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The role of neutrophils in myocardial ischemia–reperfusion injury
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Abstract

Reperfusion of ischemic myocardium is necessary to salvage tissue from eventual death. However, reperfusion after even brief periods
of ischemia is associated with pathologic changes that represent either an acceleration of processes initiated during ischemia per se, or
new pathophysiological changes that were initiated after reperfusion. This ‘reperfusion injury’ shares many characteristics with
inflammatory responses in the myocardium. Neutrophils feature prominently in this inflammatory component of postischemic injury.
Ischemia–reperfusion prompts a release of oxygen free radicals, cytokines and other proinflammatory mediators that activate both the
neutrophils and the coronary vascular endothelium. Activation of these cell types promotes the expression of adhesion molecules on both
the neutrophils and endothelium, which recruits neutrophils to the surface of the endothelium and initiates a specific cascade of cell–cell
interactions, leading first to adherence of neutrophils to the vascular endothelium, followed later by transendothelial migration and direct
interaction with myocytes. This specific series of events is a prerequisite to the phenotypic expression of reperfusion injury, including
endothelial dysfunction, microvascular collapse and blood flow defects, myocardial infarction and apoptosis. Pharmacologic therapy can
target the various components in this critical series of events. Effective targets for these pharmacologic agents include: (a) inhibiting the
release or accumulation of proinflammatory mediators, (b) altering neutrophil or endothelial cell activation and (c) attenuating adhesion
molecule expression on endothelium, neutrophils and myocytes. Monoclonal antibodies to adhesion molecules (P-selectin, L-selectin,
CD11, CD18), complement fragments and receptors attenuate neutrophil-mediated injury (vascular injury, infarction), but clinical
application may encounter limitations due to antigen–antibody reactions with the peptides. Humanized antibodies and non-peptide agents,

xsuch as oligosaccharide analogs to sialyl Lewis , may prove effective in this regard. Both nitric oxide and adenosine exhibit broad
spectrum effects against neutrophil-mediated events and, therefore, can intervene at several critical points in the ischemic–reperfusion
response, and may offer greater benefit than agents that interdict at a single point in the cascade. The understanding of the molecular
processes regulating actions of neutrophils in ischemic–reperfusion injury may be applicable to other clinical situations, such as trauma,
shock and organ or tissue (i.e. vascular conduits) transplantation.  1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction response to injury has evolved as an immunological
defense against bacterial and other invaders, the heart’s

Undoubtedly, reperfusion of ischemic myocardium is inflammatory reaction to injury may not be optimal, or
necessary to salvage tissue from ultimate death. However, even appropriate, for its own healing in the case of
reperfusion after even brief periods of ischemia submits to myocardial ischemia. At the same time that reperfusing
the axiom ‘ . . . for every action, there is a reaction.’ blood halts the ischemic process by supplying oxygen and
Although the biochemistry and physiology of the host’s nutrients, a cascade of events with properties similar to the

inflammatory response is rapidly initiated. However, this
inflammatory-like response to ischemia–reperfusion, me-
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diated largely by neutrophils, is mounted against host 2. Mechanisms of neutrophil-mediated injury
tissue, such as the endothelium and myocardium, and this
‘normal’ response has no system of checks and balances to Neutrophils have been implicated as a primary mecha-
distinguish ‘self’ tissue from ‘non-self’ and to adjust itself nism underlying ischemic–reperfusion injury. The propen-
accordingly. Neutrophils play a central role in this in- sity to injure the myocardium and its component cells
flammatory-like response to reperfusion by releasing oxid- (notably the coronary vascular endothelium, microvascula-
ants and proteases that damage or kill tissues, and release ture, myocytes) stems from the myocardium’s primary
inflammatory products that amplify the recruitment and responses to proinflammatory mediators, which leads to a
activation of greater numbers of neutrophils into the redirection of the normal inflammatory response geared
effected myocardium, thereby extending the severity of towards neutralizing host invaders to one that attacks the
tissue damage. Hence, neutrophils are intimately involved host tissue. The processes involved in inducing tissue
in the pathogenesis of myocardial infarction, vascular injury by neutrophils include oxygen free radical genera-
endothelial dysfunction, damage to the genetic apparatus, tion, degranulation and release of proteases, and release of
apoptosis and other manifestations of lethal injury in the arachidonic metabolites and other proinflammatory medi-
acute phase following reperfusion. This ‘reperfusion in- ators.
jury’ involves a well-orchestrated series of interactions
between neutrophils and the vascular endothelium via 2.1. Oxygen free-radical generation
specific adhesion molecules on both cell types; these
interactions are initiated in the immediate peri-reperfusion Superoxide anions are generated from the neutrophil-
period, and may continue during the ensuing hours and membrane-associated NADPH oxidase [1,2], which can be
days following reperfusion. These specific events appear to activated by soluble proinflammatory cytokines [N-formyl
be critical and are a prerequisite to the eventual expression peptides, C5a, platelet activating factor (PAF)] and par-
of tissue damage. The understanding of these physiological ticulate stimuli. Adherence of neutrophils to biological
processes is interesting in and of itself, but, more im- surfaces, and circulating inflammatory mediators such as
portantly, it forms a basis for the therapeutic strategies tumor necrosis factor a (TNF-a) and interleukin 6 (IL-6)
addressing neutrophil-mediated myocardial reperfusion prime the cells and greatly increase their response in vitro.
injury discussed in the latter part of the manuscript. Neutrophils stimulated by proinflammatory mediators

If one accepts the concept of reperfusion injury, and the produce superoxide anions, hydrogen peroxide and, ulti-
central involvement of neutrophils in this process, then one mately, hydroxyl radicals in a respiratory burst character-
may recognize both a window of opportunity during which ized by a high metabolic activity and consumption of
drug therapy can be initiated, and an appropriate target. oxygen. Hydrogen peroxide is formed from dismutation of
This opportunity to intervene is available to cardiologists superoxide anions after the release of myeloperoxidase
at the time of coronary catheterization or entry into the from azurophilic granules. A sensitive target of oxygen
emergency care facility, and to cardiac surgeons using free-radical injury is the vascular endothelium. Oxygen
cardioplegia as a vector for drug delivery or for various free radicals promote the release of proinflammatory
intravenous drugs in cases of off-pump cardiac surgery. mediators from endothelial cells and other sources, which
Actually, reperfusion provides a broad gateway to treating leads to the expression of adhesion molecules on endo-
the multiple, and often redundant, mechanisms involved in thelium [3]. Endothelial damage mediated by oxyradicals
postischemic injury. The neutrophil-mediated inflamma- results in increased permeability [4–6], increased adher-
tory cascade during reperfusion represents one such im- ence of neutrophils [7], attenuated release of endothelium-
portant target for therapeutic intervention because of the derived factors with anti-neutrophil properties, such as
pivotal role played by the neutrophil in deleterious events nitric oxide and adenosine, and overexpression of endo-
following reflow. However, effective therapeutic strategies thelium-derived pro-inflammatory factors. In addition,
targeting the cause or propagation of the myocardium’s oxygen free radicals oxidize low density lipoprotein (LDL)
response to ischemic–reperfusion injury, rather than to its to pro-atherogenic products, which may represent a link
symptoms, are predicated on the knowledge of its molecu- between oxyradical generation by neutrophils and heart
lar basis. This article discusses the role of the neutrophil in disease. Furthermore, superoxide anions derived from
the inflammatory component of ischemic–reperfusion in- neutrophils may be a substrate in the formation of perox-
jury, and potential therapeutic strategies targeting neutro- ynitrite, derived from the biradical reaction between neu-
phil-mediated reperfusion injury of the heart. The majority trophil-derived superoxide anion and nitric oxide [8–13].
of the discussion focuses on lethal injury following However, hypochlorous acid is the predominant cytotoxic
prolonged ischemia, and focuses little on non-lethal injury molecule derived from neutrophils. Its cytotoxicity derives
(i.e. myocardial ‘stunning’) because the predominant data from production of powerfully oxidizing chloramines. In
(but not the entirety) suggest that neutrophils do not addition to directly injuring tissue, oxygen free radicals
participate in the pathogenesis of this manifestation of may provide a leukotactic signal by (a) stimulating the
injury. generation of complement, (b) inducing expression of

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/43/4/860/340838 by guest on 24 April 2024



862 J.E. Jordan et al. / Cardiovascular Research 43 (1999) 860 –878

P-selectin on endothelium and (c) inducing surface expres- which, in turn, prevents conformation of shape to capillary
sion of PAF on endothelium. dimensions. Hence, activated neutrophils embolize in

precapillary vessels, thereby contributing to microvascular
2.2. Degranulation products resistance and ‘no-reflow’ [17]. Other causes of emboliza-

tion include homotypic aggregation of platelets and neutro-
Neutrophils degranulate to release proteases, collagen- phils, and endothelial cell swelling.

ases, lipoxygenases, phospholipases, and myeloperoxidase
(Table 1). The serine protease, elastase, is a major
contributor to neutrophil-mediated damage, due partially to 3. Neutrophils and endothelial dysfunction from
the effect of its highly cationic nature on membrane charge reperfusion injury
distribution. Elastase also hydrolyzes the extracellular
matrix components elastin, fibronectin and collagen types Endothelial dysfunction plays a critical role in the
III and IV. pathogenesis of reperfusion injury in the myocardium [18–

21]. This role stems from the close proximity of the
2.3. Arachidonic acid metabolites and platelet activating endothelium to neutrophils and other inflammatory cell
factor types at the vascular interface during the critical early

phase as well as the later phase of reperfusion. The
Neutrophil activation stimulates phospholipase A and interaction between neutrophils and endothelial cells is2

generates leukotriene B (LTB ) and PAF. LTB and PAF mediated by a well orchestrated sequence of interactions4 4 4

are potent stimulants of neutrophil chemotaxis, degranula- between adhesion molecules on both the endothelium and
tion and adhesion to endothelial cells, which may thereby neutrophils. These adhesion molecules are categorized into
amplify neutrophil recruitment and neutrophil-mediated three families: (a) selectins, (b) b -integrins and (c) the2

injury [14]. PAF also stimulates platelets, which can then immunoglobulin superfamily. The selectins (P-selectin, L-
synergize with neutrophils to amplify injury [15,16]. selectin, E-selectin) are glycoproteins involved in the
Cytokine-induced neutrophil activation increases not only interactions between neutrophils and the endothelium early
adherence properties [14] but also cytoskeletal rigidity, in reperfusion. P-selectin is not constitutively expressed on

Table 1
Neutrophil-derived products involved in inflammatory responses to ischemia–reperfusion

Product Source Physiological effect

Oxidants
Superoxide anion Neutrophil (PMN) membrane NADPH oxidase Endothelial dysfunction, adhesion molecule

expression, tissue edema, vasoconstriction,
21neutralization of NO, Ca dyshomeostasis,

contractile dysfunction
2 .Hydrogen peroxide Dismutation of O , conversion to HOCl Lipid peroxidation trigger; P-selectin2

expression
Hypochlorous acid PMN–azurophilic granule, Chlorination, oxidation; formation of

myeloperoxidase; reaction with H O → chloramines; predominant cytotoxant2 2

singlet oxygen
Hydroxyl radical PMN; Haber-Weiss reaction Biological membrane damage

Proteinases
Elastase Hydrolysis of extracellular matrix proteins
Collagenase (elastin, fibronectin), collagen types III and IV

Eicosanoids, lipids
Phospholipase A2

2 .Leukotriene B chemotaxis, adhesion, degranulation, O4 2

Platelet activating factor Thrombin-stimulated endothelium Generation; actions species-sensitive
Thromboxanes (A , B ) Vasoconstriction2 2

Adhesion molecules
L-selectin Shed after activation

xsialyl Lewis Counterligand to P-selectin
PSGL-1 Counterligand to P-selectin
b -Integrins Constitutively expressed; activated by2

(CD11a, CD11b, CD11c; chemotactic stimulants;
CD18) CD11b/CD18 binds ICAM-1 and C3bi;

initiates firm adherence to endothelium (EC)
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the surface of endothelial cells, but is stored in Weibel- [33,34]; monoclonal antibodies to PECAM-1 have been
Palade bodies. P-selectin expression on the surface of reported to inhibit neutrophil transendothelial migration
endothelial cells can be induced by proinflammatory [33–35], with subsequent reduction of injury (infarction)
mediators such as oxygen radicals [22], thrombin [23], [36].
complement components, histamine and hydrogen perox- Neutrophils are recruited to the reperfused myocardium
ide. After ischemia, P-selectin surface expression peaks by chemotactic factors that are released by the myocar-
after 10–20 min of reperfusion, and is subsequently shed dium during ischemia [37,38] and begin to interact with
to soluble fragments in blood [24–26]. Weyrich et al. [26] the endothelium through a process of ‘rolling’ (Fig. 1).
demonstrated that P-selectin was maximally expressed in Rolling along the endothelial surface is mediated by P-
feline arterioles and venules after 90 min of ischemia and selectin on the endothelium and sialylated glycoprotein on

x20 min of reperfusion. Longer periods of reperfusion are the neutrophil, most likely sialyl Lewis or the sialomucin
associated with a gradual decrease in the detected levels of P-selectin glycoprotein ligand-1 (PSGL-1) [28,39]. This
P-selectin, representing shedding of the selectin. In con- initial loose adherence is an obligatory step that is neces-
trast to P-selectin, L-selectin is constitutively expressed on sary for later firm adherence mediated by the CD11/CD18
the surface of neutrophils, and may be the counterligand complex and ICAM-1, leading to transendothelial migra-
for P-selectin during early reperfusion [27]. Recently, a tion into the myocardial parenchyma and their physiologi-
high affinity glycoprotein ligand for P-selectin, termed cal sequellae (no-reflow, necrosis) [27,40–42]. After initial
P-selectin glycoprotein ligand-1, PSGL-1 [28], has been tethering of neutrophils by endothelial P-selectin, a well
identified, which may mediate, in part, neutrophil rolling orchestrated sequence of neutrophil–endothelial cell inter-
on purified P-selectin [28] and on intact endothelium. The actions evolves, with the endothelial expression of adhe-
third member of the selectin family, E-selectin, is ex- sion molecules, such as E-selectin and ICAM-1, and
pressed on the surface of endothelial cells. It is expressed expression of adhesion counterligands on the neutrophils,
later in reperfusion (4–6 h) and may therefore be involved such as CD11/CD18, which allow firm adherence of
in later reperfusion events (discussed below). neutrophils to the endothelium. Platelet activating factor

The b -integrins (CD11/CD18 complex) are a family of [43,44] and LTB [44] can increase the surface expression2 4

heterodimeric glycoproteins that are constitutively ex- and adhesiveness of CD11/CD18 on neutrophils, while
pressed on the surface of neutrophils. There are three IL-1 [45] and TNF-a [45] increase ICAM-1 expression on
distinct a-chains (CD11a, CD11b, CD11c) and a common the endothelium. Weyrich et al. [26] demonstrated that
b subunit. The CD11b/CD18 complex is stored in sec- ICAM-1 levels were increased by ischemia–reperfusion.
ondary granules in neutrophils. Activation of neutrophils While levels of ICAM-1 remained at a relatively low level
by a number of proinflammatory mediators, including PAF, for 120 min of reperfusion, there was a significant rise in
involves an increase in surface expression of CD11/CD18 expression after 150 and 270 min.
complexes (CD11b/CD18, CD11c/CD18), which is Neutrophil adherence to the coronary endothelium in-
achieved, in part, by rapid translocation from granules to duces functional injury to the endothelium [46–50]. Co-
the membrane surface, or by an increase in adhesive incubation of neutrophils and healthy coronary artery rings
avidity to the respective counterligands, which involves a with thrombin (or hydrogen peroxide or histamine) in
conformational change and conversion from a low affinity organ chambers causes contraction of the artery, due to
state to a high affinity state with exposure of functional neutralization of the vasodilator nitric oxide by superoxide
epitopes. Increased surface expression and affinity state of anion, and injury-induced impairment of nitric oxide
perhaps the major complex CD11b/CD18 is triggered after release (Fig. 2). The degree of vasocontraction is paral-
the rolling phase of neutrophils on the endothelium, a step leled by the number of neutrophils adherent to the cor-
that is a prerequisite for firm adherence mediated by onary artery endothelium. In addition, the vasocontraction
interaction with its counterligand ICAM-1 on the endo- responses could be attenuated by the antibody to P-selec-
thelium. tin, PB1.3, and accentuated by the nitric oxide synthase

ICAM-1, VCAM-1 and platelet-endothelial cell adhesion inhibitor, L-nitro-arginine. Fig. 3 shows endothelial
molecule-1 (PECAM-1) are members of the immuno- dysfunction after incubation of neutrophils with thrombin-
globulin superfamily. ICAM-1 is the counterligand for stimulated endothelium from coronary arteries. Thrombin
CD11/CD18 on neutrophils and is constitutively expressed upregulates P-selectin and has no direct stimulatory effect
on the surface of vascular endothelial cells. ICAM-1 is on neutrophils. Thrombin treatment in the absence of
upregulated by cytokines 2–4 h after stimulation in vitro or neutrophils induces no discernable alterations in agonist-
after myocardial ischemia–reperfusion [29,30] and co- stimulated vasorelaxation responses. In contrast, co-incu-
incides with the upregulation of CD11/CD18. PECAM-1 bation of neutrophils with thrombin-stimulated coronary
is expressed constitutively on the surface of platelets, artery endothelium is associated with a significant decrease
leukocytes and endothelial cells, and is localized to the in the concentration–response vasorelaxation curve, with a
intercellular junctions of the latter [31,32]. PECAM-1 may characteristic decrease in maximal response to the highest
be involved in the transendothelial migration of neutrophils concentration of acetylcholine used. In contrast, vasorela-
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Fig. 1. Diagram of the interactions between neutrophils and endothelium (EC) with reference to the adhesion molecules mediating the interactions over the
early and later time course. Neutrophils can be recruited towards the endothelium by proinflammatory mediators such as platelet activating factor (PAF),
complement components (C5a) or ischemia–reperfusion (I–R). In addition, the endothelium is activated by proinflammatory mediators such as thrombin

.(Throm), histamine (Hist) or superoxide anions (-O ), resulting in surface expression of P-selectin (p). The early response of rolling involves2

selectin-mediated [P-selectin, L-selectin (L-sel)] loose adherence, while later firm adherence and diapedesis are mediated by ICAM-1 on endothelium and
CD11b/CD18 on neutrophils, and by PECAM-1. MYOC5myocytes; SMC5smooth muscle cells.

xation responses to the smooth muscle dilator sodium activators, such as PAF, can stimulate neutrophils to cause
nitroprusside is unaltered by ischemia or exposure to damage to both the endothelium and to vascular smooth
activated neutrophils. Therefore, neutrophils induce endo- muscle, possibly by protease activity.
thelium-specific damage to receptor-dependent and recep- In vivo ischemia and reperfusion cause injury to the
tor-independent vasodilator function. Other neutrophil vascular endothelium, expressed as a reduction in basal

Fig. 2. Left panel: Vasocontraction (grams of tension) induced after incubation of thrombin (Thr)-stimulated coronary artery endothelium with
unstimulated neutrophils. Segments were also stimulated with hydrogen peroxide (H O ) and histamine (HIST). Studies with the P-selectin antibody PB1.32 2

indicate that the adherence process is mediated by P-selectin, and addition of the nitric oxide synthase inhibitor L-nitro-arginine (L-NA) suggests that
blockade of basal nitric oxide production increases the vasoconstriction effect of neutrophils by attenuation of nitric oxide release. Right panel: Adherence
of fluorescently labeled neutrophils (PMNs) on the endothelial surface of thrombin-stimulated coronary artery segments. Increased adherence after
thrombin stimulation was attenuated by the P-selectin antibody PB1.3 but not the anti-ICAM-1 antibody RR1/1. The alternative stimulator, histamine, also
increased adherence, while the nitric oxide synthase inhibitor, L-NA, accentuated neutrophil adherence to histamine-stimulated endothelium.
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Fig. 3. Effect of preincubation of neutrophils with thrombin (2 U/ml)-stimulated normal canine coronary artery segments on concentration-dependent
vasodilator responses to the endothelium-dependent receptor-dependent agonist acetylcholine (left panel) and receptor-independent smooth muscle dilator
sodium nitroprusside (right panel). Coronary arteries were preconstricted with the thromboxane A mimetic U46619. Con5control unstimulated vessels;2

Throm5thrombin-stimulated vessels; 1PMN5neutrophil incubation with unstimulated coronary artery endothelium.

and stimulated NO release [48,51–53] and, hence, at- 4. Neutrophil accumulation within the area at risk
tenuate the response to agonist stimulators of eNOS
[48,54,55], which is, in large part, dependent on neutro- One of the earliest sequellae of reperfusion is the ‘no-
phils. In models of transient coronary occlusion (,2 h), reflow’ phenomenon. In a study of the no-reflow phenom-
endothelial dysfunction is not evident immediately after enon in canine hearts, Kloner et al. [58] demonstrated that
the ischemic period in the absence of reperfusion. How- extended periods of ischemia (90 but not 40 min of
ever, endothelial dysfunction is progressively expressed, ischemia) followed by reperfusion were associated with a
starting as early as 2.5 min after the start of reperfusion lack of blood flow to the subendocardium. Microscopic
[51], and persists for hours [18,51] to days [56] after examination of the myocardium within this ‘no-reflow
reperfusion. Tsao and Lefer [48] investigated the effect of zone’ revealed severely damaged capillary structure. En-
ischemia and reperfusion on endothelial function. Free gler et al. [59] demonstrated the presence of leukocytes in
radical production is dramatically increased during the the vessels within the ‘no-reflow’ zones of the myocardium
early moments of reperfusion, which can be attenuated by after ischemia and reperfusion, and an overall accumula-
recombinant human superoxide dismutase (rhSOD), sug- tion of leukocytes in the area at risk [60]. Following these
gesting that free radicals may play a major role in the initial observations, Engler et al. [61] demonstrated that
endothelial dysfunction that occurs early in reperfusion. removal of neutrophils from the perfusing blood reduced
The early loss of endothelial function, expressed as an the extent of no-reflow and concomitantly reduced myocar-
impaired release of nitric oxide, is associated with a dial edema formation. Subsequently, other groups have
progressive increase in neutrophil adherence to the endo- also implicated the accumulation of neutrophils as a major
thelial surface of ischemic–reperfused coronary arteries cause of the no-reflow component of reperfusion injury as
(Fig. 4a and b). Endothelial dysfunction may persist for well as other manifestations of reperfusion injury, includ-
days following reperfusion [57]. Models of in vivo global ing ventricular arrhythmias and infarct size [62–64].
ischemia generally agree with endothelial dysfunction Neutrophils are recruited to the reperfused myocardium
being observed only after reperfusion [52,53] unless more by chemotactic factors released by the myocardium during
prolonged periods of ischemia are imposed [52]. As with ischemia [37,38]. Many of these substances, including
regional ischemia–reperfusion, this endothelial dysfunction TNF-a, IL-8, IL-6, PAF, complement and leukotrienes,
after global ischemia is expressed as a reduction in basal will initiate the processes of adherence to the endothelium
(i.e. adherence of unstimulated neutrophils to ischemic– described above. A link has been established between the
reperfused coronary artery endothelium) as well as agonist- accumulation of neutrophils and the development of
stimulated vasorelaxation responses. Endothelial dysfunc- reperfusion injury during the early reperfusion period. This
tion is often associated with morphological abnormalities link has been substantiated by several studies that investi-
in endothelial structure, including intracellular vacuoliza- gated the time course of neutrophil accumulation and
tion, detachment from the basement membrane with ex- progression of injury. In 1988, Smith et al. [65] subjected
posed subendothelial matrix, loss of endothelial cell mem- rats to 30 min of regional myocardial ischemia followed by
brane integrity and attachment of neutrophils. reperfusion of up to 96 h. These investigators correlated
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Fig. 5. Rate of neutrophil (PMN) accumulation in the area at risk
myocardium after 1–4 h of reperfusion in a canine model of coronary
artery occlusion. HR5hours of reperfusion. The rate of neutrophil
accumulation is highest in the first hour of reperfusion. (Data from Dreyer
et al. [66]).

dogs. This endogenous compound was able to induce
morphologic changes in neutrophils, orient neutrophils
along a chemotactic gradient, induce expression of b2

integrin adhesion molecules on neutrophils (i.e. CD11/
CD18) and induce adherence of neutrophils to endothelial
monolayers. The neutrophil stimulation by the cardiac
lymph was found to be most potent when collected at 1 h
of reperfusion and decreased to basal levels by 6 h ofFig. 4. Progressive effects of reperfusion on endothelial function in feline
reperfusion. Dreyer et al. [66] further delineated the earlycoronary arteries subjected to coronary artery occlusion and reperfusion.

Panel (a): Vasocontraction responses to feline coronary artery rings time course of neutrophil accumulation in myocardium by
exposed to nitric oxide synthase inhibitor after 0 to 270 min of studying the events that occurred in the first 4 h of
reperfusion. The extent of contraction reflects the loss of basally released reperfusion by using radiolabeled neutrophils to track
nitric oxide. Note that the control ring, when exposed to the nitric oxide

actual accumulation and localization. This study demon-synthase inhibitor, has the largest contractile response, suggesting a loss
strated that neutrophils accumulated at the fastest rate earlyof vasodilation induced by basal nitric oxide release. After ischemia and

reperfusion, the contractile response is diminished, suggesting the loss of in the reperfusion period (Fig. 5), in agreement with the
basally released NO. Panel (b): Adherence of fluorescently labeled temporal progression of adherence to the coronary endo-
neutrophils (PMNs) to ischemic and reperfused coronary arteries after 0 thelium shown above by others [19], with preferential
to 270 min of reperfusion. Cont5control coronary arteries. R5minutes of

accumulation in the subendocardial region. Neutrophilsreperfusion to which the vessels were exposed after occlusion. (Data from
continued to accumulate over 4 h of reperfusion, but atMurohara et al. [93]).
progressively slower rates, further supporting the theory
that neutrophils play an important role in the early events

the degree of morphologic injury (creatine kinase) to of reperfusion. These early events involve the initial
neutrophil accumulation assessed by both histology and contact between neutrophils and the endothelium in cor-
analysis of myeloperoxidase (an enzyme specific to neutro- onary arterioles and venules, and the process of neutrophil
phil azurophilic granules) activity during ischemia and rolling [67].
reperfusion. This study demonstrated that: (a) neutrophils
accumulated within the area at risk early in the reperfusion
period; (b) their activity peaked during the first 24 h of 5. Role of neutrophils in late reperfusion injury
reperfusion and (c) there was a positive correlation be-
tween myeloperoxidase activity and creatine kinase release Studies have demonstrated that the evolution of infarc-
at 24 h of reperfusion, after which time, the correlation tion is a dynamic process that takes place during the early
was lost. phase of reperfusion (,6 h) after a brief period of

Subsequent to the study of Smith et al. [65], Dreyer et ischemia. Frame et al. [68] found that binding of anti-
al. [38] identified a compound released by ischemic– cardiac myosin antibody, an indicator of progressive
reperfused canine myocardium into cardiac lymph fluid myocyte membrane disruption characteristic of necrosis,
that was able to activate neutrophils isolated from healthy was increased after 45 min of reperfusion compared to that
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after 60 min of ischemia. Farb et al. [69] also demonstrated ‘rescue’ tissue by any intervention. For example, neutro-
that, in a rabbit model of 30 min ischemia followed by 180 phils may not play a major role in contractile dysfunction
min reperfusion, infarct size (delineated by horseradish following brief non-lethal ischemia (‘stunning’) [72–74].
peroxidase uptake into myocytes) was significantly in- Brief non-lethal ischemia may be viewed as primarily an
creased compared with that after ischemia alone. However, oxidant-mediated injury, not an inflammatory injury [75]
Rochitte et al. [70] recently reported a progressive increase and, regardless of its etiology, there may be insufficient
in tissue injury and microvascular obstruction during 2, 6 stimulation of activating chemotactic factors, local pro-
and 48 h of reperfusion. During the first 6 h of reperfusion, duction of complement and cellular adhesion molecules
neutrophils are mainly localized to the intravascular space, necessary to recruit neutrophils into the ischemic–reper-
while the majority of neutrophils at later time points are fused myocardium. Furthermore, the degree of endothelial
found in the interstitial compartment. This observation is injury may be insufficient to promote neutrophil adherence
consistent with histopathologic findings that neutrophils and amplify neutrophil recruitment [76]. Alternatively, the
are sequestered in the intravascular compartment during actions of neutrophils may not alter the physiology of the
early reperfusion (4–6 h) [71]. Early postischemic damage endpoint of interest, i.e., contractile function. However, the
to the vascular endothelium mediated by neutrophils may contractile dysfunction following brief global ischemia in
be initiated by direct contact with the endothelium and, which infarction may not be evident, but in which in-
ultimately, cause damage to myocytes (infarction) by creased creatine kinase activity suggests some degree of
subsequent diffusion of cytotoxic inflammatory mediators structural damage, has been observed to be neutrophil-
before direct neutrophil–myocyte contact occurs in 4–6 h. dependent [77,78]. In other models of lethal injury, the role
However, later reperfusion injury responsible for infarct of neutrophils in the pathogenesis of endothelial dysfunc-
extension may involve transendothelial migration of neu- tion and infarction is well documented. Therefore, the
trophils and subsequent neutrophil-mediated myocyte in- model and endpoints must be taken into careful considera-
jury. Therefore, the neutrophil-mediated response to is- tion when designing and interpreting experiments testing
chemia and reperfusion leading to vascular and myocyte anti-neutrophil therapy to be sure that neutrophils affect
damage may extend beyond the short term (4–6 h) of the physiology of the endpoint of interest.
reperfusion.

6.1. Neutrophil depletion

6. Anti-neutrophil therapy Neutrophil depletion can be achieved by several meth-
ods, including chemotherapy to induce systemic neutro-

Neutrophils feature so prominently in the etiology of penia [72,79], administration of anti-neutrophil antiserum
ischemia–reperfusion injury in lethal models of myocardial (antibodies) or by passing systemic or regional (i.e.
ischemic–reperfusion injury that therapy directed towards coronary) blood supply through neutrophil-clearing filters
the processes of neutrophil activation, adherence to endo- [62,72,80,81]. Neutrophil filters have also been used to
thelium, emigration into the parenchyma and the release of filter blood or blood cardioplegia during cardiac surgery
cytotoxic products are all candidate targets towards which [82,83]. The reported benefits of local or systemic neutro-
pharmacological therapy could be directed. The proximal- penia in models of severe ischemia include reduction of
most processes of activation and adherence may be more postischemic arrhythmias [81], an attenuation of post-
efficient targets for therapy compared to more distal ischemic ‘no-reflow’ in the myocardial area at risk [61,63],
processes, or towards the symptoms of injury; the latter a decrease in postischemic microvascular permeability
approach does not address the mechanisms by which the [84], reduction in infarct size with neutrophil depletion
symptoms are presented. The attenuation of neutrophil- before reperfusion [62,80] or at the time of reperfusion
mediated injury manifested as infarction, vascular dysfunc- [63]. However, with shorter periods of ischemia, no
tion and blood-flow defects and, in some cases, contractile reduction in postischemic blood flow defects has been
dysfunction have been used as indirect evidence of the key reported because neutrophil adherence and plugging may
role played by neutrophils in ischemic–reperfusion injury. not be triggered by modest ischemic periods [74]. Al-

Therapy directed against neutrophil-mediated compo- though neutrophil-specific filters are relatively efficient at
nents of ischemic–reperfusion injury include (a) neutrophil removing neutrophils, they do effect other cell types, such
depletion, (b) direct inhibitors of neutrophil activation, (c) as platelets, and they activate complement or release other
neutrophil-specific anti-adhesion therapy with antibodies vasoactive substances (adenosine) that may modulate neu-
and (d) endothelium-specific anti-adhesion therapy. The trophil actions by mechanisms other than direct removal.
ability of any of these interventions to attenuate neutrophil-
mediated damage is dependent on the role that neutrophils 6.2. Anti-adhesion molecule therapy
play in the pathophysiology of the end-point of observation
(infarction, contractile dysfunction, vascular dysfunction), Interference with the neutrophils themselves or with the
and the severity of the injury and, hence, the ability to initial adherence to coronary vascular endothelial cells is

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/43/4/860/340838 by guest on 24 April 2024



868 J.E. Jordan et al. / Cardiovascular Research 43 (1999) 860 –878

an effective therapeutic target since this step is a pre- cules (decoys), may also offer a potential therapeutic
requisite for neutrophil-mediated damage. Early work by strategy.
Romson et al. [62] demonstrated a reduction in infarct size
and neutrophil accumulation by administration of an ‘anti- 6.3. Nitric oxide therapy against neutrophil-mediated
neutrophil antibody’. Interference at the earliest step of damage
‘rolling’, by blocking either P-selectin on the endothelium
or L-selectin on the neutrophil with monoclonal antibodies, NO is an autacoid, formed primarily by the vascular
has been reported to result in cardioprotection. Blockade of endothelium by the conversion of L-arginine and molecular
P-selectin with monoclonal antibodies such as PB1.3 oxygen to citrulline, and is subsequently released into the
reduces infarct size and associated neutrophil accumulation intravascular compartment, the perivascular compartments
in the area at risk and attenuates endothelial dysfunction and interstitium. The close proximity of newly released
[40,85,86]. Blockade of L-selectin on neutrophils with nitric oxide to these compartments that are active in the
DREG-200 [87,88] gave a similar profile of cardioprotec- pathogenesis of ischemia–reperfusion injury places NO in
tion to myocardial and vascular endothelium as P-selectin a unique position to modulate biochemical reactions and
blockade. Intervention with the neutrophil adhesion mole- cell–cell interactions that are characteristic of ischemic–
cule CD18 using antibodies such as MAb R15.7 [89,90] reperfusion injury. The broad range of physiological
was reported to reduce neutrophil–endothelial cell interac- actions relevant to ischemic–reperfusion injury and other
tions and neutrophil accumulation [66,89] associated with cardiovascular disease states is shown in Fig. 6. Nitric
ischemia–reperfusion. In the study by Ma et al. [89], MAb oxide has direct effects on both the neutrophil and the
R15.7 reduced myocardial infarct size, attenuated neutro- endothelium. In addition, NO attenuates activation of mast
phil accumulation within the area at risk and attenuated cells and platelets [99,100] with which the neutrophils
endothelial cell dysfunction. Interference with ICAM-1, synergize during ischemia–reperfusion [15]. Platelets
the counterligand to CD18, using monoclonal antibodies potentiate the activation and interaction of neutrophils with
(RR1/1), has also been reported to reduce infarct size the endothelium by releasing thromboxane A (pro-adhe-2

[91,92], neutrophil accumulation and to attenuate endo- sion, pro-diapedesis), platelet derived growth factor
thelial dysfunction or postischemic blood-flow defects (chemoattractant, chemotaxis), platelet factor 4 (chemotac-
[92]. Other studies have used antibodies against CD11, tic), serotonin (pro-adherence), adenosine (chemotactic at
CD18, the CD11/CD18 complex or L-selectin on the low concentrations, inhibitory at higher concentrations
neutrophil to decrease superoxide-induced adhesion of [101]) and IL-8 [16]. The direct effects of NO on the
neutrophils to endothelial cells, [22,93] reduce adherence neutrophil include inhibition of superoxide anion pro-
to myocytes [94] and to reduce ischemia–reperfusion duction, degranulation and adherence to coronary artery
injury [90,95]. Therefore, direct interference with the early endothelium [49,102]. Inhibition of superoxide generation
and prerequisite interactions between neutrophils and by neutrophils may involve a direct inhibition of mem-
endothelium has been effective in reducing postischemic brane-bound NADPH oxidase activity [103]. In addition,
injury. In addition to suggesting a therapeutic treatment, nitric oxide neutralizes superoxide anions in a very rapid
these observations further substantiate the role of neutro- and essentially irreversible biradical reaction to form
phils in mediating the distal events of infarction and peroxynitrite [10–13].
blood-flow defects that are characteristic of severe post- In addition to direct inhibitory effects on neutrophils,
ischemic injury. nitric oxide also has direct inhibitory effects on the

Antibody therapy has several potential limitations in its vascular endothelium, which subsequently attenuates its
clinical application. First, the limited half-life of antibodies interaction with neutrophils. Nitric oxide attenuates the
in the systemic circulation may address only the early upregulation of P-selectin, E-selectin and ICAM-1
phase of reperfusion and not the later phase (.4–6 h) of [43,104], adhesion molecules involved in the loose and
reperfusion. Hence, antibody therapy may not sustain long- firm adherence of neutrophils to endothelium. The attenua-
term effects, as demonstrated by Gill et al. [96] for an tion of P-selectin expression involves, in part, the inhibi-

xantibody to sialyl-Lewis , which had shown short-term tion of P-selectin messenger RNA and synthesis of the
reduction of infarct size [97,98]. Drugs with similar short P-selectin glycoprotein [105], which may imply that nitric
half-lives that are not administered continuously over oxide attenuates not only the immediate surface expression
several days following reperfusion may suffer this limita- of adhesion molecules but also their longer-term expres-
tion, unless attenuation of the early phase prevents trig- sion following ischemia and reperfusion. Through inhibi-
gering or amplification of subsequent secondary processes. tion of superoxide anion generation and adherence to
Second, systemic antibodies may be generated to the vascular endothelium, nitric oxide attenuates neutrophil-
therapeutic antibody, thereby forming an antigen–antibody mediated damage to coronary artery vascular endothelium
complex. Humanized peptide receptor antagonists for [49,106–113].
various proinflammatory mediators and adhesion mole- As a result of its potent anti-neutrophil and anti-in-
cules, as well as non-active mimetics of adhesion mole- flammatory properties, NO has been reported to exert
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Fig. 6. Schematic diagram showing the physiological effects of nitric oxide (NO) derived from the vascular endothelium (VEC) on cell adhesion
molecules (CAMs), neutrophils (not labeled), mast cell and platelet (Plt) aggregation, and on the production of metabolites such as peroxynitrite (ONOO2)
and vascular smooth muscle (VSMC) dilation. (1)5stimulatory; (2)5inhibitory; L-arg5L-arginine; eNOS5endothelial-derived nitric oxide.

potent cardioprotection from ischemic–reperfusion injury. directly inhibit superoxide anion generation by activated
Authentic nitric oxide [99,114] or direct nitric-oxide PMNs, it does inhibit adherence of unactivated PMNs to
donors [106,108,115–119] have been reported to reduce thrombin-stimulated coronary artery endothelium (Fig. 8).
infarct size and, also, to preserve coronary artery endo- Furthermore, endothelial dysfunction associated with the
thelial basal (static neutrophil adherence) and agonist- adherence of PMNs is attenuated by L-arginine. Therefore,
stimulated (relaxation responses) function. L-Arginine, the the cardioprotective effects of L-arginine may involve, in
precursor of nitric oxide, increases nitric oxide generation large part, an attenuation of PMN-mediated actions that
and release, and reduces postischemic injury (infarct size, would otherwise culminate in vascular injury and infarc-
endothelial dysfunction) in a manner similar to that of tion.
nitric oxide [55,120–122]. Conversely, inhibition of endo- In contrast to the reported cardioprotective effects of
thelial nitric oxide synthase using analogs such as L-nitro- nitric oxide, reports have implicated nitric oxide in prom-
arginine increases the extent of injury [123,124]. Intraven- ulgating injury because of its actions as a radical, or via the
ous [122] and intracoronary [55] L-arginine, administered generation of potentially deleterious metabolites such as

2at the time of reperfusion, was shown to significantly peroxynitrite (ONOO ) and its intermediary product with
decrease both postischemic coronary artery endothelial hydroxyl radical-like actions (NOOH*) [125–132]. There-
dysfunction and infarct size. The reduced infarct size was fore, a duality of opposing physiological actions is associ-
associated with a decrease in neutrophil adherence to ated with endogenous and exogenous nitric oxide therapy,
coronary artery endothelium and neutrophil accumulation and the neutrophil as a generator of both nitric oxide and
in the area at risk. In a study by Nakanishi et al. [55], superoxide anion as substrates for peroxynitrite [8,9] may
infusion of 10 mM L-arginine into the left anterior de- be directly involved in this controversy. A detailed discus-
scending (LAD) coronary artery starting at the time of sion on the physiological effects of peroxynitrite has been
reperfusion resulted in a significant reduction of infarct presented elsewhere [10,12,133].
size (Fig. 7). However, infarct size reduction was not
observed with 10 mM D-arginine, the non-metabolized 6.4. Adenosine, neutrophil function and neutrophil-
enantiomer of L-arginine. Myeloperoxidase activity, a related cardioprotection
marker of neutrophil accumulation, increased significantly
in the area at risk in the untreated group, and was Adenosine is a cardioprotective autacoid that is present
significantly reduced by intracoronary L-arginine (Fig. 7B). in small quantities (less than 1 mM) in the normal
Postischemic endothelial vasorelaxation responses to ace- myocardium [134–136] and is transiently increased during
tylcholine were significantly increased in the L-arginine ischemia by hydrolysis of high-energy phosphates (ATP,
treated group compared to both the vehicle group and the ADP, AMP). The physiological tissue levels of adenosine
D-arginine group (Fig. 7C). Although L-arginine does not are regulated by the production and release of adenosine
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Fig. 8. Adherence of fluorescently labeled canine neutrophils (PMNs) to
normal canine coronary artery segments in organ chambers in which the
endothelium has been unstimulated (Contr) or stimulated with thrombin
(thrombin, 2 U/ml). Thrombin stimulation increased adherence (fluores-
cent microscopy) of PMNs to the endothelial surface threefold (PMN).
L-Arginine (10 mM) decreased adherence to control levels, which was
reversed by coincubation with the nitric oxide synthase inhibitor, L-nitro
arginine (L-NA; L-Arg1L-NA). L-NA by itself increased PMN adherence
through inhibition of endogenous NO. *P,0.05 vs. unstimulated control
endothelium and L-arginine. Results are expressed as means6SEM. (Data
from Sato et al. [49])

[137–141]. Studies from our laboratory confirmed the
attenuation of superoxide generation in a concentration-

Fig. 7. Myocardial infarct size, neutrophil accumulation and coronary dependent manner by the A receptor mechanism [64,141].2
artery endothelial injury in a canine model comprising 60 min of coronary Furthermore, the selective A agonist CGS-21680 at-2aartery occlusion and 270 min of reperfusion. Panel A: Percent area at risk

tenuates superoxide production in a similar manner to(AAR), area of necrosis (An) and necrosis / risk ratio (An/AAR). Group
adenosine. However, the A adenosine receptor does notlegend is on the right side between panels A and B. Panel B: Myeloperox- 3

idase (MPO) activity as a marker of neutrophil accumulation in myocar- seem to regulate neutrophil superoxide-anion generation
dium from the nonischemic zone (NIZ), non-necrotic area at risk (IZ) and [142].
non-necrotic area at risk.*P,0.05 vs. Veh (saline group) and D-arginine Unlike the potent inhibitory effects on superoxide
(D-Arg), if applicable. Panel C: Peak endothelial relaxation responses to

production, adenosine has only modest effects on neutro-acetylcholine of ischemic–reperfused left anterior descending (LAD) and
phil degranulation [137,138,143]. Inhibition of degranula-nonischemic left circumflex (LCX) coronary arteries. 15P,0.05 vs.

LCX responses. Results are expressed as the mean6SEM. (Data from tion is probably mediated by activation of the adenosine
Nakanishi et al. [55]). A receptor subtype [138]. The role of the A receptor on2a 3

degranulation is not clear at present.
by cardiac myocytes, the endothelium, neutrophils and Many studies have demonstrated that adenosine at-
other cell types. Adenosine interacts with specific puriner- tenuates the adherence of neutrophils to endothelial cells
gic receptors (Table 2) on the endothelium, myocytes or [139–141,144]. However, adenosine has opposing effects
neutrophils to elicit a wide range of physiological re- on neutrophil adherence related to the concentration-de-
sponses that are not unlike those of NO. Therefore, pendent stimulation of the A or A adenosine receptors.1 2a

adenosine can exert a broad spectrum of effects on key At lower concentrations, adenosine increases the adherence
components (neutrophils, endothelium) and compartments of neutrophils to endothelium [139] by A receptor-me-1

(intravascular, interstitial, myocyte) involved in ischemia diated effects. However, higher concentrations inhibit
and reperfusion injury. The target of these receptor-me- neutrophil adherence by A receptor mechanisms. This2a

diated interactions has implications as to the time course of dual action has been confirmed by Felsch et al. [140].
administration of therapeutics. Adenosine attenuates adherence by a down-regulation of

Cronstein et al. [137] reported that adenosine inhibited b -integrin (CD11b/CD18) [145] expression and inhibi-2

superoxide generation by neutrophils activated by a num- tion of L-selectin shedding human neutrophils mediated
ber of physiological stimuli, including fMLP, A23187 and through the A receptor [146]. Data also suggest that2a

concanavalin A. Later studies determined that this inhib- adenosine may inhibit the release of cytokines involved in
itory effect was mediated by the A adenosine receptor responses to ischemia and reperfusion (IL-6 and IL-8)2
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Table 2
Effects of adenosine receptor subtype activation on neutrophil functions

Receptor subtype Physiologic effect Timing of effect

A Increased adherence to endothelium Ischemia1

A Decreased adherence to endothelium Reperfusion2a

A Decreased superoxide generation Reperfusion2a

A Decreased degranulation Reperfusion2a

A Decreased adherence to endothelium (?) Not identified3

A Decreased degranulation (modest to none) Not identified3

[147]. In addition, Bullough et al. [148] demonstrated that other, largely by A -receptor mechanisms. Although the2a

adenosine also inhibits neutrophil adherence to myocytes. studies of Olafsson et al. [150] suggest that a single
Reduction of neutrophil–endothelial cell interactions by treatment with adenosine results in sustained (days) reduc-

exogenously applied adenosine or adenosine receptor tion of infarction, studies are needed to investigate the
agonists, as well as endogenously produced adenosine, was effects of adenosine treatment on endothelial function,
first shown by Cronstein et al. [149] and later by Zhao et neutrophil migration and accumulation, and attenuation of
al. [141] to reduce injury to the vascular endothelium, later phase reperfusion injury events related to neutrophils
primarily by A receptor mechanisms. The effects of the and other inflammatory mediators.2a

A receptor on neutrophil adherence are largely unknown.3

A preliminary report by Jordan et al. [142] demonstrated a 6.5. Anti-complement therapy against neutrophil-
reduction in neutrophil adherence to coronary vascular mediated damage
endothelium by A receptor activation [142]. Therefore,3

adenosine may play an important role in modulating local The complement cascade, particularly the alternative
inflammatory responses by its ability to either upregulate pathway, is activated during myocardial ischemia–reperfu-
or suppress the actions of neutrophils at the site of injury. sion and is a major contributor to the pathologic sequellae
At concentrations achieved during ischemia or pharmaco- of cardiopulmonary bypass [156–161]. Complement frag-
logically, the inhibitory responses predominate, resulting in ments, such as the anaphylatoxins C3a and C5a, are
suppression of superoxide anion generation, degranulation generated and released both locally [162] and systemically
and neutrophil adherence. [163,164] and the membrane attack complex is deposited

The role of adenosine in modulating reperfusion injury on cell membranes [165]. Ivey et al. [166] demonstrated
in vivo has been extensively investigated, based largely on that the release of the complement fragment C5a is
the purine’s potent anti-neutrophil properties. Olaffson et associated with reperfusion, and C5a generation was
al. [150] first demonstrated a reduction in infarct size and associated with increased neutrophil accumulation in the
improvement in regional function at 24 h reperfusion when area at risk. In ischemia–reperfusion, complement induces
adenosine was administered at the onset of reperfusion. injury directly, independent of neutrophils, and acts as
Microscopic analysis demonstrated a significant reduction chemoattractant and activator of neutrophils and other
in neutrophil accumulation and preservation of endothelial inflammatory cell types. Direct injury may be induced by
morphology in the ischemic–reperfused myocardium in the C5a and via assembly of the membrane attack complex,
group given adenosine at reperfusion. Subsequent studies thereby increasing cell permeability and cellular edema,
have shown the beneficial effects of adenosine when given and increasing the release of histamine and PAF.
at the onset of reperfusion, including reduction of infarct Tissue damage mediated by neutrophils can be initiated
size [151,152], preservation of post-ischemic coronary by complement fragments, notably C5a, which are potent
flow reserve [153] and blood flow [151], post-ischemic stimulators of neutrophil superoxide production, and
regional contractile performance [151,153], and reduction adherence to coronary artery endothelium [167]. Comple-
in neutrophil accumulation in the area at risk [153]. The in ment increases the expression of CD18 on the neutrophil
vivo reduction in reperfusion injury has been attributed [168,169] and increases P-selectin expression on the
primarily to A receptor-mediated processes [64,154,155]. surface of the endothelium [170]. The chemoattractant2a

In summary, adenosine has a broad spectrum of physio- properties of C5a cause neutrophil accumulation in vascu-
logical effects that make it suitable as a cardioprotective lar beds [171] and induce neutrophil-mediated reperfusion
agent with effectiveness in all three windows of oppor- injury. Shandelya et al. [172] showed that C5a or plasma
tunity (pretreatment, during ischemia and reperfusion) and factors, most likely C5a, were necessary to induce neutro-
against numerous targets, including the neutrophil. The phil-mediated postischemic contractile dysfunction. Inhibi-
duration of the physiological actions seem to extend well tion of the complement cascade by inhibiting C1-esterase
beyond its plasma half-life. In addition, adenosine reduces activity during reperfusion (responsible for cleavage of C1
reperfusion injury by inhibiting the neutrophil and the into C1r and C1s chains, and initiation of the complement
endothelium directly, and their interactions with each cascade by C1s) has been shown by Buerke et al. [173] to
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reduce infarct size and attenuate neutrophil accumulation in a model of complement-mediated (human plasma)
in the area at risk, with associated improvement in contractile dysfunction in an isolated-perfused rabbit heart
coronary endothelial function. Amsterdam et al. [174] preparation, observed a reduction of postischemic contrac-
reported that preischemic infusion of a monoclonal anti- tile dysfunction. Kouretas et al. [182] have suggested that
body against C5a to reduce bio-availability of this frag- the cardioprotective effects manifested as preserved post-
ment reduced infarct size in a porcine model of LAD ischemic contractile function involve nitric oxide, perhaps
occlusion and reperfusion. However, the C5a antibody did through attenuation of coronary artery endothelial dysfunc-
not reduce the accumulation of neutrophils in the area at tion effecting nitric oxide release.
risk, although it reduced C5a-stimulated neutrophil aggre-
gation, degranulation and superoxide anion formation in
vitro. In a surgical model of reperfusion in which regional 7. Other anti-inflammatory therapy
ischemia and cardiopulmonary bypass act as dual triggers
for complement activation, Riley et al. [167] used a C5a In addition to these newer therapeutic approaches to
receptor antagonist to reduce infarct size. Concomitant reduce reperfusion injury, conventional anti-inflammatory
with decreased infarction, there was a significant decrease treatments may also have potential benefit. Steroids have
in neutrophil accumulation, as assessed by myeloperoxid- been used to suppress inflammation for decades and there
ase activity and improved postischemic (postcardioplegic) is substantial evidence that they may reduce some of the
regional contractile function in the area at risk (similar to mechanisms of injury induced by ischemia and reperfu-
the improved function observed by Amsterdam et al. sion. Suzuki et al. [183] demonstrated that hydrocortisone
[174]). In a similar model, Tofukuji et al. [175] demon- decreases the level of histamine-induced leukocyte adher-
strated preservation of postcardioplegic endothelial func- ence. Accordingly, leukocyte adherence induced by ad-
tion when an anti-C5a antibody was given prior to the renalectomy was reduced with hydrocortisone therapy,
onset of cardiopulmonary bypass. suggesting a relation between steroid levels and leukocyte

Complement receptor type 1 (CR-1) is an endogenous adhesion. Node et al. [184] reduced infarct size and
membrane-bound (red blood cells and leukocytes) postischemic arrhythmias in dogs treated with 17b-es-
glycoprotein regulator of complement activation (both tradiol. This protection appeared to be related to the
alternative and classical pathways) through dissociation of production of nitric oxide and/or the activation of a
the C3 and C5 convertases. A reduction in ischemic– calcium-dependent potassium channel. Other classic anti-
reperfusion injury has been reported with the peptide- inflammatory compounds, such as aspirin and ibuprofen,
soluble complement receptor-1 (sCR-1). sCR-1 is able to have equivocal actions on reducing postischemic damage.
inhibit both the classical and alternative pathways of the Seemingly equal numbers of studies have shown either a
complement cascade. sCR-1 was reported to block com- benefit [185–188] or no effect [189,190] of these and other
plement-mediated free-radical generation by neutrophils anti-inflammatory agents. However, it is difficult to de-
[172]. Weisman et al. [176] reported a significant reduction termine the true potential of these agents because of the
in infarct size with sCR-1 in the rat model, which was wide range of endpoints used to determine their effective-
associated with a reduction in both neutrophil accumula- ness, including infarct size, ischemic and reperfusion
tion and deposition of the membrane attack complex in the arrhythmias.
area at risk. Similar reports have confirmed this cardiop-
rotection with sCR-1 [172,177,178].

Recently, heparin and heparin derivatives have shown 8. Summary remarks
benefit in reducing myocardial ischemia–reperfusion in-
jury. Heparin is a glycosaminoglycan produced by mast Neutrophils play an active role in myocardial ischemia–
cells and basophils, and is found as a major proteoglycan reperfusion injury. Interactions between neutrophils and
component on the glycocalyx of vascular endothelium. In the coronary vascular endothelium, mediated by adhesion
addition to its potent anticoagulant activity, heparin inhib- molecules on both cell types, are critical initial steps in the
its the complement cascade at several sites, notably at the initiation of the inflammatory-like response. Therapeutics
level of C3 convertase, resulting in attenuation of comple- directed at specific stages in this inflammatory cascade are
ment activation and leukocyte-mediated effects. Heparin effective in truncating the response, the benefit being a
inhibits neutrophil adhesion to coronary vascular endo- reduction in endothelial cell dysfunction and microvascular
thelium, superoxide generation and chemotaxis, but, inter- blood flow defects, myocyte injury culminating in infarc-
estingly, it does not attenuate neutrophil degranulation. tion and, in some cases, contractile dysfunction. Since the
Black et al. [179], using heparin or N-acetyl heparin activation, propagation and amplification reactions of the
administered just before reperfusion, reported a significant neutrophil-mediated inflammatory response to ischemia
reduction in infarct size. Gralinski et al. [180], using the and reperfusion are in a cascading sequence and are
low molecular weight polysulfated heparin derivative LU exquisitely redundant, the more proximal the point in these
51198, and Friedrichs et al. [181], using N-acetyl heparin molecular interactions (i.e. neutrophil–endothelial cell
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leukocyte adhesion, New York: Oxford University Press, 1995, pp.interactions) at which therapeutics can intervene, the less
261–277.likely that the point of interdiction will be circumvented.

[8] Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion is
Hence, agents that interfere with the early P-selectin- involved in the breakdown of endothelium-derived relaxing factor.
mediated phase of ‘rolling’ effectively truncate the sub- Nature 1986;320:454–460.
sequent sequential steps as well as amplification steps in [9] Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia

inactivate endothelium-derived relaxing factor. Am J Physiolthe early phase of reperfusion. In addition, agents with
1986;250:H822–H827.broad spectrum actions, like adenosine and nitric oxide (or

[10] Beckman JS, Crow JP. Pathological implications of nitric oxide,organic NO-donor agents), that interdict at several points
superoxide and peroxynitrite formation. Biochem Soc Trans
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release of inflammatory mediators, expression of adhesion [11] Beckman JS, Wink DA, Crow JP. Nitric oxide and peroxynitrite. In:
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