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Abstract In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing popula-
tion. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV dis-
ease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms be-
tween HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the
toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of
the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence
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interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not
central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory
cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer.
Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel
additional research efforts in the field of Cardio-Oncology.
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1. Introduction

In the industrialized world, cardiovascular (CV) disease and cancer are
the leading causes of death in the ageing population.1 Left ventricular dys-
function (LVD) and heart failure (HF) are not rare across the broad pop-
ulation of cancer patients. In cancer patients, CV disease (CVD) is the
most frequent non-cancer cause of death.2 HF and cancer share the
same risk factors (e.g. ageing, smoking, obesity, diabetes, dyslipidaemia,
alcohol intake, inflammation).3,4 Furthermore, cancer and HF may have
ancillary factors linking the two together.5 Registries have observed that
HF patients have a higher cumulative incidence of cancer, with a worse
prognosis when both co-exist,6 suggesting that cancer surveillance may
be useful in the management of HF patients.7 Finally, an increased cumu-
lative incidence of cancer among HF patients 30 days after myocardial in-
farction (MI) has been reported, compared to HF-free patients 30 days
after MI.8

When considering these observations, it should be taken into account
that there may be a surveillance bias, due to the fact that these study
patients usually undergo an intense follow-up programme that may lead
to anticipate cancer diagnosis, sometimes discovering malignancies that
would have gone undiscovered. Moreover, some of the most common
therapies used to treat HF patients may play a role in revealing tumours
otherwise asymptomatic (e.g. a latent intestinal neoplasm can bleeding
due to anti-thrombotic therapy).3 Clinical presentations can also be diffi-
cult to distinguish between HF and cancer, since the two conditions can
share some common symptoms (fatigue, dyspnoea, weight loss, muscle
wasting, and oedema).1,3 This may delay the diagnosis of new-onset can-
cer in HF patients due to the overlap in clinical manifestation.
Furthermore, CV function and predictors of exercise capacity are im-
paired in patients with cancer per se.9 Hence, symptoms due to a tumour
may overlap with those of HF and be attributed to heart disease. This
may even delay cancer diagnosis, as symptoms might be thought of as
due to advancing disease rather than new cancer.3 Although the relation-
ship between cancer and HF is not well-defined in clinical studies, there
is increasing data to suggest mechanistic links between the two condi-
tions that we discuss in our manuscript.

Besides these reciprocal relations, cancer and HF carry an indepen-
dent risk of mortality and also limit optimal treatment of the other condi-
tion when they co-exist, contributing to higher mortality. In addition, the
cardiotoxicity risk related to treatment with anticancer drugs may un-
mask or deteriorate pre-existing HF.3 The mechanisms driving HF trig-
gered by anticancer therapies have been extensively investigated over
the last 20 years and important insights have been uncovered.10–12

Nonetheless, major questions are still open, and the answers to these
questions may lay the foundations for new strategies to detect, monitor,
and treat cancer-therapy induced cardiotoxicity. On the other hand, re-
search into the common pathways linking cancer and HF regardless of
anticancer drugs has just begun.13

The latest insights in translational Cardio-Oncology were discussed
during the joint meeting of the Working Groups of Myocardial Function
and the WG of Cellular Biology of the Heart of the European Society of
Cardiology, held in Naples, Italy, in May 2019. In particular, given the sys-
temic involvement of both HF and cancer, the Cardio-Oncology session
focused on the contribution of organs, systems, and cells other than car-
diomyocytes to the pathogenesis of cardiac dysfunction in cancer
patients, and to the interconnection between cancer and HF, primarily
via inflammation. Opportunities and the current limitations in the use of
microRNAs (miRNA) in cardio-oncology were also discussed. These
topics are reviewed here, to provide the reader with updated informa-
tion and further stimulate research in the field.

2. Role of non-cardiomyocytes in
cancer treatment-related
cardiotoxicity

The heart is a multicellular organ composed by cardiomyocytes, fibro-
blasts, neurons, endothelial, and haematopoietic-derived cells. In fact,
cardiomyocytes are not the most abundant cell type.14 The different car-
diac cell populations have diverse functions and also interact through
complex intercellular communications.15 Most studies performed so far
have focused on the effects of anticancer drugs on cardiomyocytes, in
both in vitro systems and in vivo models16 (see Table 1). Briefly, among the
many forms of cardiotoxicity caused by several anticancer drugs
(Table 2), cardiac dysfunction due anthracyclines, such as doxorubicin
(DOXO) has historically been the most relevant.17 From a pathophysio-
logical point of view, anthracyclines induce cardiomyocyte death, mainly
apoptosis and necrosis, via different molecular mechanisms, including
but not limited to induction of oxidative stress, activation of DNA dam-
age responses, and impairment of mitochondrial biogenesis and metabo-
lism.18–20 Among other mechanisms involved in anthracycline-induced
cardiotoxicity, abnormalities in myocardial energetics have also been
studied.21,22 Also biological drugs, designed to target specific oncologic
pathways may be cardiotoxic, since these pathways play a major role in
the maintenance of cardiac homeostasis, especially during stressful con-
ditions, such as hypertension or hypertrophy.23 For instance, human epi-
dermal growth factor receptor 2 (HER/ErbB2) and angiogenesis inhibitors
profoundly affect cardiomyocytes metabolism and contractile proteins,
as discussed in comprehensive reviews.16,24–26

In addition, anti-tumour therapies likely also affect non-
cardiomyocytes in the heart. For instance, DOXO has been shown to
exert toxic effects on cultured cardiac endothelial cells27 and fibro-
blasts.28–30 This direct activity on non-cardiomyocytes may partly ac-
count for the cardiotoxicity of the drug, e.g. endothelial cells lose their
barrier function with increased permeability and myocardial injury.
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.The impact of the toxicity of DOXO and any other anti-tumour treat-
ment on non-cardiomyocytes can be better understood when it is
placed into the context of the intercellular cross-talks in the heart. This
concept is exemplified by the current knowledge about the cardiotoxic-
ity of anti-HER2 drugs.31 Besides being expressed in breast cancer cells,
HER2/ErbB2 is also physiologically present in cardiomyocytes together
with another receptor tyrosine kinases (RTK) of the same family, HER4/
ErbB4.32 Upon binding of HER4/ErbB4 by neuregulin-1 (NRG) and other
ligands secreted by cardiac microvascular endothelial cells, HER2/ErbB2,
and HER4/ErbB4 form heterodimers and initiate protective signalling
cascades. Therefore, drugs targeting HER/ErbB2 are postulated to dis-
rupt the NRG1-HER2/ErbB2-mediated endothelial cell-cardiomyocyte
crosstalk and make cardiomyocytes more vulnerable to other stressors
(Figure 1). It is notable that trastuzumab, used in the treatment of human
epidermal growth factor receptor (HER)-2þ breast cancer, also directly
damages cardiomyocytes and endothelial cells.33,34

The inhibitors of the RTK for vascular endothelial growth factor
(VEGF) and platelet-derived growth factor (PDGF) cause cardiac micro-
vascular dysfunction secondary to depletion of coronary microvascular
pericytes.35 The resulting myocardial hypoxia leads to sustained expres-
sion of hypoxia-inducible factor alpha (HIF-a), which was demonstrated
to be sufficient to cause cardiomyopathy.36,37 Indeed, enhanced vascular
permeability and reversible microvascular vasoconstriction have been

reported in patients receiving therapies targeting VEGF and PDGF re-
ceptor (VEGFR and PDGFR, respectively).38 Moreover, this mechanism
of toxicity well explains the clinical observation that cardiomyopathy as-
sociated with anti-VEGFR/PDGFR agents is reversible.39

However, evidence obtained over the last years suggests that block-
ade of VEGF signalling also interrupt endothelial cell-cardiomyocyte
communication (Figure 1). VEGF binds VEGFR on endothelial cells to
stimulate angiogenesis and also to induce the release of angiocrines (in-
cluding ErbB4 and ErbB1 ligands) that modulate the function and
homoeostasis of adjacent cardiomyocytes.40 Thus, drugs that inhibit
VEGFR may alter cardiac function by interfering with the VEGF-VEGFR
signalling axis, and by promoting endothelial cell dysfunction and
death.41,42High-throughput screening of RTK inhibitors pinpointed those
targeting VEGFR2 and PDGFR as the most toxic in human-induced plu-
ripotent stem cell (hiPSC)–derived endothelial cells.43

Experimental models and analyses of human biopsies indicate that
some features of HF with preserved ejection fraction (HFpEF) are at
least in part driven by cardiac endothelial cell dysfunction. This latter elic-
its inflammatory infiltration of the myocardium, fibroblasts activation to
deposit collagen excessively and increased stiffness triggered by a reduc-
tion of nitric oxide-dependent signalling.44–46 Consistently with the epi-
demiological finding that the risk of HFpEF is correlated with prior
radiotherapy for breast cancer,47 similar features were demonstrated in

......................................................................................................................................................................................................................

Table 1 Main direct toxic effects of cancer therapies on cardiomyocytes

Cellular toxicity Treatment(s) most commonly involved

Type II topoisomerase poisoninga Anthracyclines

Mitochondrial dysfunction Anthracyclines, VEGFR/multitargeted RTK inhibitors

Oxidative stress Anthracyclines

Impaired autophagy Anthracyclines, proteasome inhibitors

Altered protein handling Proteasome inhibitors

Induction of HIF pathways VEGFR/multitargeted RTK inhibitors

aThis toxicity is peculiar of anthracyclines.
HIF, hypoxia-inducible factor; RTK, receptor tyrosine kinase; VEGFR, vascular endothelial growth factor receptor.

......................................................................................................................................................................................................................

Table 2 Cardiovascular toxicities of cancer therapies

Type of toxicity Treatment(s) most commonly involved

LVD, HF Anthracyclines, HER2-targeting drugs, VEGFR/multitargeted RTK inhibitors, proteasome inhibitors, radiation therapy (HFpEF)

Myocardial ischaemia Fluoropyrimidines, VEGFR inhibitors, radiation therapy

Myocarditis ICIs, cyclophosphamide (rarely)

Atrial fibrillation Ibrutinib

QT prolongation Arsenic trioxide, vandetanib, androgen deprivation therapy (enzalutamide)

Valvular heart disease Radiation therapy

Pericarditis ICIs, cyclophosphamide

Hypertension VEGFR inhibitors

Peripheral artery disease Nilotinib, ponatinib

Vascular thrombosisa Cisplatin, nilotinib, ponatinib, thalidomide and lenalidomide, VEGFR inhibitors, proteasome inhibitors, aromatase inhibitors

Pulmonary arterial

hypertension

Dasatinib, cyclophosphamide

HF, heart failure; HFpEF, heart failure with preserved ejection fraction; ICIs, immune checkpoint inhibitors; LVD, left ventricular dysfunction; RTK, receptor tyrosine kinase;
VEGFR, vascular endothelial growth factor receptor.
aAcute myocardial ischaemia will ensue if thrombosis occurs at coronary artery atherosclerotic plaques.

1822 C.G. Tocchetti et al.
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.
rats receiving cardiac radiation.48 Since non-proliferating cardiomyocytes
are considered resistant to ionizing radiation, other cell types, and in par-
ticular, endothelial cells, are predicted to be the main target of radiation
therapy leading leads to HF.49

Fibroblasts also regulate cardiomyocytes and inflammatory cells
through their secretome.50,51 In a recent study, DOXO caused both ap-
optosis of cardiac fibroblasts and secretion of Fas ligand, which in turn
promoted cardiomyocyte death in a paracrine manner.52 Conditional
deletion of ataxia telangiectasia mutated kinase (ATM) in cardiac fibro-
blasts attenuated cardiac cell apoptosis, LVD, and mortality in response
to DOXO, suggesting that fibroblast are central in the pathogenesis of
DOXO cardiotoxicity through ATM. The interactions between fibro-
blasts and other cardiac cell types, and the mechanisms in the cardiotox-
icity of anticancer therapies, are an important area for future research.52

Senescence of fibroblasts and possibly other cardiac stromal cells is es-
pecially worth being investigated since it has been proposed that it plays
a major role in the pathogenesis of heart disease.53

In conclusion, oncological drugs and radiotherapy induce abnormali-
ties in non-cardiomyocytes, which secondarily derange the networks
with cardiomyocytes and may lead to LVD and HF. Additional studies
are needed,54,55 also considering that cardiotoxicity may be evident in an
already damaged myocardium, but may remain latent or hidden in the
healthy heart.56 Since cardiac diseases and their comorbidities signifi-
cantly change the global cardiac transcriptome, proteome, and

metabolome, it is not surprising that several drugs may act differently on
the diseased vs. healthy hearts.57,58 Novel cardiac safety testing platforms
involving combined experimental models of cardiac diseases in the pres-
ence and absence of major CV comorbidities and/or co-treatments are
needed.59 In this regard, cardiac organoids may allow modelling the com-
plexity of the interactions between the different cardiac cell populations
and, thereby, comprehensively evaluate the effects of anticancer
therapies.55

3. Interconnections between cancer
and HF

Recently, attention has been drawn to the fact that cancer and heart dis-
ease have a reciprocal relationship: while the presence of cancer may
cause LVD, the presence of HF associates with excess incident cancer.3–

5,60 The communication between these two threatening diseases is com-
plex, intriguing, and involves many components.

First, during life and ageing, several risk factors accumulate, which lead
to chronic inflammation, oxidative stress, and protein and DNA instabil-
ity. Classical CV risk factors, including obesity, diabetes, dyslipidaemia,
and inflammation, are also associated with the development of cancer.
Many of these risk factors lead to accumulation of fat mass, which is an
active endocrine organ, secreting inflammatory factors, and adipokines,

Figure 1 Besides directly affecting cardiomyocytes and the other cardiac cell populations, cancer treatments may disrupt the intercellular communications
between cardiomyocytes and non-cardiomyocytes. The inset in the lower part of the figure shows key endothelial cell-cardiomyocyte paracrine signalling
axes that may be impaired by anti-tumour therapies. cGMP, cyclic guanosine monophosphate; NO, nitric oxide; NRG-1, neuregulin-1; PKG, protein kinase
G; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor type 2.
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which in turn have been associated with new-onset CVD and new-onset
cancer.3–5,60

Second, genetic mutations that accumulate throughout life, such as
clonal haematopoiesis of indeterminate potential (CHIP), defined as the
presence of clonal leucocytes with impaired immune proprieties derived
by acquired mutation in haematopoietic stem cells, have been associated
with both cancer and CVD, including HF.61–65 These mutations usually
occur in a few genes, including DNMT3A, TET2, ASXL1, PPM1D, JAK2,
TP53, SF3B1, and SRSF2.66 The risk of developing CHIP increases with
ageing and, although it rarely results in development of haematologic ma-
lignancies, it seems to be tightly linked to increased CV events and worse
HF prognosis.61–65,67

Also, genetic mutations in sarcomeric proteins predispose to HF in
patients undergoing chemotherapy. Unrecognized rare variants in
cardiomyopathy-associated genes, particularly Titin truncating variants,
have been shown to increase the risk for systolic dysfunction and cardiac
events in a relatively small population of both children and adults under-
going chemotherapy. In specific populations, genotype variant testing,
along with cumulative chemotherapy dosage and traditional CV risk fac-
tors, may be useful to improve the identification of cancer patients with
a higher risk for developing HF upon chemotherapy.68

Other CV risk factors, such as hypertension and trace albuminuria,
have been related to cancer development. Therefore, systemic risk fac-
tors likely exert effects on several damage pathways, and it is hypothe-
sized that individual additional risk factors, such as genetic predisposition
or pre-existing conditions, will also contribute to the risk of one or both
conditions.

Third, cancer and CVD are both associated with profound changes in
tissue structure, either growth of entirely new tissue or tissue deforma-
tion, remodelling, and scarring of pre-existing tissues, such as heart, en-
dothelial cells, and matrix. Neoplasms are characterized by stroma,
which is matrix tissue supporting the tumour, providing a scaffold, struc-
ture, and connections to adjacent organs. Further, most cancers, and es-
pecially metastases, rely on strong neovascularization requiring
mitogenic endothelial cells and pericytes, where multiple growth factors
play a role. In comparison, damaged cardiac tissue leads to dysfunctional
cardiomyocytes, and also may develop extracellular matrix remodelling,
fibrosis, and scar. Matrix is produced by activated fibroblasts and multiple
cell types homing in, including monocytes, macrophages, and neutrophils.
The cardiac scar is not a static structure, but rather is a dynamic and se-
creting structure.69

4. Psychological convergence of HF
and cancer

There is a well-established psychological impact on patients suffering
from chronic conditions, notably HF. This is one of the main aims of car-
diac rehabilitation programmes in these patients. Unfortunately, rehabili-
tation programmes have only recently been implemented in cancer
patients, in a generic ‘one fits all’ umbrella rather than bespoke guidelines
for specific cancers. It is notable, however, the recognition that both car-
diac dysfunction syndromes and cancers have a significant impact in
regards to neuronal changes. Whilst these have only just been thought
of, the molecular and cellular mechanisms of neuro-biology change re-
main relatively unknown. It is likely that both neuronal changes per se
and modifications in signalling and transmission underlie the clinical states
of depression or cognitive changes in these patients. The most likely cul-
prit remains the chronic systemic inflammatory state present in both,

probably responsible for an enhanced level of oxidative stress, DNA
damage, mitochondrial dysfunction, and synaptic modifications.70,71

Whilst there is available evidence to support a link between certain
chemotherapies and peripheral neuropathy (for example cisplatin), the
issue of clinical states of depression/cognitive changes and them per se
being a basis for autonomic dysfunction seen in these patients is far more
complex and yet undemonstrated. At this current time, it does not have
the level of evidence and merits further exploration.

5. Inflammation at the crossroad
between cancer, cardiotoxicity of
anticancer therapies and HF

Abnormal inflammation is increasingly recognized as a common driver of
CVD and cancer.72,73 HF is characterized by a state of mild chronic sys-
temic inflammation, with increased circulating concentrations of pro-
inflammatory cytokines, such as tumour necrosis factor-alpha (TNF-a),
interleukin-1 (IL-1), and interleukin-6 (IL-6). Myocardial injury itself trig-
gers the recruitment and the activation of immune cells, which in turn
produce pro-inflammatory cytokines and contribute to a self-
perpetuating inflammatory state that underlies adverse tissue remodel-
ling, primarily associated with capillary dysfunction and
fibrosis.74Doxorubicin-induced damage also involves inflammation
(Figure 2), with upregulation of pro-inflammatory toll-like receptor 4
(TLR4) in macrophages,75 higher levels as TNF-a and IL-6 and reduced
levels of the anti-inflammatory cytokine IL-10.76 Cardiac function was
preserved and survival improved in TLR2 knock-out mice after DOXO
exposure compared to wild-types.77 DOXO also induces local modula-
tors of inflammation and fibrosis, produced by both macrophages and
fibroblasts. Increased production of the matricellular protein
thrombospondin-2 (TSP2) is protective in mice treated with DOXO.
Enhanced myocyte damage in the absence of TSP-2 was associated with
impaired activation of the Akt signalling pathway. Inhibition of Akt phos-
phorylation in cardiomyocytes significantly reduced TSP-2 expression,
unveiling a unique feedback loop between Akt and TSP-2.78 Importantly,
CCL2/CCR2-dependent recruitment of functional antigen-presenting
cells into tumours is a desired therapeutic effect of anthracyclines.79

Indeed, for decades oncologists have been developing strategies to
modulate inflammation in order to achieve therapeutic anticancer im-
mune responses.80 The first attempts were not really successful, since
cancer escapes T-cell-mediated cancer-specific immunity via inhibitory
pathways mediated by cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), programmed cell death protein 1 (PD-1), and programmed
cell death ligand 1 (PD-L1) (all depressing the antineoplastic activity of T
lymphocytes).81 On the opposite, in the last years, immune checkpoint
inhibitors (ICIs), such as monoclonal antibodies (mAbs) targeting CTLA-
4, PD-1, and PD-L1, have dramatically improved the outcome of many
malignancies, but serious immune-related CV adverse events have been
observed82–84 (Figure 2). Interfering with the CTLA-4 and PD-1 axes can
bring to autoimmune myocarditis and dilated cardiomyopathy,85 suggest-
ing that these molecules play an important role in preventing autoimmu-
nity.86 Hence, immunosuppressive therapies may be necessary to halt
immune-related adverse events (IRAEs) and major adverse CV events
(MACE).87–89

More recently, engineered T cells with chimeric antigen receptors
(CAR-T cells) have been approved by the U.S. Food and Drug
Administration (FDA) as the first genetically modified autologous T-cell
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..immunotherapeutic agents that target CD-19. CD-19 is broadly expressed
on most B-cell malignancies and has limited expression beyond B-cell line-
age.90,91 Unfortunately, CAR-T cells are burdened by cytokine release syn-
drome (CRS) that is due to elevated levels of inflammatory cytokines
released by activated CAR-T cells and other immune cells, such as macro-
phages, with fever and tachycardia that may be associated with hypoten-
sion and hypoxia. Also, cardiac dysfunction and extremely serious
complications, such as vascular leak syndrome with circulatory collapse
and multiorgan failure can be dreadful side effects of these therapies92,93

(Figure 2). Beside CAR-T cells, bispecific antibodies such as blinatumumab
[that targets CD19 and CD3 and is increasingly used in the treatment of

Philadelphia chromosome negative B-cell acute lymphoblastic leukaemia
(ALL)] can also lead to CRS and cardiomyopathy.94

Interestingly, inflammation in cancer plays a dual role. On the one
hand, it is essential to recognize and destroy cancer cells; on the other
hand, it provides a fertile milieu for tumourigenesis and plays key roles in
different steps of tumour development, from initiation and promotion to
invasion and metastasis. Tumour-associated inflammation favours prolif-
eration and survival of malignant cells, promotes angiogenesis and metas-
tasis, undermines adaptive immune responses, and potentially interferes
with responses to hormones and chemotherapeutic agents.95,96 The
finding that anti-inflammatory agents are effective in the prevention of

Figure 2 Inflammation at the intersection of the anticancer action and cardiac side effects of major oncological treatments. Besides directly killing tu-
mour cells, doxorubicin triggers cardiac inflammation via activation of macrophages and fibroblasts and the ensuing release of local modulators of inflam-
mation and fibrosis, such as TNF-a, IL-1b, and IL-6. Major players of the inflammatory response induced by doxorubicin include macrophage TLR-4, the
matricellular protein thrombospondin-2 (TSP-2), and leucocyte PI3Kc. On the other hand, immune check point inhibitors (ICIs) inhibit molecules, such as
cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1), and its ligand PD-L1. As a consequence, anti-tumour immune
cell responses are reactivated and lead to tumour cell death, but concomitantly drives myocarditis. Although these new immunotherapies have notable
anticancer effects, multiple mechanisms of immune resistance exist, and these might be overcome by using PI3Kc inhibitors that re-shape the tumour im-
mune microenvironment. Finally, engineered T cells with chimeric antigen receptors (CAR-T cells) boosts T-cell-mediated tumour killing but are bur-
dened by cytokine release syndrome (CRS) leading to extremely serious complications, including cardiac and vascular dysfunction, and ultimately to
multiorgan failure.
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.
cancer and CVD further advocates inflammation as a common contribu-
tor to both diseases. A 2019 study concluded that chronic systemic low-
grade inflammation, measured by C reactive protein (CRP) levels
<10 mg/L, is a risk factor for incident cancer, in particular, lung cancer, in
patients with stable CVD. The relation between inflammation and inci-
dent cancer is seen in former and current smokers and is uncertain in
never smokers.97 Blockade of the pro-inflammatory cytokine IL-1b with
canakinumab was shown to significantly reduce the rate of recurrent CV
events in patients with previous MI (CANTOS trial). At the same time,
blocking IL-1b appeared to protect from lung cancer mortality.98,99 Mice
exposed to DOXO showed an increase in serum IL-1b along with other
inflammatory factors.100 Moreover, the IL-1b receptor antagonism pro-
tects against DOXO cardiotoxicity.101 Similarly, the IL-6 inhibitor tocili-
zumab can protect against MACE in CAR-T patients.93

The experience of IL-1b blockade highlights that the identification of
key players of the inflammatory response is important to tackle both can-
cer and heart disease. Among intriguing candidates are PI3Ks, and more
specifically the PI3Kc isoform that is enriched in both cardiomyocytes and
leucocytes (Figure 2). This implies a key role for this isoform not only in the
control of cardiomyocyte pathobiology but also in the orchestration of
the inflammatory response associated with different types of CV injury.102

PI3Kc is up-regulated in patients and mouse models of atherosclerosis,
and directs leucocyte infiltration of the arterial wall, which is a key patho-
genic event in atherosclerosis.103 PI3Kc-mediated inflammation is also piv-
otal to the cardiac response to pressure overload.104

Besides directing the cardiac response to stress, macrophage PI3Kc
expression critically contributes to tumour growth and progression.
Intriguingly, macrophages play opposite roles in non-oncological inflam-
matory conditions and cancer. In response to pathogens or injury, mac-
rophages express cytokines that stimulate cytotoxic T cells to clear
infected or damaged cells. Conversely, in cancer macrophages express
anti-inflammatory cytokines that induce immune suppression, inhibit T-
cell-mediated tumour killing and promote resistance to immunothera-
pies (i.e. T-cell checkpoint inhibitors). PI3Kc has been recently proposed
as the molecular switch controlling immune stimulation and suppression
in cancer.105 The unique feature of macrophage PI3Kc, playing a mal-
adaptive role both in heart disease and in cancer, makes this enzyme the
ideal pharmacological target to ‘kill two birds with one stone’, i.e. to halt
the tumour and at the same time treat the heart.106 This is particularly
relevant for cancer patients treated with chemotherapy and suffering
from iatrogenic cardiotoxicity.15,105,107 Results from clinical trials assess-
ing the combined anticancer effect of such compounds in a context of
cardiac protection are awaited.

6. The gut microbiome in
Cardio-Oncology

HF has long been recognized to be associated with altered gut func-
tion.108,109 Low cardiac output in HF results in intestinal ischaemia, with
congestion of the splanchnic circulation, bowel wall oedema, and im-
paired intestinal barrier function (Figure 3). This condition increases the
overall inflammatory state and oxidative stress as a consequence of HF-
induced ischaemia and congestion within the gut via enhanced bacterial
translocation and the presence of bacterial products in the blood circula-
tion. Increased leakiness modifies the gut environment and affects its res-
ident microbial population.110

Among the conditions that can influence the gut composition, includ-
ing individual genetic variability, lifestyle, colonization, and delivery at

birth111–113 also changes in diet, presence of diseases and relative treat-
ments have to be considered.114 Interestingly, genetic composition of
gut microbiota, defined as microbiome, also influences cancer develop-
ment and progression in different ways.115 Several types of cancers
(head and neck, lung, colorectal, and cervical carcinomas) promote a
shift in microbiome composition.116–118 In addition, chemotherapy di-
rectly impacts the gut microbiota and its efficacy is strongly influenced by
microbiome composition (Figure 3).119,120

Metabolites generated by the gut microbiota derive from the fermenta-
tion of indigestible fibres to short-chain fatty acids, which have protective
properties (reducing inflammation, oxidative stress,121,122 and improving
vascular tone). Dietary sources of choline, phosphatidylcholine, l-carnitine,
and other methylamine-containing nutrients provide substrates for
microbiota-mediated generation of trimethylamine (TMA) that accesses
the portal circulation and is converted by the hepatic flavin-containing
monooxygenase (FMO) family of enzymes into trimethylamine N-oxide
(TMAO, Table 3). TMAO can favour the development of atherosclerosis,
thrombosis, kidney disease, and HF (Figure 3). High plasma levels of
TMAO have been suggested to be predictive of CV events of mortality, in-
dependently from renal function and CV comorbitities.110

Additionally, the bacterial transformation of bile acids can result in al-
tered bile acid profiles, which in turn can impact systemic inflammatory
and fibrotic processes.110 Importantly, microbiota-derived peptide mimics
may also drive HF, by inducing a lethal inflammatory cardiomyopathy.
Cardiac myosin-specific TH17 cells are being imprinted in the intestine by
a commensal Bacteroides species peptide mimic. These cells promote car-
diac inflammation and dysfunction in genetically susceptible individuals.123

Several studies reported SCFAs-producing bacteria perturbation in
patients with CVDs.124 Among these SCFA generated by the gut micro-
biota, butyrate (BUT) has multiple beneficial effects for our CV system
through different mechanisms125–131,120 (Table 3). BUT exerts major epi-
genetic effects, acting as a potent inhibitor of histone deacetylase
(HDACs) activity. Inhibition of HDACs is well-known to protect the
heart from pathologic hypertrophy and ischaemia.132–135 Among HDAC
inhibitors, BUT has been shown to exert anti-neoplastic properties
in vitro120,136; while its derivatives can enhance the anticancer cytotoxic
effects of DOXO while protecting against cardiotoxicity137 and can de-
crease cardiac apoptosis and myocardial dysfunction induced by
DOXO, by lowering endoplasmic reticulum stress-initiated apoptotic
signalling and HDAC-inhibition mechanisms.138,139 The cardioprotective
effect of BUT and analogues is associated with the production of anti-
inflammatory molecules, cytoprotection, modulation of angiogenesis,
limiting the occurrence of cardiotoxic manifestations caused by DOXO
treatments, with reduction of nitrosative and oxidative stress, counter-
acting mitochondrial dysfunction.121 In turn, DOXO is reported to in-
duce GUT-microbiota dysbiosis in mice, while the administration of
BUT attenuates the inflammation state induced by DOXO,140 fuelling
nutraceutical as a new promising area of research to cardio-oncology.

7. Opportunities and limitations in
the use of non-coding RNAs in
Cardio-Oncology

Multiple evidence seems to suggest an involvement of circulating
microRNAs (miRNAs) in anthracyclines-induced cardiotoxicity both
in vivo and in the clinical setting, evidencing a very heterogeneous situa-
tion. In particular, when focusing on DOXO, miR-1141,142 and miR-
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.34a,143–146 showed a drug-induced regulation in tissues and plasma sam-
ples, both in patients and animal models. miR-1 is one of the most investi-
gated and most highly expressed miRNAs in cardiac and skeletal muscle,
both in physiological146,147 and pathologic148,149 condition. While many
groups have indicated miR-1 as a specific circulating marker of heart dis-
ease, there is no clear indication about its unambiguous cardiac origin,
particularly in anthracyclines-induced toxicity, which is a systemic phe-
nomenon. Similarly, miR-34a was demonstrated to be modulated by
anthracyclines both in experimental models144,145,150 and in breast can-
cer patients.151 Piegari et al.,144 showed that tissue regulation of miR-34a
by DOXO was not restricted only to the heart, hinting at a multi-tissue
contribution to the circulating levels of this miRNA. Indeed, besides car-
diomyocytes, smooth muscle cells, fibroblasts, cardiac progenitor cells,
and endothelial cells may also play a role in DOXO-induced

cardiomyopathy.152 Acute DOXO treatment in mice was shown to re-
duce microvessel density and VEGF-A expression with a parallel increase
in miR-320a.153 Inhibition of miR320a improved cardiac function, de-
creased apoptosis, and increased microvessel density in DOXO-treated
mice, while overexpression of miR-320a worsened DOXO-induced LV
dysfunction.154 Conversely, overexpression of the miR-320a target
VEGF-A prevented detrimental effects of miR-320a in DOXO-
cardiotoxicity experimental model confirming VEGF as a direct down-
stream target molecule.153 Mechanistically, the overexpression of the
pro-hypertrophic miR-212/132 cluster in primary rodent and human
iPSC-derived cardiomyocytes and in in vivo models has been shown to in-
hibit doxorubicin-induced toxicity.155 Also, another class of non-coding
RNAs, circular RNAs, may play a crucial role in mediating cardiotoxicity
of doxorubicin; indeed, overexpression of the RNA binding protein

Figure 3 GUT microbiome dysbiosis can be influenced by both HF and cancer. HF has long been associated with congestion of splanchnic circulation,
leading to bowel wall oedema, impaired intestinal barrier function and increased systemic inflammation, which drastically affect GUT microbiome compo-
sition and response to HF treatments. At the same time, cancer-mediated disruption of metabolism and the production of cancer-derived metabolites
modifies the microbiome. Such altered gut microbiome generates cardiotoxic metabolites, such as TMAO and Bile Acids, eventually leading to HF
worsening.
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..Quaking 5 (Qki5) strongly attenuated the toxic effect of doxorubicin in a
mouse model by regulating a set of circular RNAs including those de-
rived from titin (Ttn156).

The role of miRNAs as markers of cardiotoxicity has also been investi-
gated. Ruggeri et al.150 showed that after one month from DOXO ad-
ministration, only a part of the drug-treated mice presented cardiac
dysfunction, similarly to the clinical context. miR-1 was again among the
circulating miRNAs regulated after cardiotoxicity onset, together with
miR-499-5p. In an acute DOXO cardiotoxicity model, the same authors
showed that miR-34a-5p and miR-451a were dysregulated in all cardiac
chambers, with miR34a-5p showing opposite trends of regulation be-
tween the atria and the ventricles of treated mice. In another study using
DOXO both in vivo and in vitro acutely and chronically treated cardio-
myocytes, DOXO-dependent downregulation of miR-30 led to in-
creased cardiomyocyte apoptosis and abnormalities of cardiomyocyte
b-adrenergic receptor signalling.157

Importantly, only part of circulating miRNAs overlapped with their
cardiac counterparts, suggesting only a partial contribution of the heart
to the variations in circulating levels of miRNAs upon drug administra-
tion. Limitations of the studies are the number of animals, the number of
screened miRNAs (often only selected CV miRNAs), the acute phase
observed, the absence of tumour in the experimental models, and the
lack of additional cancer treatments.

Besides the few miRNAs showing a ‘reproducible sensitivity’ to
anthracycline treatment, there is a highly heterogeneous picture com-
posed by past and present investigations. While the discrepancies in
terms of results could be in part explained by the different experimental
models and by the different malignancies and therapies adopted in
patients-based investigations, there are at least two fundamental issues
that should be addressed in future works. A striking feature of many, if
not all, published papers is that no study described a decline of left ven-
tricular ejection fraction (LVEF) below the ‘normal’ threshold of 50%,
possibly because of lack of a long-term follow-up. Moreover, the vast
majority of human-based research studies concentrated on the acute

phase of cardiotoxicity,158 and the same limitations often apply also to
experimental researches, which rarely go beyond a few days’ time span
from treatment to sacrifice.

Additional data on the main non-coding RNAs are summarized in
Table 4.

8. Concluding remarks

We discussed several of the novel exciting insights that are emerging in
the ever-expanding field of cardio-oncology. More research is required
to identify and investigate the pathways and mechanisms underpinning
the intimate relationship between CVD and cancer. Current studies fo-
cus on shared risk factors, both acquired/modifiable and genetic. The
substantial structural changes in diseased organs prompt further studies
in an effort to learn how disease in one organ may communicate with an-
other organ. Learning from each disease mechanisms may help to com-
bat both CVD disease and cancer.
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Table 3 Role of TMAO and butyrate in cardio-oncology

Cardiovascular field Cancer field

TMAO Butyrate TMAO Butyrate

• Prognostic 5-year follow-up

marker in patients with heart

failure
• Prognostic biomarker in in chronic

systolic HF
• Predictive biomarker in patients

with Acute Heart Failure
• Prognostic biomarker in patients

associated with NYHA III and IV

ischaemic aetiology and adverse

outcomes
• Predictive biomarker for mortality

and CV mortality in HFrEF but not

HFpEF patients110,a

• Inhibition of maladaptive hypertro-

phy and heart failure132,133,135

• Reduction of myocardial ischae-

mia–reperfusion injury134

• Cardioprotective action against

DOXO toxicity137

• Alleviation of DOXO-induced ER

stress138,139

• Prevention of DOXO-induced mi-

tochondrial dysfunction and ROS/

RNS production121

• Predictive biomarker of colorectal

cancer159

• Predictive biomarker of aggressive

prostate cancer160

• Induction of cytodifferentiation and

inhibition leukaemic cells prolifera-

tion; inhibition of Lewis lung carci-

noma cells growth136

• Increase of the antineoplastic effect

of DOXO137

NYHA, New York Heart Association.
a High levels of TMAO in patients have been suggested to be predictive of cardiovascular events of mortality, independently from renal function and cardiovascular comorbitities.110
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Table 4 Non-coding RNAs in cardio-oncology

Cardiovascular field Cancer field

Circulating forms

(biomarkers)

Intracellular forms

(epigenetic activity)

Circulating forms

(biomarkers)

Intracellular forms

(epigenetic activity)

miR-1 Marker of myocardial

infarction161

Involved in cardiogenesis,

heart function, cardiac

pathology162

Non-invasive biomarkers in

breast cancer: early diagno-

sis and metastasis

prediction164

Inhibition of proliferation and

metastasis of breast

cancer166

Biomarker of atherosclerosis,

coronary artery disease,

acute coronary

syndrome148

Involved in heart disease and

cardioprotection163

Correlation with clinico-path-

ologic characteristics and

lung cancer detection165

Differential expression in dif-

ferent human cancers167

miR-34a Biomarker of ageing168 Regulation of cardiac ageing

and function170

Non-invasive biomarkers in

breast cancer: early diagno-

sis and metastasis

prediction164

Potential tumour suppressor

and therapeutic candidate

in cancer173

Marker of anthracycline

treatment169

Contribution to doxorubi-

cin-induced

cardiotoxicity171

Potential biomarker for

early diagnosis of oesopha-

geal cancer172

Associated with aggressive

breast cancer174

miR-320a Biomarker of arrhythmogenic

cardiomyopathy175

Mediator of doxorubicin-in-

duced cardiotoxicity153

Early detection of pancreatic

neoplasia178 circulating bio-

marker of melanoma179

Regulation of cell metastasis

and invasion in non-small-

cell lung cancer180

Predictive biomarker for left

ventricular remodelling176

Involved in human myocardial

infarction177

Modulation of cell growth

and chemosensitivity in

gastric cancer181

miR-212/132 cluster Estimation of atherosclerosis

presence182

Prevention of doxorubicin-

mediated atrophy and

cardiotoxicity155

Biomarker of pancreatic can-

cer risk185

Suppression of proliferation

of human lung cancer

cells187

Risk prediction for heart fail-

ure183

Regulation of cardiac hyper-

trophy and cardiomyocyte

autophagy184

Diagnostic biomarker of malig-

nant mesothelioma186

Regulated in ovarian cancer

cells188

miR-451a Modulated in acute model of

doxorubicin-induced

cardiotoxicity143

Regulation of doxorubicin-in-

duced cardiotoxicity190

Biomarker and potential ther-

apeutic target for cancer192

Regulation of papillary thy-

roid carcinoma cells194

Marker of type 2 diabetes189 Decreased in hypertrophic

cardiomyopathy and regu-

lates autophagy191

Biomarker for the diagnosis of

oesophageal squamous cell

carcinoma and squamous

dysplasia193

Involved in breast cancer195

miR-30 Biomarkers of acute coronary

syndrome and stable coro-

nary artery disease196

Cardioprotection in doxorubi-

cin-induced heart failure

and inhibition of cardiomyo-

cytes autophagy198

Prognosis of ovarian cancer200 Involved in cancer

progression202

Marker of stable atheroscle-

rotic disease197

Involvement in ventricular

remodelling: the miR-30

family199

Prognosis of bladder cancer201 Involved in breast cancer in-

vasion, osteomimicry, and

bone destruction203
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