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Retention of low-density lipoprotein (LDL) cholesterol beneath the arterial endothelium initiates an inflammatory
response culminating in atherosclerosis. Since the overlying endothelium is healthy and intact early on, it is likely
that LDL passes through endothelial cells by transcytosis. However, technical challenges have made confirming this no-
tion and elucidating the mechanisms of transcytosis difficult. We developed a novel assay for measuring LDL transcy-
tosis in real time across coronary endothelial cell monolayers; we used this approach to identify the receptor involved.

Murine aortas were perfused ex vivo with LDL and dextran of a smaller molecular radius. LDL (but not dextran) accumulated
under the endothelium, indicating that LDL transcytosis occurs in intact vessels. We then confirmed that LDL transcytosis
occurs in vitro using human coronary artery endothelial cells. An assay was developed to quantify transcytosis of Dil-LDL in
real time using total internal reflection fluorescence microscopy. Dil-LDL transcytosis was inhibited by excess unlabelled
LDL, while degradation of the LDL receptor by PCSK9 had no effect. Instead, LDL colocalized partially with the scavenger
receptor SR-Bl and overexpression of SR-Bl increased LDL transcytosis; knockdown by siRNA significantly reduced it.
Excess HDL, the canonical SR-BI ligand, significantly decreased LDL transcytosis. Aortas from SR-Bl-deficient mice were
perfused ex vivo with LDL and accumulated significantly less sub-endothelial LDL compared with wild-type littermates.

We developed an assay to quantify LDL transcytosis across endothelial cells and discovered an unexpected role for
SR-BI. Elucidating the mechanisms of LDL transcytosis may identify novel targets for the prevention or therapy of
atherosclerosis.

Endothelium e Transcytosis ® LDL e SR-Bl e Atherosclerosis

1. Introduction

One of the earliest stages in the pathogenesis of atherosclerosis is the
deposition of low-density lipoprotein (LDL) cholesterol in the
sub-endothelial intima. Remarkably, how circulating LDL traverses
the endothelial cell layer remains poorly understood.

In principle, permeability across the endothelium could occur
between cells (paracellular transport) or through the cytoplasm of
individual cells (transcytosis)." Early electron microscopic studies of

rat arteries perfused with LDL demonstrated its internalization into
cellular vesicles and its targeting to either lysosomes or the basolateral
membrane of the cell.® Importantly, LDL was never observed to be
penetrating intercellular junctions. Furthermore, the size of LDL? pre-
cludes paracellular passage without the opening of inter-endothelial
junctions,* yet an intact endothelium is observed overlying early ath-
erosclerotic lesions.” Thus, a number of investigators have suggested
that LDL crosses the endothelium by transcytosis.®~® Others have
instead suggested that LDL exits the vasculature at areas of damaged
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or dividing endothelium, implicating the paracellular route.”'® How-
ever, the rate of endothelial mitosis is vanishingly low (<0.05%),""
and more importantly, there is scant to no in vivo evidence of endothe-
lial apoptosis or denudation early on in human atherosclerosis.®

The alternative route of endothelial transcytosis has been best char-
acterized for the serum protein albumin; receptors on the apical
plasmalemma mediate its internalization into membrane invaginations
known as caveolae.'* After scission from the surface by a process re-
quiring the GTPase mechanoenzyme dynamin, albumin-bearing vesi-
cles make their way through the cytoplasm and undergo exocytosis
at the basolateral cell surface.”®> A major constituent of caveolae is
the protein caveolin-1, the depletion of which prevents the formation
of caveolae and ablates albumin transcytosis.'* Thus, it is intriguing to
note that aortic rings from caveolin-1 knockout mice demonstrate a
>50% reduction in LDL internalization® while cavl '~ /ApoE '~
mice are protected from atherosclerosis (compared with ApoE /™~
mice) despite having increased plasma LDL."> This uncoupling of ele-
vated plasma LDL levels and the development of atherosclerosis sug-
gests a defect in the transit of LDL across the endothelial monolayer.
This observation is all the more remarkable, because an increase in
paracellular leak has been described in caveolin-1 knockout mice,'® im-
plying that the paracellular route cannot account for the accumulation
of sub-endothelial LDL. Indeed, overexpression of caveolin-1 specific-
ally in the endothelium caused accelerated atherosclerosis,'”'®
although transcytosis of LDL was not examined.

Thus, the route by which LDL crosses the endothelium is controver-
sial, but the data favour transcytosis. It is an important issue since the
transcellular transport of LDL is likely to be tightly regulated and amen-
able to therapeutic manipulation, in contrast to paracellular diffusion.
However, there is a paucity of literature on LDL transcytosis and its
regulation,”"? likely due to technical difficulties in its study. Traditional
experimental approaches using transwells are problematic, because
manipulation of endothelial monolayers often introduces intercellular
gaps, confounding analysis of transcytosis.! Even a basic question like
which receptor or receptors are involved is unanswered.

In this work, we report a novel assay that allows LDL transcytosis by
single coronary artery endothelial cells to be quantified in real time.
Using this approach, we describe an unexpected role for SR-BI.

2. Methods

2.1 Cell culture

In vitro experiments were performed using primary human coronary artery
endothelial cells (HCAECs; Lonza, Canada) used in passages 6—9 and
serum-starved for 3 h prior to experiments. While different batches of pri-
mary cells were used over the course of the project, cells from the same
batch were used in individual experiments (e.g. control vs. an experimental
condition).

2.2 Transwell transcytosis assay

Biotinylated LDL (Intracel, MD) was added to the upper chamber (50 pg/mL)
of a transwell containing confluent HCAECs. Transwells (0.4 wm pore
polyester, Costar, Corning, NY, USA) were incubated at 4°C for 10 min
to allow LDL binding but not internalization. The transwell was then trans-
ferred to a fresh plate and was washed twice with cold PBS. Fresh media
were added and cells were incubated at 37°C for 2 h with or without
platelet-activating factor (PAF, 10 wM; Sigma-Aldrich, ON, Canada) or
fluorescein-Na (1 pg/mL, MW 376 Da; Sigma-Aldrich).

To measure the amount of LDL flux, 100 pL of media was taken from the
lower chamber and analysed by ELISA." The aliquot of media was added

along with 50 wL of 1 wg/mL of horseradish peroxidase—conjugated sheep
anti-LDL (Bioss, Burlington, ON, Canada) to a 96-well plate coated in
streptavidin (Thermo Scientific, Waltham, MA, USA) at room temperature
for 2 h with shaking. The plate was washed with buffer (25 mmol/L Tris, pH
7.2, 150 mmol/L NaCl, 0.05% Tween-20, 0.1% gelatin), then 50 nL of
3,3,5,5 -tetramethylbenzidine (Thermo Scientific) was added to the well
and incubated at room temperature for 15 min. Fifty microlitres of
2 mol/L sulfuric acid was added, and quantification of LDL was determined
by measuring absorbance at 450 nm with a ThermoMax Microplate Reader
(Molecular Devices, Sunnyvale, CA, USA). A standard curve using known
quantities of LDL was used to determine the sensitivity of the assay.

2.3 Total internal reflection fluorescence
transcytosis assay

Total internal reflection fluorescence (TIRF) microscopy images were
acquired on an Olympus cell TIRF Motorized Multicolor TIRF module
mounted on an Olympus IX81 microscope (Olympus, Hamburg, Ger-
many). Samples were imaged using a x 150/1.45 objective with 561 nm
excitation lasers and Volocity acquisition software. Unless otherwise indi-
cated, the penetration depth, or the distance into the basal aspect of the cell
that is visible by TIRF microscopy, was set at 110 nm. For each cell, 150 TIRF
images were acquired at a frame rate of 6.67 per second for a constant dur-
ation of ~22 s. At least 10 randomly selected cells were imaged in each ex-
perimental replicate. Dil-labeled human native (non-oxidized) LDL (2 g/
mL) with or without unlabelled LDL or high-density lipoprotein (HDL; In-
tracel, MD) was added to confluent cells seeded on 25 mm glass coverslips.
Cells were put at 4°C to allow binding; after 10 min, cells were rinsed in
cold PBS and fresh media (HEPES-buffered RPMI, i.e. HPMI)?® were added
followed by immediate imaging with a heated (37°C) stage using a standard
cell chamber (Life technologies, Catalog no. A7816). In some experiments,
cells were pre-treated with Dyngo4A (30 wM; Abcam, Cambridge) for
30 min.

Quantification of the transcytotic events was performed in a blinded
fashion using a vesicular detection and tracking algorithm custom-written
and automated in Matlab.>' Using these scripts, images are filtered for noise
and local background and individual vesicles identified based on their size
(9-36 pixels?) and circularity (>0.2). The tracks of moving vesicles are
then identified using a tracking algorithm that identifies vesicle tracks based
on a maximum-probability assessment of how closely potential tracks re-
semble free and superdiffusive Brownian diffusion.”> The resulting tracks
are analysed for the speed of vesicular movement, the duration the vesicle
is present in the TIRF field, and the degree to which the particles’ move-
ment deviates from free Brownian diffusion (1y). Vesicles undergoing fusion
with the plasma membrane are identified as those having a 7y significantly
less than that of an equivalent model population undergoing Brownian dif-
fusion, typically 0 < y < 0.873,%% and which undergo a decrease in fluores-
cence intensity over the last two time points of their tracks equivalent to a
drop of at least 2.5 SDs of the vesicular intensity over the entire period the
vesicle has been tracked. The assay overcomes the limitations of transwell
and microscopy assays, as it differentiates actual fusion (transcytotic) events
from both diffusion across endothelial junctions and transient interactions
of vesicles with the basolateral plasma membrane.”> Under control condi-
tions, cells performed 10—-30 transcytosis events during the period of
observation.

2.4 Colocalization assay and immunostaining

Cells were incubated with Dil-LDL (2 pg/mL) at 37°C for 10 min and then
washed twice with cold PBS. Cells were then fixed with 4% paraformalde-
hyde (PFA), permeabilized, and blocked. Cells were incubated with an anti-
body to SR-BI (Santa Cruz Biotechnology, Dallas, Texas, USA) for 1 h
followed by incubation with a goat anti-rabbit secondary antibody tagged
with Alexa Fluor 488 (Jackson ImmunoResearch, West Grove, PA, USA).
Z-stack images were then acquired using a spinning disc confocal
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microscope (Zeiss Axiovert 200 M microscope; x 60 objective, numerical
aperture 1.35). After setting a threshold to exclude background, colocaliza-
tion of LDL with endogenous SR-BI was calculated using Volocity version
6.0.1 and reported using Manders’ coefficient. Further colocalization ana-
lysis was performed using Image] software (NIH) with the JACoP and Bio-
formats plugins installed.**> The images were cropped to each individual
cell and a Pearson correlation coefficient measured for each cell. To deter-
mine whether the degree of colocalization was significant, each cell’s image
was subject to Costes’ analysis>* in which the image is randomized and the
Pearson coefficient was calculated for the randomized image. Costes’ ana-
lysis was performed 100 times per image to produce a statistically represen-
tative sample of non-interacting molecules. In separate experiments,
50-fold excess unlabelled LDL was added at the same time as Dil-LDL to
demonstrate the specificity of colocalization with SR-BI.

For immunostaining, cells were grown to confluency on coverslips and
then fixed with 4% PFA, permeabilized, and blocked. Cells were incubated
with antibodies to either occludin or VE-cadherin (Santa Cruz) for 1 h, fol-
lowed by incubation with a goat anti-mouse Alexa Fluor 488 secondary (oc-
cludin) or a rabbit anti-goat Alexa Fluor 488 secondary (VE-Cadherin)
(Jackson ImmunoResearch). Cells were stained with DAPI, mounted on
slides, and imaged by spinning disk confocal microscopy on a Leica
DMI6000B system (Wetzlar, Germany). Images were acquired with a
z-stack interval of 0.2 pm.

For the time-lapse z-axis imaging, cells grown on coverslips were incu-
bated with Dil-LDL (2 pg/mL) at 4°C for 10 min to allow membrane bind-
ing. A total of 20 pg/mL fluorescein lectin (Vector Labs, Burlington, ON,
Canada) was added to the media during membrane binding to identify
the plasma membrane. At Time 0, cells were rinsed three times with
PBS, and then a subset of coverslips was immediately fixed in 4% PFA.
The other group was treated with serum-free media and placed in the in-
cubator at 37°C for 30 min, then washed 3 x with PBS and fixed. For this
time point, 20 pg/mL lectin was added during the final 10 min of LDL up-
take followed by fixation. Cells were stained with DAPI, mounted on slides,
and imaged by spinning disk confocal microscopy (Zeiss Axiovert 200 M).
Images were acquired with a z-stack interval of 0.3 um. LDL localization
was quantified using Image] by first measuring the total LDL signal (red)
in the image after background subtraction. The proportion of LDL that
was intracellular was then calculated by subtracting the LDL signal in con-
tact with the apical membrane [as identified by the lectin (green)] and div-
iding the remainder (the intracellular signal) by the total signal. Images and
quantification are representative of four independent experiments; in each
experiment, 10 high-power fields were acquired per condition.

2.5 siRNA and overexpression

To overexpress SR-BI, cells were transfected with SR-BI-GFP?® or GFP
alone using Fugene HD (Promega, Madison, WI, USA) in accordance
with the manufacturer’s instructions. For transcytosis measurement, only
cells expressing SR-BI-GFP or GFP alone were imaged by TIRF.

For SR-BI depletion, SR-BI siRNA (Qiagen, Valencia, CA, USA; Hs
SCARB1 7, Cat. No. $102777201) or scrambled control siRNA (Qiagen)
was transfected into cells using HiPerfect (Qiagen). Transcytosis was quan-
tified 36 h later. Knockdown was confirmed by western blot. Lysates were
analysed by SDS—PAGE using 12% polyacrylamide gel. Proteins were trans-
ferred to nitrocellulose membranes and then blocked and probed over-
night at 4°C with the primary antibody. Blots were washed in PBS with
Tween 20, and blots were incubated with horseradish peroxidase—
conjugated secondary antibodies for 1 h, washed, and then visualized by en-
hanced chemiluminescence (Amersham, GE Healthcare, Mississauga, ON,
Canada).

2.6 PCSK9 and LDLR

HEK293 cells grown in Dulbecco’s Modified Eagle Medium (DMEM) were
transiently transfected with a plasmid vector encoding human PCSK9%’

using FUGENE® HD Transfection Reagent according to manufacturer’s in-
structions. DMEM was changed 12 h after transfection; 24 h later, cell cul-
ture supernatants were harvested and incubated with confluent primary
HCAEC monolayers for a minimum of 6 h. Treated monolayers were
then analysed for LDL transcytosis or harvested for immunoblotting as
described above. Antibodies for LDLR and SR-Bl were from Santa Cruz.

2.7 Ex vivo assay

Mouse work was performed in accordance with the Guide for the Care and
Use of Laboratory Animals (Institute of Laboratory Animal Resources, sev-
enth edition, 2011) and was approved by the Animal Care and Use Com-
mittee of the local government authorities (AUP# 896.18 and #542).
Aortic arches were isolated from male C57BL/6 male mice (age 8-12
weeks, Figure 1), or male B6;12952-Scarb1™V/| (SR-BI~'7) and wild-type
(WT) littermate control mice (11—14 weeks old, Figure 7), all purchased
from Jackson Laboratories (Bar Harbor, MN, USA). Mice were fed a stand-
ard chow diet and were given free access to food and water. Mice were sa-
crificed by isoflurane overdose, and then the chest cavity was opened.
Three millilitres of 10 U/mL heparin were injected into the left ventricle,
and the inferior vena cava was cut for exsanguination. The mouse was
placed on a dissecting microscope stage, and the aorta was carefully cleaned
and the branches off the arch were tied in situ. The aorta was then removed
by cutting above the heart and before the renal branches and then mounted
on a silicone-coated dish for cannulation. Vessels were cannulated with
PE50 tubing and perfused for 3 h at a rate of 1 mL/h using MOPS
[3-(N-morpholino)propanesulfonic acid] buffer containing biotinylated
dextran (70 kDa, 100 pg/mL), as well as LDL (0.71 mg/mL) or PAF
(50 nmol/L) (see Figure 1). In some experiments (Figure 7), perfusion was
performed with biotinylated LDL (Alpha Diagnostics International, San
Antonio, TX, USA) to increase the sensitivity of the assay and the ability
to detect a difference between knockout and wild-type vessels. Vessels
were then flushed with MOPS for 15 min, followed by perfusion with 4%
PFA for 15 min. Vessels were subsequently immersed in 4% PFA for
15 min and then cryofixed.

For the perfusion experiment with LDL and dextran (Figure 1), the as-
cending aorta was sectioned sequentially and stained using Nile Red and
streptavidin-Cy3 (Sigma); Nile Red was chosen as it detects both free
and esterified cholesterol and is more sensitive than Oil Red O.*® Vessels
were then stained with DAPI and imaged by spinning disk confocal micros-
copy (Zeiss Axiovert 200 M microscope; Zeiss, Jena, Germany).

For the perfusion experiment using aortas from SR-BI~’~ and wild-type
(WT) littermate animals (Figure 7), the aortic arch was sequentially sec-
tioned between the second and third branches at a thickness of 5 wm.
Slides were air-dried for 2 h before staining. OCT medium was removed
by submerging slides in PBS for 20 min. Slides were stained with 20 pL of
Streptavidin-Cy3 (1:1000) in PBS for 30 min followed by 3 x wash in PBS.
The arch was then stained with DAPI followed by mounting with coverslips.
Image acquisition was done by confocal microscopy on a Leica DMI6000 B
microscope with settings kept constant between groups. A total of 30
images were randomly acquired from each vessel at a z-stack interval of
0.2 wm. All perfusion, sectioning, staining, and image analysis were per-
formed as four separate experiments, each containing one WT and one
SR-BI ™'~ mouse. Images were quantified using Image] for Cy3 (red) fluor-
escence; all signal above background was measured. For each experiment,
the same background correction was applied to images from both the
knockout and matching wild-type aorta. Results are presented as the red
fluorescence intensity normalized to wild type.

2.8 Statistics

Statistical analysis was performed by use of GraphPad Prism software
(GraphPad Prism 5.0; GraphPad Software Inc., La Jolla, CA, USA), and a
combination of Student’s t-tests and one-sample t-tests was used. Data
are presented as mean + SEM. All experiments were performed at least
on four different occasions.
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A DAPI and Nile Red

LDL + Dextran

C DAPI + Streptavidin-Cy3

Dextran

Dextran + PAF

DAPI + Streptavidin-Cy3 B

DAPI and Nile Red

No LDL control

Figure | LDL accumulates in the ascending aorta by transcytosis. (A) Aortas from C57BL/6 mice were perfused ex vivo with LDL simultaneously with
biotinylated dextran of a smaller molecular radius. Sequential sections, which were stained with Nile Red or streptavidin-Cy3 (to detect cholesterol and
dextran, respectively), demonstrate that LDL accumulates in the sub-endothelial intima in the absence of dextran (inset). Arrows indicate cholesterol
deposits (in red); nuclei are stained with DAPI (blue). Size bars, 10 um. (B) No cholesterol is detected in vessels not perfused with LDL. Size bar, 13 pm.
(C) As a positive control, aortas were perfused with dextran alone (i.e. no LDL) in the absence (top panels) or presence (bottom panels) of 50 nM PAF,
which induces inter-endothelial gaps. Dextran (in red) accumulated in PAF-treated vessels (inset); nuclei are in blue. Arrows indicate the endothelium;

dotted lines indicate the vessel wall. Size bars, 80 pm.

3. Results

3.1 LDL crosses the endothelium
by transcytosis ex vivo

We first wanted to establish that LDL transcytosis occurs in intact ar-
teries. Aortas were isolated from C57BL/6 mice, perfused with LDL
and biotinylated dextran (of a smaller molecular radius than LDL),
and sequential sections were then stained with Nile Red and
Streptavidin-Cy3 to detect accumulation of cholesterol and dextran,
respectively. Perfusion with LDL for several hours resulted in sub-
endothelial cholesterol deposits (Figure 1A) that were absent in control
vessels perfused without LDL (Figure 1B). No intimal dextran was

observed despite its smaller size whether perfused at the same time
as LDL (right-hand panel, Figure 1A) or when alone in the perfusate
(Figure 1C). This was not due to impaired retention of the dextran, since
aortas perfused with PAF, a known inducer of endothelial leak,?’
demonstrated an obvious increase in accumulation of intimal dextran
compared with control (Figure 1C). Taken together, these data suggest
that LDL reached the sub-endothelial intima by transcytosis.

3.2 LDL transcytosis is performed
by primary HCAEC:s in vitro

Primary HCAECs were grown in culture and exhibited a typical cobble-
stone morphology under phase contrast microscopy. In addition, they
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Figure 2 Primary HCAEC:s in culture retain endothelial characteristics and internalize LDL in a polarized fashion. (A) Coronary artery endothelial cells
exhibit cobblestone morphology under phase contrast microscopy (left panel), as well as continuous rings of occludin (middle) and VE-cadherin (right
panel) as determined by immunostaining. Images are z-stack projections and are representative of >5 independent experiments; nuclei are stained with
DAPI (blue). Size bar is 19 wm. (B) Confluent HCAECs were pulsed with Dil-conjugated LDL and then rinsed to remove unbound ligand. After incu-
bation at 37°C, monolayers were fixed at progressive time points and imaged by confocal microscopy. The apical membrane is labelled with a

fluorescein-tagged lectin (green). Long images are side views (yz-axis) of separate cells with corresponding xy images shown at left for reference. xy
images were taken 5 slices from the top of the cell in both cases, and white arrows denote vesicles containing LDL. Note the apical localization of
LDL (red) at time zero (indicated by colocalization with the green lectin) followed by its movement towards the basal membrane (dotted line)
30 min later. Quantification is shown at right. Scale bar represents 3 wm, nuclei are stained with DAPI (blue); n = 4 independent experiments;

*P < 0.001 by Student’s t-test for 0 vs. 30 min.

displayed continuous rings of tight junctions, as demonstrated by im-
munofluorescence for occludin, as well as adherens junctions, as shown
by plasmalemmal staining for VE-cadherin (Figure 2A); these suggest that
cell polarity is maintained. When confluent monolayers of these cells
were pulsed with fluorophore-tagged LDL, we observed the progression
of the LDL from the apical membrane downwards over time (Figure 2B).
To confirm that actual LDL transcytosis occurs in HCAECs, we adapted
our published assay for albumin transcytosis." Briefly, HCAECs seeded
on transwells were exposed to biotin-LDL at 4°C, a temperature at
which binding occurs but internalization is inhibited. Cells were rinsed
to remove unbound LDL and placed at 37°C to allow transcytosis to be-
gin; the binding and rinsing step is performed to decrease confounding
from paracellular leak. Passage of LDL across the endothelial monolayer
was measured using a highly sensitive ELISA (Figure 3A). As a control, we
repeated the transcytosis assay in the presence of excess unlabelled LDL
and found that permeability to biotin-LDL was significantly attenuated
(Figure 3B) consistent with competition for binding sites. To prove that
the assay is not affected by endothelial gaps, we added PAF to the cells.
As expected, PAF significantly increased endothelial permeability to

fluorescein (Figure 3C); however, it had no effect on the flux of
membrane-bound LDL (Figure 3D).

3.3 Development of a novel assay to study
LDL transcytosis

While the transwell assay suggests that LDL transcytosis occurs in vitro,
the method is cumbersome and not amenable to the molecular dissec-
tion of transcytosis. Transwell assays are affected by edge effects, low
transfection efficiency (particularly in primary cells), and the potential
of constant confounding from intercellular gaps. To overcome these
issues, we developed a novel assay using TIRF microscopy.?! This tech-
nique selectively visualizes the basal (bottom) surface of cells (e.g. 100—
150 nm or so), excluding overlying noise from the rest of the cytosol.
Dil-labeled (fluorescent) LDL is added apically to confluent endothelial
monolayers, and the fusion of LDL-containing vesicles with the basolat-
eral membrane is observed in real time (see Supplementary material on-
line, Movie ST and Figure 4A and B). Quantification of fusion events is
performed in a blinded and automated fashion. We validated this new
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Figure 3 LDL transcytosis is performed by HCAECs in vitro.
(A) Standard curve for ELISA for biotin-LDL showing linearity
and high sensitivity; y-axis is optical density at 450 nm (see Methods).
(B) Transwells coated with confluent HCAECs were allowed to bind
biotin-LDL and then rinsed to remove unbound ligand. Two hours la-
ter, LDL in the lower chamber of the transwell was measured by ELISA.
Addition of 50-fold excess unlabelled LDL (Comp) reduced biotin-LDL
transcytosis, *P < 0.05 by Student’s t-test. n = 7 experiments. (C and
D) The transwell assay for LDL transcytosis is not affected by paracellu-
lar leak. Administration of PAF (10 wM) increased the permeability of
endothelial monolayers to Na-fluorescein (C) but did not affect LDL
transcytosis (D) compared with untreated cells (Ctrl); *P < 0.05 by
one-sample t-test, n = 6 experiments.

method in a number of ways. First, to prove that the assay is not con-
founded by endocytic traffic (i.e. vesicles moving in and out of the
TIRF zone), we reduced the penetration depth of the TIRF laser to
75 nm; as expected, this had no effect on the number of transcytosis
events detected (Figure 4C). As with the transwell method, the TIRF assay
was not affected by an increase in paracellular leak induced by PAF
(Figure 4D). In addition, an excess of unlabelled ligand caused an almost
four-fold decrease in LDL transcytosis (Figure 4E), consistent with a
receptor-mediated process rather than simple diffusion across paracellu-
lar gaps. Finally, incubation with Dyngo4A,*® a specific chemical inhibitor
of the GTPase dynamin (Figure 4F), essentially abrogated the process.

3.4 Degradation of the LDLR by PCSK9
does not decrease LDL transcytosis

We then wished to take advantage of this assay to identify which recep-
tor was capable of mediating LDL transcytosis. To determine whether

the high-affinity LDL receptor (LDLR) is required, we exposed coron-
ary endothelial cells to exogenous proprotein convertase subtilisin/
kexin type 9 (PCSK9)*” which mediates degradation of the receptor.
As expected, PCSK9-treated cells demonstrated almost complete
loss of LDLR (Figure 5A); of note, levels of another cell surface receptor,
SR-BI, were unchanged. Under these conditions, LDL transcytosis was
not affected (Figure 5B).

3.5 SR-Bl mediates LDL transcytosis across
HCAECs

Since LDLR does not mediate LDL transcytosis, we turned our attention
elsewhere. The scavenger receptor SR-Bl was described some time ago
to bind native LDL,>" but the physiological significance of this interaction
is unknown. Interestingly, SR-BI is expressed in coronary endothelium
and is capable of bona fide endocy‘cosis.32 We observed partial colocali-
zation of SR-Bl and Dil-LDL (Pearson’s coefficient R% 0.228 4+ 0.029;
Costes’ R% 0.0025 + 0.0009; Manders’ coefficient = 0.577 + 0.073;
Figure 6A), which was >100-fold higher than that expected by chance.
Addition of 50-fold excess unlabelled LDL essentially abrogated the co-
localization. Overexpression of SR-BI resulted in a 50% increase in LDL
transcytosis (Figure 6B), while even incomplete knockdown by siRNA
had the opposite effect, resulting in a decrease in transcytosis by
~40% (Figure 6C and D). Lastly, addition of excess HDL, the canonical
ligand for SR-BI, significantly attenuated transcytosis of LDL (Figure 6E),
suggesting competition for the receptor.

3.6 Aortas from SR-Bl-deficient mice
accumulate less LDL during ex vivo perfusion

Finally, to validate our in vitro findings, we isolated the aortas from
SR-Bl-deficient mice and their wild-type littermates, followed by perfu-
sion for 3 h with biotinylated LDL. Sequential sections of the vessels
were then examined and quantified for intimal accumulation of LDL.
Consistent with the cell culture experiments, deficiency of SR-BI
caused a >40% reduction in aortic LDL accumulation (Figure 7).
Thus, SR-BI contributes to LDL transcytosis both in vitro and ex vivo.

4. Discussion

Our study addresses the critical question of how LDL crosses the
endothelium to accumulate in the intima, a necessary first step in the
pathogenesis of atherosclerosis. We provide evidence in both intact
vessels and in vitro that LDL can cross endothelial cells by transcytosis.
This is consistent with the observation that early atherosclerotic
lesions occur despite apparently healthy overlying endothelium.®

Elucidation of the molecular regulation of transcytosis is best deter-
mined in vitro, yet a major technical barrier is the difficulty in distinguish-
ing it from paracellular leak, since manipulation of an endothelial
monolayer by pharmacological or molecular approaches often per-
turbs barrier integrity."

Accordingly, we devised a means of quantifying transcytosis by single
cells in real time, reasoning that this would avoid confounding by para-
cellular leak or low transfection efficiency in primary cells. After valid-
ating this technique, we then sought to identify the receptor involved in
LDL transcytosis.

While the best characterized receptor for LDL is its high affinity
receptor (LDLR), our data suggest that it is unlikely to be required
for LDL transcytosis; specifically, almost total degradation of LDLR
by PCSK9?* did not impair transcytosis. The lack of involvement of
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Figure 4 Novel assay to study LDL transcytosis. (A) Schematic of the assay. Dil-LDL is added to confluent endothelial monolayers and is detected by
TIRF microscopy as it enters the bottom of the cell. (B) Still images from the Supplemental Video. Top panel depicts initial image, bottom panelis 150 ms
later. Blue arrowhead denotes LDL-containing vesicle that disappears due to exocytosis; white arrowheads show vesicles that do not fuse. (C) As a
control for endocytic traffic, the penetration depth (PD) of the TIRF laser was decreased and exocytic events were quantified. Changing the PD of
the TIRF laser had no effect; n = 4. (D) The TIRF assay is not affected by paracellular leak. Endothelial monolayers were treated with PAF as in Figure 2,
and transcytosis events were quantified; there was no significant difference between control (ctrl) and PAF-treated cells, n = 5. (E) Addition of 50-fold
excess unlabelled LDL at the same time as Dil-LDL reduced transcytosis, *P < 0.01 by one-sample t-test, n = 4. (F) Pre-incubation for 30 min with Dyn-
go4A (30 uM), a specific inhibitor of the GTPase dynamin, blocked LDL transcytosis; *P = 0.001 by one-sample t-test, n = 4 experiments.

A 5 151 By 15-
e o‘}' 5 [ Control g
5 & B Bl PCSK9 2
w c
-180 @ g
LDLR [ 8104 M — G 1.0
< 2
-75 2 3z
SR-BI g o
o 0.5 S 0.5+
2 . 5
a-Actinin /. -100 § Ezu
[0]
0 © o
[DLR SR-BI Control PCSK9
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control vs. PCSK9-treated cells. (B) Treatment with PCSK9 (as in A) was followed by measurement of LDL transcytosis using the TIRF assay. Degradation
of LDLR did not affect LDL transcytosis, n = 5.
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Figure 6 SR-Bl mediates LDL transcytosis. (A) Coronary artery endothelial cells were incubated with Dil-LDL then fixed and immunostained for SR-BI.
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scale bar is 3 wm. (B) Cells transfected with SR-BI-GFP exhibited increased LDL transcytosis compared with cells transfected with GFP alone (Control),
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followed by western blotting. Levels of LDLR were probed as a control for off-target effects while a-actinin was the loading control. (D) Even partial
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sample t-test, n = 4 experiments.

LDLR in transcytosis is perhaps unsurprising as it is known from human
patients that mutations in LDLR causing marked elevations in circulat-
ing LDL nonetheless predispose to accelerated atherosclerosis.>*
Instead, we present multiple lines of evidence indicating that SR-BI
mediates transcytosis of LDL, in addition to its previously established
roles in HDL metabolism® and steroidogenesis.>® This finding was
unexpected given that deficiency of SR-BI has been reported to cause
accelerated atherosclerosis in mice.**” However, the phenotype of
these animals is dominated by expression of the receptor in the

37:38 and macrophages.’”*° Our data suggest that endothelial

liver
SR-BI has a more complex role and may contribute to early athero-
sclerotic lesions. This apparent duality of SR-Bl is not without prece-
dent, as data suggest that in such early lesions, SR-Bl expression in
bone marrow-derived cells is also pathogenic.*! It is also possible
that the pro-atherogenic contributions of SR-Bl in the arterial endothe-
lium are nullified by the receptor’s beneficial role in the liver and
macrophages. Our study used multiple approaches to implicate SR-BI
in vitro, followed by validation of these results ex vivo; further work
will be required to confirm these observations in vivo. However, it is re-
assuring that our observation that LDL and HDL can compete for bind-
ing to SR-Bl is mirrored by an earlier report by Rohrer et al,** who
found that LDL could decrease binding of HDL to aortic endothelium.

These findings suggest the possibility that very low-density lipoprotein
(VLDL), another reported ligand for SR-BI,** could also inhibit LDL
transcytosis, but this remains to be established experimentally.

Our data imply that in addition to SR-BI, other receptors are likely to
contribute to LDL transcytosis. The endothelium expresses other scav-
enger receptors including CD36, SR-Al/ll, LOX-1, and SREC.**** Of
these,* only SR-Bl and CD36 have been reported to bind native
LDL*"* and to be capable of performing bona fide receptor-mediated
endocytosis.>>* Intriguingly, the majority of both SR-Bl and CD36 is
found in lipid rafts or caveolae. Thus, the role of CD-36 in LDL trans-
cytosis is the subject of ongoing work in our laboratory. Furthermore,
although the receptor-mediated endocytosis of LDL by LDLR is well
charac‘cerized,48 the relationship, if any, of endothelial retention of chol-
esterol to cholesterol transcytosis remains uncertain. We believe that
our development of a dynamic and facile assay for quantifying LDL
transcytosis by individual cells will greatly facilitate the elucidation of
this important issue.

In closing, given that the deposition of sub-endothelial LDL is the first
step in atherosclerosis, it is startling how little is known about the pro-
cess. We have devised a novel assay to quantify LDL transcytosis; our
data implicate transcytosis as an important route and point to SR-Bl as a
contributing receptor. This assay is likely to prove useful in the study of
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Figure 7 Deficiency of SR-Bl reduces LDL transcytosis ex vivo. Aortas from SR-Bl-deficient mice and wild-type (WT) littermates were perfused ex vivo
with biotinylated LDL (25 wg/mL). Serial sections were stained with streptavidin-Cy3, and z-stack images were then acquired by confocal microscopy

under identical microscope settings. Nuclei are stained with DAPI (blue). All perfusion, sectioning, staining, and image analysis were performed as four
separate experiments, each containing one WT and one SR-BI '~ mouse. Images were quantified using Image] for Cy3 (red) fluorescence; all signal above
background was measured. For each experiment, the same background correction was applied to images from both the knockout and matching wild-type
aorta. Results are presented as the red fluorescence intensity in a SR-B '~ aorta normalized to its WT equivalent. More punctae of LDL are visible in WT
vs. SR-BI '~ vessels (inset, arrowheads). Quantification is shown at right. *P < 0.01 by one-sample t-test, four mice per group.

transcytosis of other ligands, including modified forms of LDL and
other lipoproteins such as HDL.* Further study into the mechanisms
of LDL transcytosis may lead to new therapeutic approaches for the
prevention and treatment of atherogenesis.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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