis parasternal
M-mode and assuming its circular shape:

CSA ¼ D2 � p=4 ¼ D2 � 0:785:

Accurate PW Doppler measurements require that US waves are paral-
lel to the blood flow, or that angle correction is implemented when the
beam is not aligned with the blood flow. In humans, this is easily achieved
by recording a PW Doppler signal at 5 mm from the aortic valve in an api-
cal five-chamber view.85 In mice, the parallel orientation can be better
obtained at the level of the pulmonary artery, as the SV is equal for both
ventricles (Figure 2). The reliability of PW Doppler echocardiography in de-
termining CO in mice has been validated and compared to standard echo-
cardiography and invasive measurements,86 showing that all US-based
techniques tend to overestimate CO. Although B-mode single-plane eval-
uation provided values which are closely comparable to values derived by
invasive assessment, VTI-derived CO assessed at the level of the pulmo-
nary artery was the most reproducible method, showing the lowest inter-
observer variability. In rats, the approach is the same, but CO can be calcu-
lated from CSA and VTIs measured at the LVOT or at the aorta.24

6. Evaluation of diastolic function

Diastole comprises the relaxation and filling of cardiac cavities to enable
an adequate blood volume to maintain normal CO. Diastolic dysfunction
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can derive from abnormal relaxation and/or increased myocardial stiff-
ness of the LV, eventually leading to elevated LV filling pressures and HF
symptoms. In the presence of either preserved or minimally depressed
EF, diastolic dysfunction is the main determinant of HFpEF. Assessment
of diastolic dysfunction is receiving more and more attention, as HFpEF
currently accounts for nearly half of the HF patients, and its prevalence
continues to rise due to the increasingly aged society and survival of
patients with comorbidities for HFpEF, such as type 2 diabetes, hyper-
tension, and obesity.87 While the prevalence of HFpEF rises, no effective
therapeutic and prevention options are available, mostly due to a lack of
pathophysiological understanding, patient heterogeneity, and underdiag-
nosis.88,89 Diastolic dysfunction is frequently associated with increased
interstitial fibrosis, LV concentric hypertrophy, and atrial enlargement.
Moreover, pulmonary hypertension and RV dysfunction, often arising in
response to elevated LV filling pressure, are key hemodynamic abnor-
malities in diastolic dysfunction, which can effectively stratify HF pheno-
types (with both reduced and preserved EF).90,91

As in humans, assessment of LV diastolic function in rodents includes
Doppler evaluation of LV filling velocity, measured by the ratio between
early (E) and late (A) diastolic transmitral Doppler flow velocities (E/A),
isovolumetric relaxation time (IVRT), mitral valve E wave deceleration
time (DT), and LA area.92 Nevertheless, E/A and IVRT are highly depen-
dent on the pressure gradient between left atrium and ventricle. With
the emergence of TDI, myocardial motion in early diastole, as assessed
by peak early-diastolic annular velocity (e0), became a good measure of
diastolic function.24 E to e0 ratio is, therefore, an appropriate estimator
of LV filling pressures, that has been adopted as one of the criteria for
clinical diagnosis of HFpEF and is successfully applied in small animal stud-
ies.92 Lately, the E-wave deceleration rate E/DT has been proposed, out-
performing the tissue Doppler-derived index E/e0 in characterizing lung
remodelling in HFpEF.93

While most of the indexes of diastolic function are relatively easy to
obtain in rats, their measurement requires expert training in mice with
their higher HR and smaller heart size. The same distinction applies for
normal cut-off values, which appear highly variable in intra- and inter-
strain comparative studies in mice.94 Conversely, reference values ap-
pear more homogeneous and standardized in rats (Table 1).95,96 Finally,
while in humans, echocardiographic diastolic parameters have been clini-
cally and haemodynamically validated, with E/e0 ratio values >15 consis-
tently associated with elevated LV filling pressures, this evidence has only
recently been provided for rats97 and is still not reported for mice.
While most studies provide ‘normal’ E/e0 ratio values between 20 and
30,98–100 it has to be emphasized that, in mice, it is very difficult to mea-
sure e0 velocity close to the mitral valve, often resulting in its underesti-
mation (Figure 3).

In view of these limitations, the following guidelines will be useful to
standardize the evaluation of diastolic function and define universal refer-
ence values also in mice.

6.1 B-mode, apical four-chamber
evaluation
Analysis of diastolic function should start with the B-mode to visualize
the apical four-chamber view. Although the LA area can be measured in
parasternal long-axis orientation, we recommend measuring it in the
four-chamber view in B-mode, assuring the simultaneous visualization of
atria as well as mitral and tricuspid valves opening and closing (Figure 2).
LA maximal extension should be confirmed by observing cine-loop
recordings. Indeed, the LA area has been routinely used as a marker for

chronic elevation of LV filling pressure and diastolic dysfunction in both
humans and animal models.92,101

Apart from diastole, if one aims to evaluate valvular function, this
plane also allows a suitable alignment of mitral and tricuspid annuli to as-
sess their motion in M-mode. Slightly tilting the transducer down enables
a five-chamber view, where the left ventricular outflow tract and aorta
are revealed (Figure 2).

6.2 PW and tissue Doppler in apical four-
chamber evaluation
The apical four-chamber view represents the preferred plane for re-
cording transmitral Doppler flows (E and A velocities, their ratio, DT,
and IVRT) and TDI imaging (e0, a0, and s0) with the sample volume placed
at the tips of the mitral leaflet and at the lateral mitral valve annulus, re-
spectively. The E wave represents the transmitral blood flow during the
LV early filling phase and can be affected by the rate of LV relaxation and
its compliance. The A wave represents the transmitral blood flow during
the atrial contraction phase and can be altered by LA contractility or
compliance.102 The E/A ratio provides important information about LV
filling dynamics.24 Special attention should be given when assessing these
velocities, as they are highly dependent on HR, and thus anaesthesia.
Preferentially, these measurements should be acquired with other more
reliable parameters, such as annular tissue velocities and LA size.102

Other diastolic parameters include DT, the duration of E wave peak to
the baseline, and IVRT, which is the time from the closure of the aortic
valve to the opening of the mitral valve. Increased IVRT and DT reflect a
prolonged LV relaxation, but can both be influenced by a number of fac-
tors, such as preload, arrhythmia, or very high HR, as well as diseases
that cause hyperdynamic states.

During TDI, early (e0) and late (a0) diastolic mitral annulus peak veloc-
ity and systolic peak wave can be assessed. The e0 velocity is determined
by LV relaxation, restoring forces, and filling pressures. e0 velocity has
been shown to correlate well with invasive measures of IVRT constant
of myocardial relaxation, tau.103 The mitral E/e0 is proposed to reflect LA
pressure, and, indirectly, LV end-diastolic pressure. The E/e0 is less sensi-
tive to preload than other echocardiographic indexes of diastolic func-
tion.104 Currently, an elevated E/e0 is proposed as a guideline for the
diagnosis of diastolic dysfunction.105 However, under certain conditions,
including (i) tachycardia with fusion of E and A velocities, (ii) unreliable
measurement of E velocity (significant mitral regurgitation), (iii) unreli-
able e0 velocities (e.g. mitral valve replacement, mitral annular calcifica-
tion, mitral stenosis, and/or left bundle branch block), and/or (iv)
significant aortic regurgitation, precautions should be taken with regard
to the use of E/e0 as a marker for diastolic dysfunction.106 For the acquisi-
tion of TDI, the gain should be considerably adjusted to avoid superim-
position of multiple amplitudes. Furthermore, it is important to position
the sample volume at the myocardium, as close as possible to the mitral
or tricuspid annuli to assess the areas with greater excursion enabling
the recording of maximal velocities with a better temporal resolution.24

Measurements acquired in myocardial areas distal to the ones herein
recommended will result in lower velocities and increased E/e0 values
(Figure 3).

At HRs >450 b.p.m., E and A waves are frequently merged. Some
authors suggest to artificially reduce HR by increasing anaesthesia pro-
portionally in all groups. We argue that this is not physiological and
should be avoided. Instead, one should try to extract E-wave velocity
peak value and normalize it to e0. Indeed, E/e0 represents a much more
reliable parameter to assess diastolic function when compared to E/A,
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since it has an excellent correlation with LV end-diastolic pressure (indic-
ative of myocardial stiffness) and tau.23,94,103 Other echocardiographic
indexes have been proposed as surrogates of LV end-diastolic pressure,
such as E/DT, after normalizing DT to cardiac cycle duration.97

Both PW and TDI allow extracting the values of isovolumetric con-
traction time (IVCT), IVRT, and ejection time (ET) as shown in Figure 2.
From these, one can derive Myocardial Performance Index (TEI
Index)107:

TEI ¼ ðIVCTþ IVRTÞ=ET:

We should emphasize that while IVRT is a diastolic parameter, TEI in-
dex assesses myocardial global function, including both diastolic and sys-
tolic functions. The underlying rationale is that both isovolumetric
periods, IVRT and IVCT, are energy-dependent but do not produce
work. Myocardial dysfunction usually prolongs the isovolumetric peri-
ods, yielding higher values for this index compared to a healthy heart.

Finally, as mentioned earlier, several studies have established an inde-
pendent relationship between RV dysfunction and the prevalence and
prognosis of HFpEF, using feasible and readily available echocardio-
graphic measurements.90,91 Tricuspid annular plane systolic excursion
(TAPSE) reproduces well the degree of RV longitudinal contraction and
has proved to be a reliable parameter to assess global RV function
(Figure 2). TAPSE is measured in the apical four-chamber view and the
M-mode cursor should be positioned on the lateral tricuspid annulus
near the free RV wall and aligned as close as possible to the apex of the
heart. Special care should be taken in assuring the RV is clearly visualized
in the M-mode view. Maximal TAPSE is defined by the total excursion/
distance between the ventricle end-diastole and end-systole.108

7. Assessment of LV function in
animal models of disease

A brief description of the echocardiographic views, modalities, and de-
rived parameters for common cardiovascular diseases, including chronic
pressure overload, myocardial infarction, and diastolic dysfunction asso-
ciated to HFpEF, is provided in Table 3. Representative images of hearts
affected by chronic pressure-overload and myocardial infarction, in com-
parison to normal, healthy hearts, are provided in Figure 4. In diseased
conditions, the echocardiographic examination may be limited by poor
window size and image acquisition due to the positioning of the ribs or
to the presence of abundant fat tissue inside and around the thoracic
cavity. Indeed, fat is very echogenic, i.e. US is easily reflected, attenuated,
and slowed down through the fat layer, which impairs the quality of the
images. In addition, anaesthetic induction and maintenance can vary sig-
nificantly due to adiposity, causing differential degrees of cardio-
depression.

As mentioned earlier, surgical models require the use of sutures that
significantly compromise the quality of the acoustic windows. Post-
intervention fibrosis may accumulate around the heart further diminish-
ing the quality of the echocardiographic images. In addition, fibrosis can
induce a slight rotation or distortion of the heart, which may demand a
corresponding corrective rotation of the transducer.

Despite these limitations, echocardiography remains an invaluable
tool to assess LV function in animal models of human diseases, that fol-
lows the principles of the 3Rs (refine, reduce, and replace).
Furthermore, it allows assessing longitudinal progression over time, i.e.
at different ages in the same animal, as it is neither painful nor invasive (as

compared to pressure/volume loop method for example), and therefore
suitable to refine cardiac function assessment and reduce the number of
studied animals. Moreover, as it has an extensive application in human
diagnostics, echocardiography is a continuously evolving technique.

8. Data analysis

When analysing echocardiographic data, one should:

(1) Register anaesthetic parameters.
(2) Acquire and analyse data blindly (as echocardiographic analysis is sub-

jective and researcher-dependent, the data should be analysed by multi-
ple researchers and averages should be recorded).

(3) Record and present HR.
(4) Extract diastolic and systolic volumes from the same cardiac cycle.
(5) Average measurements from at least three different cycles.
(6) Calculate indexed values whenever the animals show large differences

in BW (cardiac index, EDV, and ESV). In this case, values should be nor-
malized to body surface area defined as 9.8�BW2/3.79,80 This applies
mostly to volumes, dimensions, and LV mass.

(7) Record and store measurements as well as cine-loop recordings.
Ensure that a working-station is available to analyse the data off-line,
without occupying the equipment.

9. Conclusions

Echocardiography is not an automated procedure and it is highly
operator-dependent, relying on a proper acquisition and interpretation
of the results by an examiner who is familiarized with both its capabilities
and its limitations. We believe therefore that some minimal require-
ments need to be defined and followed by experimental researchers to
increase the reliability of the data reported in publications and to allow a
better comparison of studies performed in different laboratories.

This paper provides a list of standards, which should be met in order
to evaluate LV function in rodents. We also provide a list of common pit-
falls during basic echocardiographic examination (Figure 3). Briefly, ani-
mals should be sedated with the minimal dose of anaesthesia, whenever
possible through inhaled halogenated gases, keeping the core body tem-
perature �37�C and HR >350 b.p.m. in rats and 450 b.p.m. in mice. In
any case, the name and dose/concentration of the anaesthetic, the HR,
and the body temperature should be clearly indicated.

Systolic function should be assessed on B-mode images, using either
single- or multi-plane evaluation. Experimental studies comparing the ef-
ficacy of these two methods in estimating cardiac volumes, as precisely
determined by invasive hemodynamic monitoring, are highly encouraged
and should provide a definitive answer regarding the optimal method to
be followed in diverse models of heart disease (i.e. segmental vs. global
systolic dysfunction). In any case, a detailed description of the method
used to calculate systolic function must be provided. M-mode evaluation
should be limited to LV diameters and FS. Volume extrapolation is not
accurate and should therefore be discouraged when evaluating systolic
function, as already repeatedly recommended in clinical use.40,109

Analysis should, preferentially, be performed post-acquisition by blinded
operators, and the measures to ensure blinding should be clearly
indicated.

Diastolic function should be evaluated on B-mode images, mostly us-
ing the apical four-chamber view. Analysis should start by measuring LA
area, followed by recording transmitral PW Doppler flows and TDI im-
aging to obtain E/A, E/e0, IVRT, and DT values. Of these, enlarged LA size
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.
(in both mice and rats) and increased E/e0 (in rats) appear as the most re-
liable parameters to indicate elevated LV filling pressures. As in humans,
diastolic dysfunction in rodents should be determined and proved by si-
multaneous alteration of multiple indexes, although definitive cut-off val-
ues still need to be determined.

In addition to these methodological standards, more active interaction
and discussion between experimental researchers and clinical sonogra-
phers should be encouraged to increase awareness of the morphological
features of the heart in healthy and diseased conditions, as well as to im-
port the most recent advances in echocardiographic tools and software
to laboratory settings. Standardization of echocardiography, a non-
invasive, inexpensive, widely available, and repeatable technique, would
likely improve the translation from small animals to the clinic.
Furthermore, as patients are often diagnosed once they have an estab-
lished disease, standardization of echocardiography could help to find
earlier characteristics of disease, which would improve the diagnosis at
an earlier stage in humans.

Various publications and databases are available and provide reference
values for echocardiography measurements and calculations derived
from different strains and genders of mice and rats.28,110–112 As these
normal values have not been obtained using a standardized approach,
Tables 1 and 2 provide a summary of reference values obtained in our
laboratories, following the recommendations listed in this article, for the
most commonly used rodent strains and anaesthetics. Inexperienced
sonographers are encouraged to refer to these data to match the exper-
imental results for control animals and ensure sufficient data reliability.
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