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1. Introduction 

The contractility and rate of the human heart are regu- 
lated by numerous neurotransmitters and hormones which 
act via specific membrane-bound receptors which in turn 
activate various intracellular signalling pathways. This arti- 
cle will focus on those receptor systems and their alter- 
ations in heart failure which signal via heterotrimeric 
GTP-binding regulatory proteins (G-proteins). Three types 
of receptor/G-protein complexes appear to be important in 
the human heart: Some receptor systems such as the 
/3-adrenoceptors couple via G, to the adenylyl cyclases to 
increase intracellular levels of cyclic AMP and to activate 
CAMP-dependent protein kinase (PKA); this may promote 
influx of extracellular Ca2+ through phosphorylation of 
calcium channels [l], thereby enhancing contraction, but 
may also lead to enhanced relaxation through increased 
calcium uptake in the sarcoplasmic reticulum via phospho- 
rylation of phospholamban and by decreasing calcium 
sensitivity of troponin through phosphorylation of troponin 
I [2]; additionally G,, has been shown to be capable of 
directly activating L-type Ca2+ channels [3] and Na+- 
channels [4] without involvement of cyclic AMP, but this 
is still a matter of controversy [5,6] and the physiological 
importance of these pathways for regulation of contractile 
force in the human heart remains to be determined. Other 
receptor systems such as the muscarinic acetylcholine re- 
ceptors couple via Gi to the adenylyl cyclases to inhibit 
cyclic AMP formation and to activate certain potassium 
channels [7]. Finally, some receptor systems act indepen- 
dently of adenylyl cyclases by stimulating a phospholipase 
C via G-proteins of the G p ,i, family. In the following we 
will first discuss the signalling properties of each of these 
systems in human heart and then their alterations in heart 

failure. We will largely focus on P-adrenoceptors since 
they are the best-investigated receptor system in the human 
heart; however, alterations of /3-adrenoceptor signalling in 
animal models of chronic heart failure will also discussed 
briefly. 

2. Receptor systems in the non-failing human heart 

2.1. G,-coupled receptors 

In the human heart both isoforms of the a-subunit of 

Gs* Gwlong (GsaL) and Gs~short (G,,,) exist; while GsaL 
predominates in the human heart [8], the specific function 
of both isoforms is not fully understood, but both may 
undergo differential regulation 191. In the human heart 
many receptors couple via G, to the adenylyl 
cyclase/cyclic AMP system including padrenergic, H,- 
histamine, 5-HT,-serotonin, VIP-, glucagon- and 
prostaglandin E,-receptors. Whether each of these recep- 
tors is located on cardiomyocytes or whether some at least 
partly reside on non-myocyte cells of the heart is not fully 
clear. Thus, stimulation of P-adrenergic, H,-, 5-HT,- and 
VIP-receptors can evoke positive inotropic effects (at least 
in isolated human myocardial preparations), but a clear-cut 
positive inotropic effect of glucagon and prostaglandin E, 
in the human heart has not been demonstrated. 

In the human heart both pi- and P,-adrenoceptors 
coexist; this has first been demonstrated by radioligand 
binding studies, and was subsequently confirmed in func- 
tional (experiments [for reviews, see Refs. 10-121. The 
number of P-adrenoceptors is quite evenly distributed in 
right and left atria1 and ventricular tissue; however, the 
proportion of /3,-adrenoceptors is somewhat higher in the 
atria (approximately 30% of the total P-adrenoceptor pop- 
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ulation) than in ventricular myocardium (about 20% of the 
total /?-adrenoceptor population) [see Refs. 12 and 131, and 
may be even higher (up to 50%) in the atrioventricular 
conducting system [14]. On the other hand, &-adrenocep- 
tots have not been found in the human heart, either in 
functional [15] or in mRNA distribution studies on /3,-, 
&- and &-adrenoceptors [16,17]. 

Both pi- and &-adrenoceptors couple to adenylyl cy- 
clase and increase the intracellular amount of cyclic AMP 
[l&21]. Interestingly, in the human heart-in atria as well 
as in ventricular myocardium-adenylyl cyclase is prefer- 
entially activated by &-adrenoceptor stimulation although 
pi-adrenoceptors predominate [for review, see Ref. 121. 
The mechanism underlying these different coupling effi- 
ciencies of human cardiac PI- and &-adrenoceptors to 
adenylyl cyclase is not known at present. However, when 
p,- and &-adrenoceptors are transfected into the same cell 
line, the P,-adrenoceptors exhibit a much greater func- 
tional coupling to adenylyl cyclase than the Pt-adrenocep- 
tors [22,23]. Thus, it might be a general phenomenon that 
&-adrenoceptors couple more efficiently to adenylyl cy- 
clase than p,-adrenoceptors. It might, however, also be 
possible that the differences between efficiencies of p,- 
and /3,-adrenoceptors to increase cyclic AMP in the hu- 
man heart are due to compartmentalization of cyclic AMP 
production within the cardiomyocytes, since compartmen- 
talization of cyclic AMP production has been demon- 
strated in various other mammalian cardiomyocytes [24- 
271. 

In vitro experiments have convincingly shown that both 
p,- and &adrenoceptors can mediate positive inotropic 
effects of /3-adrenoceptor agonists in isolated electrically 
driven atria1 and ventricular preparations [for references, 
see Refs. 10-12, 20 and 281; this has recently also been 
demonstrated in single myocytes from human ventricle 
[29]. In right and left atria /3,- and P,-adrenoceptor stimu- 
lation can evoke maximum positive inotropic effects, while 
on right and left ventricles only /?,-adrenoceptor stimula- 
tion can evoke maximum positive inotropic effects, &- 
adrenoceptor stimulation only submaximal positive in- 
otropic effects [20,30,3 11. 

In vivo experiments in humans have confirmed that 
P,-adrenoceptors can mediate positive chronotropic and 
inotropic effects of P-adrenoceptor agonists. Several stud- 
ies have shown that isoprenaline-induced tachycardia in 
humans is mediated by both /3,- and P,-adrenoceptors to 
about the same degree, while exercise-induced tachycardia 
(which is mainly due to neuronally released noradrenaline), 
is mediated solely by /3,-adrenoceptor stimulation [for 
references, see Refs. 12 and 32]-in close agreement with 
in vitro data on isolated human right atria [20,31]. 

Moreover, in healthy volunteers the positive chrono- 
tropic effect caused by intravenous infusions of terbutaline 
was only marginally affected by the /I,-adrenoceptor selec- 
tive antagonists atenolol and bisoprolol given in doses that 
markedly inhibited p,-adrenoceptor-mediated effects [33- 
351. Finally, Hall et al. [36] have demonstrated that the 
positive chronotropic effect of salbutamol upon injections 
into the right coronary artery of patients with chronic 
stable angina (thereby avoiding any systemic effects) was 
not affected by the p,-adrenoceptor selective antagonist 

practolol, but was significantly antagonized by propra- 
nolol, indicating that it is mediated exclusively by (cardiac) 
P,-adrenoceptor stimulation. It is interesting to note, how- 
ever, that--in contrast to the in vitro data [20,31]-adren- 
aline appears to cause its positive chronotropic effect in 
vivo solely via (cardiac) /3,-adrenoceptor stimulation. Thus, 
several authors have shown that adrenaline-induced tachy- 
cardia is not affected by p,-selective antagonists such as 
metoprolol [37], atenolol [38] or bisoprolol 1391, but is 
completely abolished by the &selective antagonist ICI 
118,551 [40], or by the non-selective P-adrenoceptor ant- 
agonist propranolol 1391. 

Using the &adrenoceptor agonist terbutaline, two 
groups have convincingly shown that cardiac P,-adrenoc- 
eptors can also mediate positive inotropic effects in vivo 
[34,35]. Moreover, Schafers et al. [35] recently compared 
in healthy volunteers the positive chrono- and inotropic 
effects induced by infusions of isoprenaline and terbu- 
taline; they found that at doses that caused the same 
increase in heart rate isoprenaline caused larger positive 
inotropic effects than did terbutaline-in close agreement 
with the in vitro observation (see above) that in human 
right atrium both p,- and &-adrenoceptors cause maximal 
positive inotropic effects while in the ventricular myo- 
cardium only P,-adrenoceptor stimulation caused maximal 
positive inotropic effects, P,-adrenoceptor stimulation 
evoked only submaximal positive inotropic effects. 

In this context it is interesting to note that in transgenic 
mice overexpression of the P,-adrenoceptor specifically in 
the heart resulted in marked elevation of baseline heart rate 
and contractility [41]; the extent of this increase was 
comparable with that induced by maximal isoprenaline 
stimulation in control mice; in addition, increases in base- 
line heart rate and contractility persisted in transgenic mice 
pretreated with reserpine 1411, thus depleting endogenous 
catecholamine stores. On the other hand, overexpression of 
the human /3,-adrenoceptor in atria of transgenic mice did 
not show considerable changes in contractility [42]. These 
differences could be due to the amount of overexpression; 
they could, however, also be due to the lower efficiency of 
the &-adrenoceptor in coupling to adenylyl cyclase when 
compared with the &-adrenoceptor (see above). More- 
over, in the transgenic mice with overexpressed &-adren- 
oceptors, but not in the control mice, the j3,-adrenoceptor 
antagonist ICI 118,55 1 significantly decreased basal heart 
rate and contractility, demonstrating for the first time in 
vivo that part of the P-adrenoceptor is constitutively ac- 
tive, even in the absence of /3-adrenoceptor agonists. Such 
agonistic activity of “empty” P-adrenergic receptors and 
its reversal by certain P-adrenoceptor antagonists has been 
recently shown in several cell culture systems [43-451 
including human cardiomyocytes [46], a phenomenon 
named “inverse agonism” [47]. 

In addition to /?-adrenoceptors at least three other re- 
ceptor systems exist in the human heart that couple via G, 
to adenylyl cyclase and can mediate positive inotropic 
effects: the histamine HZ-receptor, the serotonin 5-HT,-re- 
ceptor and the VIP-receptor. Compared with fl-adrenergic 
stimulation, however, stimulation of these three receptors 
causes only submaximal activation of adenylyl cyclase in 
atria1 (H 2, 5-HT,) and ventricular (H,, VIP) membrane 
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preparations from non-failing human heart [48-541. Simi- 
larly, positive inotropic responses of isolated electrically 
driven ventricular preparations from non-failing human 
heart to histamine and VIP were only 30-40% of those 
evoked by isoprenaline [49,54-561 while in human right 
atria1 tissue the histamine response was only slightly less 
than that of isoprenaline [50]. Interestingly, the 5-HT,-re- 
ceptor appears to mediate (submaximal, about 25-55% of 
that of isoprenaline) positive inotropic effects only in 
human right [50-52,57,58] and left atria [53], but not in 
ventricular myocardium [57,58], indicating that the ventric- 
ular myocardium may lack functional 5-HT,-receptors. 

Thus, in the human heart multiple receptor systems 
increase cyclic AMP concentrations and activate PICA, but 
the P-adrenoceptor is by the far the most effective receptor 
in inducing positive inotropic effects with all other G,-COU- 
pled receptors causing only 30-60% of the maximal posi- 
tive inotropic effect induced by P-adrenergic agonists (Fig. 
1). It should be noted, however, that in the human heart 
there exists only a small receptor reserve for P-adrenocep- 
tor-mediated positive inotropic effects. This was initially 
suggested by Kaumann et al. [59] and Bristow et al. [60] 
based on the comparison of affinity estimates and inotropic 
potency estimates for catecholamines and has been subse- 
quently confirmed and extended by Schwinger et al. [61] 

and Brown et al. [62]. Interestingly, we recently observed 
[50] that in human right atrium histamine (acting at H,-re- 
ceptors) and serotonin (acting at 5-HT,-receptors) stimu- 
lated adenylyl cyclase activity with a potency that was 
nearly identical to their respective positive inotropic poten- 
cies, indicating that also for these (GJadenylyl-cyclase- 
coupled) receptors only a few spare receptors exist al- 
though their true affinities (because of lack of suitable 
radioligands) have not been assessed in the human heart. 
Thus, it might be speculated that in the human heart 
G,-adenylyl-cyclase-coupled receptors might have in gen- 
eral only a small receptor reserve, and hence alterations of 
their signal transduction in heart failure can be expected to 
directly affect their ability to elicit inotropic responses. 

2.2. G ,-coupled receptors 

The major isoform of human cardiac Gi a-subunits is 
Gia.2; in addition, Gia.3 has been demonstrated while 
Gia-l appears to be absent, at least at the mRNA level [for 
a recent review, see Ref. 631. At least three receptor 
systems exist in the human heart that couple to G,: mus- 
carinic M,-, adenosine A,- and somatostatin-receptors. All 
three receptor systems have been shown to inhibit adenylyl 
cyclase activity [64-681 and at least M,- and A,-receptors 

Receptor Systems inthe Human Myocardium 

ATP CAMP IP3+DAG 

POSitiVe Inotroplc Effect (X of IsoPrenaline-Maximum) 

Bi~bLA~clum Yeo~clc~lac_MYnr;artllum 

01 100 100 

p2 go-100 30-50 

"2 80-85 30-40 
5-HT,, 25-55 0 
VIP ??? 40 
PGE, ??? ??? 

Glu ??? ??? 

a1 15-25 15-45 

ET 35-45 20 
AT 30-45 0 

Fig. 1. Receptor systems and their signal-transduction mechanisms in the non-failing human heart. For details, see text. Abbreviations: p,, pz, (x, = &-, 
&- and a,-adrenoceptors; H, - - histamine H,-receptors; 5-HT, = 5-HT,-serotonin receptors; VIP = vasoactive intestinal peptide receptors; PGE, = 
prostaglandin E, receptors; Glu = glucagon receptors; At - - adenosine A ,-receptors; S,S = somatostatin receptors; M, = muscarinic M,-receptors; ET = 
endothelin receptors; AT = angiotensin 11 receptors; G, = stimulatory guanine nucleotide binding protein; G, = inhibitory guanine nucleotide binding 
protein; G,, , ,(?) = the guanine nucleotide binding protein that presumably couples ET-, AT- and q-adrenergic receptors to PLC; C = catalytic unit of 
adenylyl cyclase; PLC = phospholipase C; PIP, = phosphatidylinositol 4,5-bisphosphate; DAG = 1 ,Zdiacylglycerol; IP, = inositol- 1 ,rl,Qiphosphate; 
+ = activation; - = inhibition. Right atrium: positive inotmpic effects were determined on isolated electrically-driven right atria from patients without 
apparent heart failure undergoing coronary artery bypass grafting. Ventricular myocardium: positive inotropic effects were determined on isolated 
electrically-driven right and left ventricular preparations obtained from would-be cardiac transplant donors. 
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can cause negative inotropic effects. However, differences 
exist in their mode of action in atria and ventricles: in atria 
acetylcholine and adenosine can cause negative inotropic 
effects in the absence of other transmitters, presumably by 
directly opening a potassium channel to cause hyperpolar- 
ization that leads to negative inotropic effects, and can also 
reduce inotropic effects elicited by cyclic-AMP-elevating 
agents [69-711. In ventricular myocardium, however, they 
can only reduce the force of contraction elicited by cyclic- 
AMP-elevating agents [65,66,72-761. The reason for these 
different effects in atria1 and ventricular myocardium is not 
known at present but could possibly be related to the 
existence of different potassium channels in atria and 
ventricles and/or to the fact that the densities of M,- and 
A ,-receptors in human atria is about twofold higher than in 
the ventricles [74,75,77]. In addition, it is still a matter of 
debate whether the reduction of inotropic effects of cyclic- 
AMP-elevating agents by acetylcholine and adenosine is 
mediated via Gi-mediated inhibition of cyclic AMP eleva- 
tion [for references, see Refs. 63, 69 and 711. 

Somatostatin can inhibit human cardiac adenylyl cy- 
clase activity [68]. However, somatostatin does not exert a 
negative inotropic effect on human atria1 and ventricular 
myocardium pre-stimulated with noradrenaline but was 
found to significantly reduce basal force of contraction in 
atria, but not in ventricles [76]. Thus, further studies have 
to show whether somatostatin may play a physiological 
role in regulation of human cardiac contractility and/or 
heart rate. 

2.3. Receptor systems signalling independent of the cyclic 
AMP system 

In addition to the receptor systems that cause positive 
inotropic effects through elevation of intracellular cyclic 
AMP, some receptor systems in the human heart can elicit 
positive inotropic effects independently of cyclic AMP 
such as a,-adrenoceptors, endothelin receptors and an- 
giotensin II AT,-receptors; moreover, under certain experi- 
mental conditions M,-receptors increase force of contrac- 
tion. Among these the most intensively studied receptor is 
the (Y I -adrenoceptor. Numerous studies have clearly 
demonstrated that in the heart of various species including 
man (Y,-adrenoceptors exist that can cause positive in- 
otropic effects without changes in the intracellular levels 
of cyclic AMP in vitro [78-811 and in vivo [82,83]. The 
number of cardiac o,-adrenoceptors varies markedly be- 
tween species, being quite high in rat and very low in man 
[84-861. Nevertheless, in the human heart at-adrenocep- 
tor-mediated positive inotropic effects have been demon- 
strated in atria1 [87-891 and ventricular preparations 
[86,90-921. The mechanism of cY,-adrenoceptor-mediated 
inotropic effects is still a matter of debate: a,-adrenocep- 
tors couple via a pertussis toxin (PTX)-insensitive G-pro- 
tein (possibly G,, , , > to phospholipase C [93,94]. This 
causes formation of 1,4,5inositoltrisphosphate (IPs) and 
diacylglycerol (DAG) with the former mediating the re- 
lease of Ca” from intracellular stores which might be 
involved in increases in force of contraction. In addition, 
CY,-adrenoceptor stimulation increase the Ca’+-sensitivity 
of myofilaments, transsarcolemmal Ca’+-influx and intra- 

cellular alkalinization via activation of the Na+/H+-anti- 
porter and it has been suggested that these effects are-at 
least partly-due to DAG-induced activation of PKC [for 
recent reviews, see Refs. 81, 95 and 961. Among the three 
known a,-adrenoceptor subtypes (cr,,, ala or c~io [97]) 
the a,,-adrenoceptor (formerly called (~,c) appears to 
dominate at the mRNA level [98,99], but whether this 
reflects the situation at the protein level is unclear. 

Recently endothelin and angiotensin II have also been 
found to couple to the phospholipase C pathway and cause 
positive inotropic effects in the human heart. Based on 
radioligand binding studies the human heart contains en- 
dothelin receptors of the ET,- and ET,-subtype [lOO,lOl] 
and angiotensin II receptors of the AT,-and AT,-subtypes 
[ 1021. However, the endothelin- and angiotensin II-induced 
formation of inositol phosphates in human right atria1 
slices appears to involve only ET,,- and AT,-receptors 
because endothelin-1 was loo-fold more potent than en- 
dothelin-3 11031 and because the angiotensin II effect was 
completely abolished by the AT,-receptor antagonist losar- 
tan [50], respectively. Endothelin causes positive inotropic 
effects in atria1 and ventricular preparations of the human 
heart [50,104-1081; at least in human right atrium this 
effect appears to result from activation of PKC with a 
subsequent activation of the Na+/H+-antiporter [ 1081. On 
the other hand, positive inotropic effects evoked by an- 
giotensin II have consistently been found only in atria 
[50,76,109,1101 while ventricular preparations showed no 
[76,1 lo] or only inconsistent positive inotropic effects 
[109], possibly due to the fact that in ventricular my- 
ocardium the number of AT-receptors is rather low and the 
AT,-subtype predominates [ 1021. 

Interestingly ETA-receptors in adult rat cardiomyocytes 
[ill] and human right atrium [103] but not in human left 
atrium and left ventricular myocardium [Brodde, unpub- 
lished observations] couple also to inhibition of adenylyl 
cyclase- very likely via G,. This might explain the tran- 
sient small negative inotropic effect preceding the positive 
inotropic effect that is observed with endothelin on iso- 
lated cardiac preparations [103,108,112,113]. In the heart 
of various mammalian species including humans mus- 
carinic M,-receptors (similar to ET,-receptors) can couple 
to inhibition of adenylyl cyclase (see above) and to activa- 
tion of phospholipase C. Thus, high concentration of car- 
bachol (> 10e6 M) can increase formation of inositol 
phosphates and cause positive inotropic effects; this effect 
is PTX-insensitive, indicating that it does not occur via Gi, 
and the positive inotropic effects are enhanced after PTX- 
pretreatment [76,114-l 161. 

Finally, besides mediating positive inotropic effects 
some of the receptor systems present in human heart can 
also induce cardiac growth and may be, therefore, involved 
in hypertrophic responses. On isolated cardiac myocytes a 
direct effect on protein synthesis has been demonstrated 
for the phospholipase-C-coupled cu,-adrenergic, endothelin 
ET,- and angiotensin II AT,-receptors and it has been 
suggested that activation of phospholipase C and PKC may 
be essential for these responses [ 117-1221. Moreover, 
myocardial overexpression of a constitutively active (~,a- 
adrenergic receptor mutant (a mutant that was capable of 
activating PLC in an agonist-independent manner) in trans- 
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genie mice caused marked cardiac hypertrophy [123]. 
Whether these effects might also occur in the human heart 
remains to be elucidated, but the fact that angiotensin 
converting enzyme inhibitors reduce cardiac hypertrophy 
more effectively than other antihypertensive drugs in hy- 
pertensive patients [124] indicates this may also be the 
case in vivo. 

3. Changes in human cardiac receptor systems in 
chronic heart failure 

3.1. G,>-coupled receptors 

Heart failure is a disease state that is primarily charac- 
terized by inadequate perfusion of peripheral organs and 
pulmonary and venous congestion. This is associated with 
activation of various neurohumoral systems including the 
renin-angiotensin system and the sympathetic nervous 
system. On the other hand, the cardiac responsiveness to 
neurohumoral stimulation is markedly altered in heart fail- 
ure. Among receptor systems present in the human heart, 
this has been best investigated for the padrenoceptor-G- 
protein-adenylyl cyclase system. Bristow et al. [60] were 
the first to report that p,-adrenoceptor number is de- 
creased in patients with chronic failure of different etiol- 
ogy. Numerous studies have confirmed and extended this 
finding and demonstrated that it occurs with all etiologies 
of heart failure and that the extent of reduction in P-adren- 
oceptor number is directly related to the severity of the 
disease, often judged by NYHA classification [for recent 
reviews, see Refs. 116, 125 and 1261. While there is 
general agreement that &-adrenoceptor function (i.e., in- 
duction of positive inotropic effects) is also decreased in 
patients with chronic heart failure, it is still controversial 
whether /3,-adrenoceptor number decreases [lo-12, 
116,125,126]. Thus, reduced Pi-adrenoceptor numbers 
have been reported in all studies, whereas decreased &- 
adrenoceptors were found in some and unchanged numbers 
in others. Some data indicate that these differences may 
possibly depend on the etiology of the disease. 

are two major differences between PARK- and PKA-in- 
duced desensitization: PARK-induced phosphorylation is 
considerably faster than PKA-induced effects, and 
PARK-induced phosphorylation requires much higher ago- 
nist concentrations than does PKA phosphorylation. 
(3) Transient internalization of the receptors into a still 
unknown intracellular compartment where they are not 
accessible to hydrophilic ligands such as catecholamines. 
These internalized receptors remain functionally intact and 
can be recycled. 
(4) Down-regulation of the receptors (i.e., a decrease in the 
total number of receptors). This can be caused either by 
enhanced degradation of the receptors and/or by dimin- 
ished synthesis. 
(5) Uncoupling of the receptors from their G-proteins, 
which may be a consequence of one of the above events. 
(6) Altered expression of G-proteins (e.g., decreased G, or 
increased Gi) and/or isoforms of adenylyl cyclases which 
also may be a result of one of the above events, particu- 
larly of PKA or PKC activation. 

A role for PARK in cardiac /I-adrenoceptor desensiti- 
zation in heart failure has recently been suggested by 
Ungerer et al. [ 128,129]. They demonstrated that PARK 
mRNA levels and activity are increased in hearts of pa- 
tients with end-stage dilated or ischemic cardiomyopathy. 
Interestingly this did not involve altered amounts of /3- 
arrestin at the mRNA or protein level [ 1291. Increased 
PARK activity might be more important for &- than for 
/?,-adrenoceptor desensitization since it has been shown in 
various cell line experiments that the P,-adrenoceptor 
undergoes more extensive phosphorylation by PARK than 
the P,-adrenoceptor, possibly because the /3,-adrenoceptor 
contains more potential PARK phosphorylation sites than 
the /3,-adrenoceptor [ 1301. Some authors have even doubted 
that PARK plays a physiological role at all ino,-adrenoc- 
eptor phosphorylation [ 13 11. 

Due to the high sympathetic tone in chronic heart 
failure, it has frequently been assumed that cardiac p- 
adrenoceptor desensitization is a form of agonist-induced 
desensitization. Studies on agonist-induced desensitization 
of /3-adrenoceptors in other models [for a recent review, 
see Ref. 1271 have indicated various possible molecular 
mechanisms: 
(1) Phosphorylation of the receptor by the enzyme /3- 
adrenoceptor kinase ( PARK) which recognizes receptors 
only if they are occupied by agonists and enhances the 
binding of the inhibitor protein @arrestin which inhibits 
interaction of the receptor with the G,-protein; since this 
can occur only with agonist-occupied receptors, this mech- 
anisms is mainly implicated in homologous desensitiza- 
tion. 

PKA is also likely to contribute to /3-adrenoceptor 
desensitization in chronic heart failure, since PKA will be 
chronically activated by enhanced endogenous nora- 
drenaline in this setting. BBhm et al. [132] recently re- 
ported that the potency and efficacy of cyclic AMP in 
activating PKA is not changed in the failing human heart, 
indicating that PKA itself may not be altered, but this 
conclusion awaits confirmation by direct assessment of 
cardiac PKA activities. While PKA can clearly phosphory- 
late and desensitize /?,-adrenoceptors (e.g., in the human 
neuroblastoma cell line SK-N-MC [ 13 l]), &adrenocep- 
tors are much more susceptible to PKA-phosphorylation 
than /3,-adrenoceptors possibly because &-adrenoceptors 
contain two potential PKA-phosphorylation sites, but p,- 
adrenoceptors contain only one [ 1301. 

Internalization seems not to play an important role in 
chronic heart failure since several groups have shown no 
differences in the percentage of P-adrenoceptors in a light 
vesicular fraction of non-failing and failing human hearts 
[133-1351. 

(2) Phosphorylation of the receptor by PKA and possibly Down-regulation of /3,-adrenoceptor number has been 
by PKC; the desensitizing effect of phosphorylation by demonstrated in all forms of chronic heart failure in man 
PKA or PKC does not require the binding of parrestin (see above). This down-regulation of /3,-adrenoceptors 
and may be involved in homologous and heterologous could be due to the decrease in mRNA levels that have 
(PKA) or in heterologous desensitization only (PKC). There been recently demonstrated in the hearts of patients with 
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dilated and ischemic cardiomyopathy [128,136]. mRNA 
levels for /3,-adrenoceptors were not altered in the failing 
human heart in these studies, but whether &adrenocep- 
tors are down-regulated at the protein level is still contro- 
versial (see above). 

Despite these data many questions remain open to 
clarify the mechanism underlying P,-adrenoceptor down- 
regulation and desensitization and &-adrenoceptor desen- 
sitization in chronic heart failure. For example, it is not 
known what mechanism triggers the decrease in pi- 
adrenoceptor mRNA and why this process is selective for 
p,-adrenoceptors (relative to P,-adrenoceptors). This ques- 
tion is especially intriguing since they do not tit well into 
the general concepts of pi- and &-adrenoceptor desensiti- 
zation. Thus, it has been hypothetized that cardiac-derived 
noradrenaline is responsible for P,-adrenoceptor down- 
regulation in chronic heart failure [137] because nora- 
drenaline is a selective Pi-adrenoceptor agonist [138] and 
locally sympathetic drive is markedly enhanced in the 
heart [ 1391. This could lead to a selective down-regulation 
of /3,-adrenoceptors. Selective Pi-adrenoceptor down-reg- 
ulation has been demonstrated in several tissues including 
the heart of rats harboring a noradrenaline-secreting 
pheochromocytoma [140,141]. On the other hand, it has 
been observed in various in vivo animal studies that 
following chronic P-adrenoceptor stimulation the cardiac 
&adrenoceptor undergoes rapid desensitization and 
down-regulation while /3,-adrenoceptors were relatively 
resistant to down-regulation. This holds true not only for 
isoprenaline [142-1461 and adrenaline [147], which are 

non-selective /3,- and &-adrenoceptor agonists, but also 
for noradrenaline [147] which is a rather selective /3,- 
adrenoceptor agonist [138]. This differential susceptibility 
to desensitization is also found in isoprenaline-treated rats 
and guinea-pigs in which sympathetic nerve endings had 
been destroyed by 6-hydroxydopamine pretreatment 
[ 146,148]. Thus, chronic exposure of /3,- but not &- 
adrenoceptors to continuously released endogenous nora- 
drenaline from sympathetic nerve endings cannot explain 
the differential regulation of the two subtypes. Recently, 
similar differences in fi,- and &adrenoceptor desensitiza- 
tion have been also observed in human coronary arteries 
containing both P-adrenoceptor subtypes [149]. In this 
preparation a 16-hour in vitro incubation with nora- 
drenaline did not affect P,-adrenoceptor-mediated relax- 
ation, but markedly desensitized &adrenoceptor relax- 
ation [150]. Thus, P-adrenoceptor regulation in the human 
heart with consistent /3,-adrenoceptor down-regulation but 
inconsistent &-adrenoceptor down-regulation appears to 
be quite unique and it is still not known why only fi,- 
adrenoceptors are so dramatically down-regulated in 
chronic heart failure. 

Desensitization of cardiac P-adrenoceptor responses in 
human heart failure can also occur by altered G-protein 
expression. There is general agreement that a-subunits of 
cardiac G, are not quantitatively altered in chronic heart 
failure, either when determined on the protein level by 
cholera-toxin (CTX)-catalyzed ADP-ribosylation or quanti- 
tative Western-blotting, or on the mRNA levels (Table 1) 
or functionally in a reconstitution assay using cyc- cells 

Table 1 
Changes in human cardiac G-proteins in chronic heart failure 

Diagnosis Region Technique Result Reference 

DCM LV PTX Gin /Go, T 36% Feldmanet al. 1988 [I511 
LV CTX + cyc- G - 

DCM RV PTX G;,” /Go, T4Cl% Neumann et al. 1988 [I521 
DCM LV PTX G,, /‘%a T 37% BGhm et al. 1990 [65] 
ICM G,, /Go, - 
DCM LV CTX G 
DCM LV Western Gy37 kDa 

Schnabel et al. 1990 [214] 
Feldman et al. 199 I [ 1531 

G,-38 kDa 
Go-42 kDa - 

PTX %/Go, t 
DCM LV PTX ‘4, /%a T 26% Hershberger et al. 199 I [66] 
DCM LV PTX Gia /Go, f 103% Bristow et al. 1991 [154] 
ICM LV PTX Gim /Goa f91% 
DCM/ICM LV CTX G SIX 
DCM LV RIA G i(l T 138% Bohm et al. 1994 [158] 
ICM LV RIA G t58% 
DCM/ICM RV RIA G:: 
DCM LV Northern G ,,.,-mRNA T 92% Feldman et al. 1989 [ 1551 

G,,-mRNA T 36% 
G,,-mRNA t63% 

DCM LV PCR G ,,.,-mRNA Feldman et al. 1991 [ 1561 
G, .-mRNA 

DCM LV Northern Gi (I .a-mRNA f 103% Eschenhagen et al. 1992 [I571 
ICM G , o( .,-mRNA t 77% 
DCM/ICM G, a .,-mRNA 
DCM/ICM G,,-mRNA 

Only studies comparing G-protein expression in failing human hearts as compared to non-failing control hearts are listed. Values represent percent changes 
from non-failing hearts. T = increase, - no significant change. DCM = idiopathic dilated cardiomyopathy; ICM = ischemic cardiomyopathy; LV/RV = 
left/right ventricle; cyc- = assessment of G,, activity by reconstitution in cyc- membmnes. PTX/CTX = pertussis or cholera, respectively, toxin-cata- 
lyzed ADP-ribosylation; RIA = radioimmunoassay; PCR = polymerase chain reaction. Modified from Eschenhagen [63] with permission. 
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[ 1511. On the other hand, the majority of studies have 
found cardiac expression of a-subunits of Gi to be in- 
creased (Table 1). This has been initially demonstrated by 
pertussis-toxin-catalyzed ADP-ribosylation [65,66,15 l- 
1541 which measures all forms of G, as well as of G,. 
However, the use of quantitative Western and Northern 
blotting to differentially assess expression of Gi isoforms 
at the protein and mRNA levels, respectively, has yielded 
controversial results with regard to the three Gi, isoforms 
in end-stage dilated and ischemic cardiomyopathy. Thus, 
Feldman et al. [153,155,156] found Gicr-s to be the pre- 
dominant form in human heart which was unchanged in 
heart failure at the protein and mRNA level as determined 
by quantitative Western and Northern blotting; function- 
ally decreased Gpp(NH)p- but not NaF-induced adenylyl 
cyclase activation, however, indicated some form of G- 
protein alteration. On the other hand, two other groups 
showed Gi (I- 2 to be the predominant form in human heart 
and this was found to be increased at both protein and 
mRNA levels [ 157,158]. Thus, it appears at present that 
cardiac PTX-substrates are increased in human heart fail- 
ure, which may be related to a selectively enhanced ex- 
pression of Gia-2. 

Increased Gi expression could mitigate cyclic AMP 
formation, and thus contribute to the diminished response 
of &- or p,-adrenoceptors in chronic heart failure. Three 
lines of evidence favor this hypothesis. First, in ventricular 
membranes obtained from end-stage heart failure, activa- 
tion of adenylyl cyclase by GTP or its non-hydrolyzable 
analogue Gpp(NH)p ( involving G, and Gi) and forskolin is 
diminished, while that induced by NaF (involving only G,) 
and Mn2+ (activating directly the catalytic unit of the 
adenylyl cyclase) are unchanged [for references, see Ref. 
121. Second, Feldman et al. [151] showed that pretreatment 
of cardiac membranes from severely failing hearts with 
PTX restores the previously decreased adenylyl cyclase 
response to isoprenaline, and third Brown and Harding 
(159) have recently shown, in isolated human cardiomy- 
ocytes, that pretreatment of PTX restored the previously 
reduced maximal inotropic response to isoprenaline. More- 
over, PTX pretreatment also enhanced cyclic AMP re- 
sponses in lymphocytes from heart failure patients but not 
in those from control subjects [160]. 

open questions still exist for G,-regulation in chronic heart 
failure. If the cyclic AMP/cyclic AMP response element 
hypothesis is correct, one could expect that following 
chronic activation of /3-adrenoceptors Gi increases in all 
cell types, We have recently tested this hypothesis in three 
different settings. First, we assessed Padrenoceptor num- 
ber and G,-expression in myometria from pregnant women 
undergoing long-term &-adrenergic therapy to prevent 
pre-term labor. This treatment led to a marked decrease in 
/?,-adrenoceptor number but G,-levels were unchanged, 
independently of whether assessed by PTX or quantitative 
Western blotting [168]. Secondly, we treated healthy vol- 
unteers for 2 weeks with the P,-adrenergic agonist terbu- 
taline and assessed P,-adrenoceptor number and Gi ,-levels 
in circulating lymphocytes. Again, treatment caused a sig- 
nificant decrease in P,-adrenoceptor number while Gi- 
assessed by PTX-was unchanged [ 1691. Thirdly, we have 
treated the human neuroblastoma cell line SK-N-MC con- 
taining a homogeneous population of /3, -adrenoceptors for 
24 hours with 10 PM isoprenaline; under these conditions 
fi,-adrenoceptors were down-regulated and the adenylyl 
cyclase response to isoprenaline was markedly desensi- 
tized, but again Gi was not changed [170]. Extending the 
incubation to 4 days also did not lead to any changes in Gi 
[Michel and Brodde, unpublished observations]. Thus, it 
appears that chronic activation of P-adrenoceptors is not 
the sole explanation for the increase in Gi in chronic heart 
failure, or at least that the underlying mechanism is not 
operative in all cell types and that possibly other factors 
may be involved as well. In this context it is interesting to 
note that in isolated rat neonatal cardiomyocyte tumor 
necrosis factor (TNFa) can increase G, [ 17 l&and circu- 
lating levels of TNFa have recently been found to be 
markedly elevated in patients with severe chronic heart 
failure [172]. However, it might also be possible that the 
increases in human cardiac Gi observed in chronic heart 
failure are more an organ (cardiac&specific than a general 
phenomenon, as the pronounced P,-adrenoceptor down- 
regulation in chronic human heart failure is also somewhat 
atypical. 

Relatively little is known about changes in cardiac 
adenylyl cyclase in chronic human heart failure. In the 
majority of studies Mn 2f has been used to assess the 

The mechanisms underlying the increase in Gi are not activity of the catalytic unit of the enzyme; nearly all 
fully understood, but it has been speculated that it is due to studies have shown unchanged activity in different forms 
the increased activity of the sympathetic nervous system of heart failure [for review, see Ref. 121, with the excep- 
and hence increased noradrenaline levels. This hypothesis tion of a decreased activity of the catalytic unit in right 
is based on findings that chronic exposure of noradrenaline ventricular preparations from hearts subjected to pressure 
increases Gi in guinea-pig cardiomyocytes [159] and in rat overload [ 1731. However, at least eight isofotms of mem- 
neonatal cardiomyocytes [161] and chronic treatment of brane-bound adenylyl cyclase have been cloned [ 174,175]; 
rats with isoprenaline increased myocardial Gi protein among these the heart, including human heart, seems to 
[162] and Girre2 and Gi,..3 mRNA [163,164]. Thus, it might contain mainly type V and VI adenylyl cyclase, i.e. those 
well be that noradrenaline via increasing cyclic AMP and isoforms that are inhibited by Gi and submicromolar Ca2+ 
activating a cyclic AMP-response ‘element in a G,-gene concentrations in a calmodulin-independent manner [176]. 
might increase expression in chronic heart failure. Since It has been recently shown that in dogs rapid-pacing-in- 
the gene for Giae2 contains a possible consensus sequence duced heart failure caused a reduction in steady-state 
of cyclic AMP-response element [ 165,166] while the G,,- mRNA-levels of type V and VI adenylyl cyclase [177]; 
gene does not contain a cyclic AMP response element moreover, in rats, steady-state mRNA levels of type V and 
[ 1671, this would also explain why in chronic heart failure VI adenylyl cyclase showed age-dependent changes but in 
Gi, but not G,, increases. However, similarly to /3-adren- an opposite direction: while type V increased with age, 
oceptor regulation in the human heart (see above) some type VI decreased with age and this decrease paralled the 
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decrease in adenylyl cyclase activity [178]. Thus, the pos- 
sibility might be considered that cardiac adenylyl cyclase 
activity is-at least partly-determined by the ratio of the 
isoforms of the enzyme. However, at present nothing is 
known on possible adenylyl cyclase isoform switches in 
the failing human heart. 

Only a few data exist on changes of the other G,-COU- 
pled cardiac receptors in chronic human heart failure. 
VIP-receptor number and the contractile response of left 
ventricles of severely failing hearts were found to be 
markedly reduced [54] while interestingly affinity of the 
receptors to VIP was enhanced. Nothing is known on 
changes of cardiac 5-HT,-receptors in chronic heart fail- 
ure. Controversial data have been reported on Hz-receptor 
changes in chronic heart failure. One study described 
unchanged receptor number in left ventricular membranes 
from patients with mild to moderate heart failure because 
of mitral and aortic valve disease [49]; in this study the 
positive inotropic effect of the Hz-receptor agonist impro- 
midine was unchanged while that of isoprenaline was 
markedly reduced. Similarly, Bristow et al. [48] found an 
unchanged histamine-induced positive inotropic effect in 
left ventricles from patients with severe heart failure com- 
pared with the effects on ventricles from non-failing hearts. 
On the other hand, Niibauer et al. [56] found the positive 
inotropic effect of histamine markedly reduced in severely 
failing hearts. However, all receptor systems involving the 
G,-adenylyl cyclase pathway (and hence cyclic AMP as 
one of the most important second messengers) in the 
human heart appear to have a low spare receptor capacity 
for positive inotropic effects (see above), and therefore any 
decrease in receptor number and/or any impairment in 
coupling receptor to the adenylyl cyclase/cyclic AMP 
system should reduce their positive inotropic effects. As 
discussed above, in chronic heart failure the functional 
activity of G, is increased, which leads to inhibition of 
cyclic AMP formation. Therefore, it might be expected 
that all cyclic AMP-dependent positive inotropic responses 
are reduced under these conditions, as this has been clearly 
shown for /?-adrenergic agonists and cyclic AMP-depen- 
dent phosphodiesterase inhibitors [ 179; for further refer- 
ences, see Ref. 121. Certainly additional experiments are 
needed to clarify this point. 

In this context it is interesting to note that the ageing 
human heart shows some similarities to the failing human 
heart: it is well known that the ageing human heart has 
reduced responses to P-adrenergic stimulation [for refer- 
ences, see Refs. 180 and 1811. Two groups have recently 
studied the mechanisms underlying this effect in more 
detail. We determined in right atria from 52 patients 
undergoing open-heart surgery without apparent heart fail- 
ure of different ages (7 days-83 years) /3-adrenoceptor 
number and subtype distribution, G,- and G,-proteins and 
adenylyl cyclase activity [ 1821. We found significant nega- 
tive correlations between GTP-, isoprenaline-, histamine-, 
5-HT-, forskolin-, NaP- and Mn*+-activated adenylyl cy- 
clase and the age of the patients. In addition, Gi, increased 
with age; @-adrenoceptor number and subtype distribution, 
however, were unchanged. These results indicate that in 
the human right atrium the reduction in /3-adrenergic 
responsiveness with age might involve a reduction in the 

activity of the catalytic unit of the adenylyl cyclase, which 
leads to impairment of cyclic AMP formation. An increase 
in Gi might enhance that effect. White et al. [ 1831 studied 
the /3-adrenoceptor-G-protein-adenylyl cyclase system in 
ventricu‘iar myocardium obtained from potential organ 
donors whose heart could not be used for transplantation 
for several reasons. They found-similarly to the right 
atrium-an age-dependent decline in adenylyl cyclase ac- 
tivity in response to isoprenaline, Gpp(NH)p, NaF and 
forskolin but not to Mn *+ In addition, in contrast to the . 
right atrium, in aged ventricular myocardium G,, was 
decreased, whereas Gi (I was unchanged; P-adrenoceptor 
number decreased with age and this was due to a selective 
decrease in P,-adrenoceptors. Although the reason for 
these (chamber-specific?) differences between aged right 
atria and aged ventricular myocardium is not known at 
present, these data clearly indicate that in both settings- 
chronic heart failure and advanced age-@adrenoceptor- 
mediated effects and all other cyclic-AMP-dependent ef- 
fects arc depressed. 

3.2. G,-coupled receptors 

Much less is known at present about Gi-coupled cardiac 
receptors and cardiac receptor signalling through the phos- 
pholipase C pathway in chronic heart failure. The number 
of adenosine A,- [65] and muscarinic M,-receptors 
[65,67,184] is unchanged like the negative inotropic effect 
of adenosine and carbachol which surprisingly is not 
changed in patients with severe heart failure [65-671 de- 
spite the increase in Gi (see above). These findings indi- 
cate (a) that either the G,-pathway might be not the most 
important signalling pathway for these receptors or (b) 
considering the receptor/G-protein ratio of 1 : 10 to 1 : 100 
[185] that the small increases in Gi seen in chronic heart 
failure (about 30-50%) may not significantly contribute to 
the extent of the functional responses. 

3.3. Receptor systems signalling independent of the cyclic 
AMP system 

The human cardiac a,-adrenoceptor is the most inten- 
sively studied among the phospholipase-C-coupled recep- 
tors in chronic heart failure. There appears to be general 
agreement that the number of cr,-adrenoceptors (although 
very low in the human heart) is increased in patients with 
chronic heart failure [92,116,186]; the mechanism underly- 
ing this phenomenon is not completely understood but may 
be due to the fact that it has been shown in a cell line that 
chronic P-adrenergic stimulation increases the amount of 
CX,-adrenoceptor mRNA [187]. On the other hand, in rats 
chronically treated with the P-adrenoceptor antagonist pro- 
pranolol, cq-adrenoceptors also increase [ 188,189], which 
might argue against the cross-regulation hypothesis. De- 
spite the increased number, LY , -adrenoceptor-mediated in- 
ositol phosphate accumulation is unchanged in the failing 
human heart [85,116]. Controversial data exist on the 
positive inotropic effect induced by cu,-adrenoceptor acti- 
vation. While BShm et al. [86] found it to be unchanged in 
left ventricular preparations from patients with severe 
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chronic heart failure, Steinfath et al. [92] demonstrated in 
this preparation a marked decreased response to phenyl- 
ephrine and noradrenaline; these in vitro data have been 
recently confirmed in an in vivo study by Landzberg et al. 
[83] who demonstrated that the positive inotropic effect of 
phenylephrine was markedly reduced in patients with se- 
vere heart failure when compared with healthy controls 
following intracoronary injections. Thus, taken together, 
the increased number, the unchanged inositol phosphate 
response and the (presumably) decreased inotropic re- 
sponse indicate that cardiac cu,-adrenoceptors in chronic 
heart failure are uncoupled from the response. 

Similar to cr,-adrenoceptors, M,-receptor [116] and 
ETA-receptor [Brodde, unpublished observations] induced 
inositol phosphate accumulation seems not to be different 
in failing and non-failing human hearts. Preliminary data 
suggest that the endothelin-induced positive inotropic ef- 
fect in left ventricular preparations of severely failing 
human hearts is decreased [ 107,190]. However, this re- 
mains to be confirmed in other studies. 

Finally, controversial data have been published on 
changes in AT-receptor number in the failing human heart. 
Urata al. [I911 described AT-receptors to be unchanged 
while Regitz-Zagrosek et al. [102] recently found in atria 
and ventricular myocardium obtained from explanted hearts 
of patients with end-stage heart failure markedly decreased 
AT-receptors assessed on both a protein and a mRNA-level. 
Whether positive inotropic responses to angiotensin II in 
heart failure are changed is not known at present. 

4. Animal models of chronic heart failure 

As discussed above, a general feature of human heart 
failure seems to be a decrease in cardiac P-adrenoceptors 
accompanied by increases in the functional activity of 
cardiac Gi resulting in a marked attenuation of adenylyl 
cyclase activation. To investigate the mechanisms underly- 
ing these alterations in more detail, numerous studies have 
been performed in animal models of heart failure, but the 
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Fig. 2. Changes in human cardiac receptor systems and their signal-transduction mechanisms in chronic heart failure. For details, see text. For explanation 
of abbreviations, see legend to Fig. 1. PKA = protein kinase A; PKC = protein kinase C. 
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results were quite different from those obtained in human 
heart failure. Thus, a decreased padrenoceptor density 
(mainly p,-adrenoceptors) has been found in dogs with 
right heart failure produced by progressive pulmonary 
artery constriction and tricuspid avulsion [192], in dogs 
[193,194] and pigs [195,196] with congestive heart failure 
due to rapid pacing, in pigs with chronic volume-overload 
hypertrophy and circulatory congestion [197], and in rab- 
bits with chronic heart failure due to pressure and volume 
overload [ 1981. On the other hand, P-adrenoceptor density 
was found to be unchanged in rats [199] and dogs [200] 
with heart failure due to myocardial infarction as well as in 
the genetically-linked model of cardiomyopathy, the Syr- 
ian hamster [201,202]; and finally, increased &adrenocep- 
tor density was found in guinea-pigs [203] and dogs 
[204,205] with heart failure due to pressure overload. 
However, in all these models adenylyl cyclase activation 
by GTP, isoprenaline and forskolin was attenuated, indicat- 
ing that disturbances in coupling P-adrenoceptors to the 
adenylyl cyclase also occur in animal models of heart 
failure. 

Several studies have addressed the question of whether 
cardiac G-proteins might be changed in animal models of 
heart failure. Again, the data obtained were quite different 
from those obtained in human heart failure. Thus, while it 
is generally agreed that G,, is not changed in human heart 
failure, in the animal models of heart failure in the major- 
ity of studies a decrease in either the amount (assessed by 
CTX-catalyzed ADP-ribosylation or Western blotting) or 
function (assessed by the cyc- reconstitution assay) or 
mRNA-levels for G,, was found in the pressure overload 
model of the dog [206], in the volume-overload model of 
the pig [197], in the rapid pacing model of the pig [195,196] 
and in the genetic model of cardiomyopathy, the Syrian 
hamster [201,207], although Sehti et al. [202] recently 
found increased amounts of G,, in this model. Further- 
more, in contrast to human heart failure Gi, (assessed by 
PTX-catalyzed ADP-ribosylation or Western-blotting) and 
mRNA levels for Gi, were in general not found to be 
increased (with the exception of a recent study by Sehti et 
al. [202] in the Syrian hamster) but were either unchanged 
(in the pressure overload model of the dog [208], in the 
volume-overload model of the pig [ 1971, and in the Syrian 
hamster [201]) or decreased (in the rapid pacing model of 
the pig [195,196] and in the Syrian hamster [207]) in the 
animal models of heart failure. Taken together, these re- 
sults show that at present it is quite difficult to extrapolate 
from results obtained in animal models of chronic heart 
failure to human heart failure. 

5. Conclusion 

In the human heart many receptor systems exist that 
regulate contractility and heart rate. Among these the 
fi-adrenoceptor-G,-protein-adenylyl cyclase system is the 
most powerful physiologic mechanism to acutely augment 
cardiac contractility (cf. Fig. 1). In chronic heart failure 
this pathway exhibits two marked alterations: (a) a de- 
crease in p,-adrenoceptor number and (b) an increase in 
the functional activity of Gi. Both will lead to reduced 

physiologic responses of the failing human heart to /3- 
adrenergic stimulation. In addition, the increase in Gi- 
which reduces cyclic AMP formation-might also cause 
diminished physiologic responses of the failing human 
heart to activation of all receptor systems signalling through 
the G,-adenylyl cyclase/cyclic AMP pathway (cf. Fig. 2). 
Interestingly, the functional activity of receptor systems 
signalling via Gi is unchanged in chronic heart failure 
despite the increase in Gi (cf., Fig. 2). On the other hand, 
very little information is available on changes in receptor 
systems signalling through the PLC/IPs/DAG pathway in 
the human heart although some preliminary data might 
suggest that these receptor systems are also desensitized 
from their functional response. 

Thus, although during the last decade much has been 
learned about alterations in cardiac signal transduction 
mechanisms in chronic heart failure, many open questions 
remain, for example: (i) Why is it predominantly the 
/3,-adrenoceptor that is down-regulated in chronic heart 
failure? (ii) What is the mechanism underlying the increase 
in (the functional activity of) G,? (iii) What is the physio- 
logic role of PLC/IP,/DAG-coupled receptors in the 
human heart and how are the components of this system 
altered in chronic heart failure? (iv) Since cross-talk be- 
tween different signalling pathways has been demonstrated 
in many cell culture systems [209], how does cross-talk 
between the different signalling pathways in the human 
heart (cf. Figs. 1 and 2) contribute to alterations in signal- 
transduction mechanisms observed in chronic human heart 
failure’? Cross-talk between p,-adrenergic, P,-adrenergic 
and M,-muscarinic receptors may in fact exist in the 
human heart: in patients with coronary artery disease 
chronic treatment with selective /3,-adrenoceptor antago- 
nists such as metoprolol, bisoprolol and atenolol caused 
selective up-regulation of right atria1 p,-adrenoceptor 
number and down-regulation of muscarinic M,-receptor 
number; right atria1 P,-adrenoceptor number was unaltered 
[210,2 111. On the other hand, inotropic responses to nora- 
drenaline (acting solely via &-adrenoceptors, see above) 
were unchanged while &-adrenoceptor-mediated positive 
inotropic effects of procaterol and salbutamol were 
markedly enhanced [211,212]; similarly, in vivo in pr- 
adrenoceptor-antagonist-treated patients the positive 
chronotropic effect of salbutamol was significantly in- 
creased [2 131. 
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