(Full version of article published in Cardiovascular Research (2003) containing source data and references, which was not possible to include in the published article due to lack of space.)

Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development

W.S. Redfern^a, L. Carlsson^b, A.S. Davis^c, W.G. Lynch^d, I. MacKenzie^e, S. Palethorpe^a, P.K.S. Siegl^f, I. Strang^a, A.T. Sullivan^g, R. Wallis^h, A.J. Cammⁱ, T.G. Hammond^{a,*}

^aSafety Assessment UK, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire SK10 4TG, UK;

^bCardiovascular Pharmacology, AstraZeneca R&D Mölndal, 431 83 Mölndal, Sweden;

^cAnimal Welfare Group, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire SK10 4TG, UK;

^dDrug Safety, AstraZeneca R&D Charnwood, Loughborough, Leicestershire LE11 5RH, UK;

Covance Laboratories Limited, Otley Road, Harrogate, North Yorks HG3 1PY, UK;

^tMerck Research Laboratories, P.O. Box 4, West Point, PA 19486-00047, USA;

^gGlaxoSmithKline Safety Assessment, The Frythe, Welwyn, Herts, AL6 9AR, UK;

^hPfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK; ⁱDepartment of Cardiological Sciences, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.

Received 11 July 2002; accepted 21 November 2002

Abstract

Objective: To attempt to determine the relative value of preclinical cardiac electrophysiology data (in vitro and in vivo) for predicting risk of torsade de pointes (TdP) in clinical use. Methods: Published data on hERG (or IKt) activity, cardiac action potential duration (at 90% repolarisation; APD₉₀), and QT prolongation in dogs were compared against QT effects and reports of TdP in humans for 100 drugs. These data were set against the free plasma concentrations attained during clinical use (effective therapeutic plasma concentrations; ETPC_{unbound}). The drugs were divided into 5 categories: 1. Class Ia & III antiarrhythmics; 2. Withdrawn from market due to TdP; 3. Measurable incidence/numerous reports of TdP in humans; 4. Isolated reports of TdP in humans; 5. No reports of TdP in humans. Results: Data from hERG (or I_{Kr}) assays in addition to ETPC_{unbound} data were available for 52 drugs. For Category 1 drugs, data for hERG/ IKr IC₅₀, APD₉₀, QTc in animals and QTc in humans were close to or superimposed on the ETPC_{unbound} values. This relationship was uncoupled in the other categories, with more complex relationships between the data. In Category 1 (except amiodarone) the ratios between hERG/ I_{Kr} IC₅₀ and ETPC_{unbound} (max) ranged from 0.1 to 31-fold. Similar ranges were obtained for drugs in Category 2 (0.31 to 13fold) and Category 3 (0.03 to 35-fold). A large spread was found for Category 4 drugs (0.13 to 35,700-fold); this category embraced an assortment of mechanisms ranging from drugs which may well be affecting I_{Kr} currents in clinical use (e.g. sparfloxacin) to others such as nifedipine (35,700-fold) where channel block is not involved. Finally, for the majority of Category 5 drugs there was a >30-fold separation between hERG/Ikr activity and ETPC_{unbound} values, with the notable exception of verapamil (1.7-fold), which is free from QT prolongation in man; this is probably explained by its multiple interactions with cardiac ion channels. Conclusions: The dataset confirms the widely-held belief that most drugs associated with TdP in humans are also associated with hERG K⁺ channel block at concentrations close to or superimposed upon the free plasma concentrations found in clinical use. A 30-fold margin between C_{max} and hERG IC₅₀ may suffice for drugs currently undergoing clinical evaluation, but for future drug discovery programmes pharmaceutical companies should consider increasing this margin, particularly for drugs aimed at non-debilitating diseases. However, interactions with multiple cardiac ion channels can either mitigate or exacerbate the prolongation of APD and QT that would ensue from block of Ikr currents alone, and delay of repolarisation per se is not necessarily torsadogenic. Clearly, an integrated assessment of in vitro and in vivo data is required in order to predict the torsadogenic risk of a new candidate drug in humans.

*Corresponding author. Tel. +44 1625 514810; fax: +44 1625 513779 *Keywords:* K-channel; Ion channels; Long QT syndrome; ECG; Purkinje fibre.

Time for primary review 36 days.

© 2003 Published by Elsevier Science B.V. on behalf of European Society of Cardiology.

1. Introduction

Drug-induced QT interval prolongation and the appearance of torsade de pointes (TdP) has become recognised as a potential risk during treatment with a broad range of drugs including repolarisation-delaying antiarrhythmics [1], various antihistamines [2,3], antipsychotics [4], antimicrobial agents [5], and miscellaneous others [5,6,7,8,9,10]. For the vast majority of these agents it has been demonstrated that the slowing of repolarisation is a consequence of inhibition of the rapidly activating delayed rectifier potassium current (I_{Kr}) in cardiac tissues, which is conveyed by the human etherà-go-go-related gene-encoded voltagedependent potassium channel (hERG K⁺ channel; IUPHAR classification: K_v11.1 [11]).

In 1997, Committee for Proprietary Medicinal Products (CPMP) published a 'Points to Consider' document that made recommendations for nonclinical and clinical approaches to assess the risk of OT interval prolongation and TdP for non-cardiovascular drugs [12]. Since the appearance of this document, there has been much debate within the pharmaceutical industry as to the relative merits of various in vitro and in vivo techniques in detecting such activity preclinically [13,14,15]. A survey of practice within the industry conducted approximately two years after publication of the CPMP document indicated that whereas the industry was taking this issue very seriously, there was wide variability in approach [16].

One reason for the lack of confidence in the predictive value of the preclinical tests is that each drug associated with TdP in man appears to tell a different story in terms of its electrophysiological profile. Clearly there is a consensus about the importance of interactions with the hERG K⁺ channel but even so there is no agreement, either within the pharmaceutical industry or drug regulatory authorities, about what constitutes a safe margin. Risk assessment is further complicated when a drug acts on other cardiac ion channels in addition to the hERG K⁺ channel, as is often the case.

We therefore undertook a literature survey of nonclinical and clinical data on an initial list of 100 drugs, in order to assess the predictivity of the various types of data. The drugs were first categorised according to their torsadogenic propensity, then information on effective free therapeutic plasma concentration (ETPC_{unbound}) with inhibition of hERG/I_{Kr} current, effects on cardiac action potential duration in vitro, prolongation of QT interval in dogs, and QT prolongation in man were collated and tabulated. It is hoped that these data, presented

together for the first time, will assist in the ongoing debate around the preclinical detection of torsadogenic propensity, provide evidence for setting provisional safety margins, and encourage further research.

2. Methods

The approach was as follows:

A list of 100 drugs was compiled 1. (Table 1), covering a range of therapeutic classes. This list included the majority of drugs that have been associated with TdP or OT prolongation in man, together with other drugs that have no such association, but which have come under a certain degree of scrutiny because of therapeutic class, drug interactions, etc, in addition to drugs designed delay to cardiac repolarisation (i.e. Class Ia and III antiarrhythmics).

2. These drugs were assigned to 5 categories of torsadogenic propensity:

Category 1: Repolarisation-prolonging (Class Ia and Class III) antiarrhythmics (which have I_{Kr} block as an integral pharmacodynamic mechanism, and QT prolongation as an intended, desirable effect).

Category 2: Drugs that have been withdrawn or suspended from the market in at least one major regulatory territory due to an unacceptable risk of TdP for the condition being treated.

Category 3: Drugs that have a measurable incidence of TdP in humans, or for which numerous case reports exist in the published literature.

Category 4: Drugs for which there have been isolated reports of TdP in humans.

Category 5: Drugs for which there have been no published reports of TdP in humans. This category also contains some drugs (e.g. ketoconazole) which are associated with drug interactions leading to TdP, but which have not been associated with cases of TdP when used alone.

N.B. Erythromycin appears twice in the above list, as there are two formulations with different torsadogenic propensities: intravenous (Category 3) and oral (Category 4). Mibefradil was withdrawn from the market after less than a year due to drug interactions leading to TdP; however, there was no clear evidence that this drug caused TdP by itself [17], so it has not been assigned to Category 2. Instead, it has been assigned to Category 4, as there is one report of TdP in the literature [18] (see Table 1).

- 3. A master table was compiled (Table 2), containing the following information:
 - (a) Drug name, drug category (as above), molecular weight;
 - (b) Published values and ranges for % plasma protein binding and ETPC_{total}; these were obtained from online databases for drugs in current use (or from standard medical reference texts for older drugs) where possible [e.g. 19;20], in order to limit the number of references cited. ETPC_{unbound} (nM) were then calculated for each drug. published Where values for ETPC_{unbound} (nM) were available and were greater than those calculated, this higher value was used and the source reference is given in Table 2.
 - (c) Published IC_{50} values for I_{Kr} in mammalian cardiac tissue and from hERG-transfected cell lines. HERG data from *Xenopus* oocytes were not used unless there were no other hERG or I_{Kr} data available, and such data are indicated in Table 2. Data from hERG or I_{Kr} assays (hereafter referred to as 'hERG/ I_{Kr} ') and all other electrophysiological data (see below) were derived from original references obtained via MEDLINE (between 1966 and May 2002).
 - (d) Published potency values for eliciting a 10-20% increase in the duration of the cardiac action potential at 90% repolarisation (APD₉₀) in in vitro preparations. A 10% increase in APD₉₀ is typically the minimum increase that reaches statistical significance in such studies, and is also the degree of change considered physiologically significant by the majority of pharmaceutical companies in a recent survey [16]. Frequently it was not possible to determine the concentration producing a 10-20% increase in APD₉₀ interval, so the producing concentration the percentage increase in APD₉₀ closest to this range was used, as indicated in Table 2.
 - (e) Published values for doses associated with 10-20% QTc prolongation in beagle dogs, or other species if dog data were unavailable. A 10% increase in QTc is typically the minimum increase that reaches statistical significance in conscious dog studies, and is also the degree of change considered physiologically

significant by the majority of pharmaceutical companies in the same survey [16]. Frequently it was not possible to determine the dose producing a 10-20% increase in QTc interval, so the dose producing the percentage increase in QTc closest to this range was used, as indicated in Table 2. There are also examples where the percentage change is either not quoted in the original source reference or is not possible to calculate because of the absence of baseline data. In such cases the absolute change in QTc is given in Table 2.

- (f) Published values for plasma concentrations associated with 10-20% QTc prolongation in beagle dogs, or other species if dog data were unavailable. Such data were found to be rarely available outside Category 1.
- (g) Published values for doses associated with 10-20% QTc prolongation in humans. This degree of change was chosen in order to be consistent with data obtained from dogs. Plasma concentrations are given where available, but such data are extremely rare outside Category 1.
- 4. For 52 drugs where both $\text{ETPC}_{\text{unbound}}$ and hERG (or I_{Kr}) IC_{50} data were available, the $\text{ETPC}_{\text{unbound}}$ range was plotted schematically alongside the electrophysiology data from Table 2. For terfenadine, given that the QT prolonging effects are due to the parent compound whereas the antihistamine activity is due to the metabolite, data for $\text{ETPC}_{\text{unbound}}$ were obtained from studies that had measured terfenadine in the presence of a cytochrome P450 inhibitor.
- 5. The ratios of the lowest published $hERG/I_{Kr}$ IC₅₀ value divided by the upper value for the ETPC_{unbound} range were calculated and plotted on a logarithmic scale for all 52 drugs.
- 6. Of these 52 drugs, reasonably complete concentration-effect data were available for 3 drugs (one from each of categories 1, 2 and 5) for hERG/I_{Kr}, APD₉₀, dog QT interval, and human QT interval, and these were plotted as overlay plots alongside the ETPC_{unbound} range.

3. Results

A list of the initial 100 drugs in the dataset is given in Table 1. It can be seen that they cover

a wide variety of therapeutic indications and dosing regimens. Table 1 also indicates the association of each drug with TdP; when assessing this, the number of years on the market should be taken into account, as an approximate guide to the extent of clinical experience with each particular drug.

Table 2 contains all the source data and associated source references for the subsequent plots. Eighteen drugs listed in Table 1 do not appear in Table 2 due to the absence of key information including therapeutic plasma concentrations and/or electrophysiology data; these are identified in Table 1. It can also be seen from Table 2 that numerous drugs have incomplete information; subsequent generation of this information would be extremely useful. Ultimately, from the original list of 100 drugs, 52 had data on both ETPC_{unbound} and hERG/I_{Kr}.

Figure 1 is a schematic plot of ETPC_{unbound} data alongside the in vitro and in vivo electrophysiology data, for the 52 drugs where data were available for both $\ensuremath{\text{ETPC}_{unbound}}$ and $hERG/I_{Kr}$. For $ETPC_{unbound}$ data, where ranges are available these are plotted; otherwise, a single concentration is presented. For the $hERG/I_{Kr}$ data, the band is plotted from the minimum published IC₅₀ value upwards. Data on effects on APD₉₀ (lowest published values for concentrations causing a 10-20% increase in APD₉₀ in in vitro preparations) were available for the majority of these drugs, including all drugs in Categories 1 and 2. Data on effects on QTc in animals (lowest published values for concentrations causing a 10-20% increase in QTc in vivo) and on QTc in humans (lowest published values for concentrations causing a 10-20% increase in QTc in humans) are also plotted where available.

3.1. $hERG/I_{Kr}$

There was a trend with respect to the hERG/ I_{Kr} IC₅₀ values, in that the potency tended to be weaker when moving from Categories 2 to 5. However, the range of potencies within Category 1 was about as large as that covering the other 4 categories. Far more striking was the separation between ETPC_{unbound} (max) and the lowest quoted hERG/ I_{Kr} IC₅₀ value. With the exception of amiodarone, most Category 1 drugs ('Class Ia and Class III antiarrhythmics') had hERG/IKr activity close to or superimposed on their ETPC_{unbound} values. The same was true for Categories 2 ('withdrawn/suspended due to TdP') and 3 ('measurable incidence/numerous case reports of TdP'). There was a mixed picture for drugs assigned to Category 4 ('isolated reports of TdP in humans'). Finally, for Category 5 drugs ('no reports of TdP in *humans'*), there was a clear separation between hERG/I_{Kr} activity and ETPC_{unbound} values. There was one notable exception to this: verapamil, which is free from QT prolongation despite hERG/I_{Kr} activity close to its ETPC_{unbound} range.

3.2. APD₉₀

Figure 1 also indicates that for drugs in Category 1, concentrations causing a 10-20% increase in APD₉₀ were reasonably close to the concentrations showing hERG/IKr activity and the ETPC_{unbound} range, as might be expected, with the exception of amiodarone. Most of the drugs in Category 2 also increased APD₉₀ at concentrations close to the lowest published values for hERG/ I_{Kr} IC₅₀ (Table 2; Figure 1). Data on effects on APD₉₀ were only available for four drugs in Category 3 (thioridazine, bepridil, flecainide and erythromycin) for which $hERG/I_{Kr}$ data were also available. In each case APD₉₀ was increased, but at concentrations higher than those required to inhibit hERG/ I_{Kr} ; for bepridil and flecainide APD₉₀ was shortened at higher concentrations. There was no clear pattern to effects on APD₉₀ in Category 4, with some drugs increasing this parameter and others decreasing it or having biphasic effects. Of the six drugs in Category 5 for which APD₉₀ data (in addition to hERG/I_{Kr} data) were available, chlorpheniramine increased APD₉₀, verapamil had a biphasic effect, diltiazem decreased it, and ebastine and tamoxifen had no effect.

3.3. QTc in vivo

Similarly, for Category 1 drugs, concentrations causing a 10-20% increase in QTc in vivo were generally close to the ETPC_{unbound} range, the hERG/IKr IC50 and the concentrations causing a 10-20% increase in APD₉₀ (Table 2; Figure 1). Here again, the notable exception was amiodarone, where the QTc change was observed within the $\ensuremath{\text{ETPC}}_{\ensuremath{\text{unbound}}}$ range, whereas the in vitro electrophysiology changes required much higher concentrations (as mentioned above). In Category 2, a 10-20% increase in QTc in vivo was achieved at lower concentrations than the hERG/I_{Kr} IC₅₀ for cisapride, sertindole and terfenadine, whereas for astemizole this effect was achieved within the published range of values for hERG/IKr IC50 (Table 2; Figure 1).

3.4. QTc in humans

Again, for drugs in Category 1 the plasma concentrations resulting in a 10-20% increase in QTc in humans were close to those causing electrophysiological effects in the preclinical tests (Table 2; Figure 1). Unfortunately, such data were rarely available outside this category, so no clear pattern can be discerned.

3.5. Margins between $hERG/I_{Kr} IC_{50}$ and $ETPC_{unbound}$

The margins between free therapeutic plasma concentration and activity at hERG/IKr for these drugs are shown in Figure 2. These are the ratios of the lowest quoted hERG/IKr IC50 value divided by the upper value for the ETPC_{unbound} range, plotted on a logarithmic scale. Within Category 1 (Class Ia & III antiarrhythmics), all the drugs listed had margins of <30-fold, with the exception of tedisamil (31-fold) and amiodarone (1,400-fold), which both have a low torsadogenic propensity. All drugs withdrawn/ suspended from sale due to TdP (Category 2) had margins well below 30-fold (range 0.01 to 13-fold). Currently-marketed drugs associated with a measurable incidence/numerous reports of TdP (Category 3) also had margins of less than 30-fold, with the exception of pimozide which was just outside this value (35-fold). For drugs in Category 4 ('isolated reports of TdP'), there was a wide range of margins, from 0.13fold (sparfloxacin) to 35,700-fold (nifedipine). Finally, for those drugs where there are no reports of TdP in clinical use (Category 5), the margins ranged from 23-fold to 3,311-fold, with the exception of verapamil (1.7-fold) and ketoconazole (11-fold). The apparent 'outliers' within each category are commented on in the Discussion.

Relatively few drugs in Category 5 have been investigated for effects on APD₉₀ and QTc, so equivalent plots of APD₉₀ and QTc margins would be of limited value, especially as there are complications of species differences, biphasic concentration-response curves, and imprecise or incomplete data (e.g. concentrations giving 10-20% increases not always available). Instead, representatives of categories 1, 2 and 5 have been chosen for overlay plots, to illustrate what would be possible with complete datasets. Figure 3 is a set of overlay plots for 3 drugs where concentration-effect data are available for most of the electrophysiological variables. These more detailed overlay plots confirmed and extended the above findings. For dofetilide (an example of a Category 1 drug) the concentration-effect plots for hERG/IKr, APD90 and human QTc were superimposable. In the case of terfenadine (Category 2), the effects on APD₉₀ and QT were either minimal or absent. For these two drugs the clinical free plasma concentration range encroached on the foot of concentration-response the hERG plots, whereas for tamoxifen (Category 5) there was clear separation. Also, this drug had no effect on APD_{90} and QTc, and has not been associated with TdP.

4. Discussion

4.1. Mechanisms involved in torsade de pointes is a potentially life-threatening TdP ventricular tachyarrhythmia characterised by QRS complexes continuously changing in morphology around an imaginary isoelectric The trigger for drug-induced TdP line. arrhythmias appears to be ventricular extra beats which can be induced by early afterdepolarisations (EADs) originating in cells with relatively long repolarisation phases (typically Purkinje fibres and/or midmyocardial cells). Whether focal activity or re-entrant pathways are responsible for the perpetuation of the arrhythmia is still unclear [8,21,55,56, 66] and both mechanisms may co-exist [22]. TdP episodes can either be self-terminating or degenerate into ventricular fibrillation.

Compelling evidence exists for I_{Kr} inhibition as a major risk factor for TdP, as will be Agents that act primarily by discussed. blocking the slowly activating delayed rectifier potassium channel (I_{Ks}) , or by retarding the inactivation (or the recovery from the inactivation) of the sodium and the L-type calcium channels impede repolarisation, and thus could be expected to provoke TdP. Mefloquine is an example of an I_{Ks} blocker (it is slightly more potent at inhibiting this current than at I_{Kr} [23], but also inhibits I_{Ca,L} [24]) within our dataset, yet it has not been associated with TdP. More widespread clinical experience with drugs that are relatively selective for I_{Ks} would be required before excluding a contribution of IKs block as a risk factor for TdP in humans. Other risk factors for drug-induced TdP include female gender, bradycardia, hypokalemia, drug-drug interactions, rapid drug administration (intravenous), structural heart disease, prolonged baseline QT interval and genetic variants (polymorphisms and mutations) [25]. It has been suggested that these risk factors act by reducing the net repolarising current, thereby limiting the 'repolarisation reserve' [26]. TdP can also occur as a result of localised cardiac ischaemia, and such arrhythmias are seen, albeit rarely, after myocardial infarction [27].

4.2. Limitations of the dataset

It is worthwhile discussing the limitations of our dataset before attempting to draw any conclusions from it. Firstly, it is restricted to drugs that have reached the market (or at least, late stage clinical development), some of which have been tested for effects on QT in dogs, in a cardiac action potential preparation in vitro, and (for half of them) at hERG/ I_{Kr} . Up until now, understandably, in vitro electroquite physiologists have focused their investigations on those drugs that have either been associated with OT prolongation and TdP in man, or have come under suspicion due to their therapeutic class. It is quite likely that a 'hERG screening of the pharmacopea' would unearth some potent hERG K⁺ channel blockers that have never been associated with QT prolongation or TdP, to add to one such compound in our dataset: verapamil (see below). Secondly, the relative torsadogenic propensity in clinical use is difficult to judge within each of our categories, as this would also have to take into account the size and nature of the patient population, and the typical duration of treatment. In addition, some of the apparent incidences of TdP in Category 4 ('isolated reports of TdP') may have been misdiagnosed. Thirdly, estimates of free plasma concentrations are dependent on the accuracy of published data, particularly plasma protein binding. Finally, it should be noted that the purpose of compiling our dataset was entirely with *future* drug development in mind, and the collated information should not be applied retrospectively to re-assess torsadogenic risk for any of the drugs which comprise it. Furthermore, any new nonclinical electrophysiology findings on marketed drugs should not change risk assessment - if a drug has been used safely for several years without causing TdP, subsequent demonstration of activity in a hERG assay (for example) does not suddenly render it unsafe.

4.3. Torsadogenic propensity of drugs that block the hERG K^+ channel

The number of drugs prolonging QT in man (excluding antiarrhythmics) is well over 100 [10], many of which have a long history of safe clinical use. An obvious question then arises: why are some drugs that are associated with QT prolongation apparently devoid of torsadogenic effects, whereas others are considered such a risk that they have been withdrawn or suspended from clinical use? Obviously, a decision to withdraw/suspend from sale does not necessarily relate solely to the incidence of TdP, as other factors such as the severity of the disease target and the availability of alternative drugs are taken into account before such a decision is reached. From the available evidence it does not appear to be related to dosing regimen or duration of therapy (Table 1). One possible explanation is the margin between the concentrations required for clinical efficacy and the concentrations producing inhibition of hERG/IKr currents, prolongation of APD₉₀ or prolongation of QT interval. The hERG/I_{Kr} data are simpler to work with, as there is a quantitative value (the IC_{50}) which is rarely available for effects on the other parameters (APD₉₀ and OT interval). Also, whereas for Category 1 drugs the various effects (I_{Kr} inhibition, increase in APD₉₀ and QT interval) occur at around the same concentration for each drug, within the other categories, drugs very often have different effects on APD₉₀ in different tissues, biphasic concentration-effect relationships, or both. In addition, the action potential data are subject to the complications of species differences, frequency-dependence, possible residual effects of anaesthetics used and, with some drugs, binding to non-biological surfaces within the perfusion system, whereas QT data are susceptible to problems caused by inappropriate correction for changes in heart rate and (for anaesthetised preparations) effects of commonly-used anaesthetics on QT interval [16]. Clearly we should focus on margins rather than absolute potency at the hERG K⁺ channel: although all but one (grepafloxacin) of the drugs in Category 2 ('withdrawn/suspended from the market due to TdP') were more potent hERG/IKr blockers than any of the drugs in Category 5 ('no reports of TdP'), the important differences between our 5 categories are to be found in the

margin data (Figure 2). From our dataset, generally speaking, drugs with little or no margin between ETPC_{unbound} and $hERG/I_{Kr}$ IC₅₀ are associated with TdP in man, whereas those with a large margin are not. Notable exceptions to this are discussed below. Setting aside these 'outliers', the range of margins within each of Categories 1-3 were similar (approximately 0.01 to 30-fold), whereas those in Category 5 were greater than 30-fold, with the exception of phenytoin (23fold) and cibenzoline (24-fold) which fell just short of this margin. Category 4 ('isolated reports of TdP') was an interesting 'mixed bag', containing one drug with hERG/IKr activity within its therapeutic plasma concentration range (sparfloxacin), whereas the remainder at least had some therapeutic margin, as expected. It is possible that some other property (or lack of one) of this antibiotic mitigates against a high incidence of TdP.

4.4. 'Anomalous' drugs

Although we should view margins as a continuum, a 30-fold margin between $ETPC_{unbound}$ and $hERG/I_{Kr}$ IC₅₀ appears to be a line of demarcation between the majority of

drugs associated with TdP and those which are However, there are some notable not. exceptions to this: amiodarone (1400-fold), fluoxetine (106-fold), ciprofloxacin (183-fold), diphenhydramine (880-fold), and nifedipine (35,700-fold), which have each been associated with TdP (Table 1). Conversely, the margin for verapamil is less than two-fold, yet this drug does not prolong QT, let alone induce TdP: ketoconazole also has a small (11-fold) margin but apparently is not proarrhythmic. What are the possible explanations for the 'false negatives' and the two 'false positives'? Amiodarone is an atypical Class Ш antiarrhythmic, and some commentators have questioned whether it should really be considered to belong to this class [14], as it also exhibits class I, II and IV activity, together with vasodilator and anti-ischaemic effects [28], and requires chronic treatment for development of its antiarrhythmic effects [28]. It is worth comparing and contrasting the pharmacology of bepridil and verapamil, as they are both classed as 'calcium channel antagonists', yet both have a variety of other actions. In the case of bepridil, this is a complex drug with actions on other ionic currents including I_{Ks} [29;30], and it also has negative chronotropic effects [31] which would contribute towards promoting the conditions that enable TdP to occur. Verapamil on the other hand does not have bradycardic actions, does not affect I_{Ks} current [30] and does not prolong QT [32]. Ketoconazole also has a small margin (11-fold), yet has not been associated with TdP when administered as the sole medication. Its well-known interactions with terfenadine leading to TdP have largely been ascribed to its inhibition of CYP3A4 [2]. However, ketoconazole does prolong OT interval by itself in guinea-pigs [33,34,35], and so an additive effect in blocking the hERG K⁺ channel may contribute to the proarrhythmic potential of this co-therapy. There has been only one report of TdP with *fluoxetine* since its launch in the mid-1980s, in an elderly female patient [36]. The authors hypothesised that this episode could have been due to enhancement of 5-HT-induced vasoconstriction, which has been observed to occur in coronary arteries with damaged endothelium. The incidence of TdP with *ciprofloxacin* is extremely low (0.3 cases per 1 million prescriptions), this value based on two reports as part of a historical cohort study over a 5.5-year period [37]. These were not accompanied by any ECG recordings, details of the patients, or information on any co-therapy, so it remains unproven as to whether the episodes were due directly to the drug. In terms of explaining these events, ciprofloxacin is known to cause release of histamine [38], which in turn could cause coronary vasoconstriction [39], and it is conceivable that this could have pathophysiological consequences in susceptible individuals under very rare circumstances. It is not too fanciful to propose this as an explanation of an event occurring in two recipients of a total of ~66 million prescriptions. Diphenhydramine has been widely available since the mid-1940s, both as a prescription drug and in various over-the-counter medicines, yet we could only find two apparent cases of TdP in the literature. As there were no details given as co-therapy, underlying disease, or the to arrhythmia itself, these two cases cannot confidently be ascribed to an effect of this drug. As with ciprofloxacin, these reports were part of a historical cohort study and were not accompanied with any details of the patients [40]. These reports are surprising in view of the absence of TdP with this drug even after overdose [41]. Perhaps the largest anomaly of all is the huge margin for *nifedipine*. There have been two reports of TdP in over 20 years of clinical use of this drug. Both of these were in patients with cardiovascular disease, and both episodes were attributed to localised myocardial ischaemia caused by coronary 'steal' due to this vasodilator [42;43;44;45]. It is obvious from the ratio of $ETPC_{unbound}$ to hERG IC₅₀ for nifedipine that these two cases were not due to effects on IKr currents. It is also worth mentioning erythromycin: most of the reported cases of TdP have been observed after rapid intravenous injection of the drug, where plasma concentrations can reach the micromolar range [46].

4.5. Possible explanations for the size of margin

Examination of hERG concentration-effect curves in transfected cell lines (see Table 2 for references; also see Figure 3 for examples) reveals that for all drugs there is at most approximately one log order of magnitude between a 'threshold effect' and the IC_{50} . Therefore, in theory one would expect that a 10fold margin between ETPC_{unbound (max)} and the hERG IC₅₀ would suffice, whereas in practice the 'safe' margin appears to be 30-fold (Figure 2). There are various possible explanations for this. Firstly, occasionally in individuals the plasma concentrations may exceed the values for ETPC_{unbound (max)} listed in Table 2, and the concentrations may encroach on the functioning of the hERG K⁺ channel. This could occur as a result of accidental overdose, or because of individual variations in plasma protein binding [47], or in drug metabolism. Secondly, many of these agents are lipophilic, and accumulation

may occur in myocytes either intracellularly or within the cytoplasmic membrane, so that the local concentration in the vicinity of the hERG K^+ channel may exceed the free plasma concentration [48]. Thirdly, the potency at transfected hERG channels may be lower than that occurring in vivo, due to the absence of ancillary subunits and other biochemical factors. In addition, there may be individual variations in the functionality of the hERG K⁺ channel (e.g. channel density), or fluctuations in function due to changes in electrolyte concentrations.

A debate has also begun about whether to use IC₂₀ values or even IC₁₀ values for hERG instead of the IC_{50} . The rationale for retaining the use of IC_{50} values is obvious, as this is the most accurate measurement that can be made from a sigmoidal log concentration-effect curve, and in the case of hERG assays, as indicated above, the shape and slope of the curves are very similar across nearly all drugs tested. It is therefore better to retain the most accurate and familiar measure of drug potency at the hERG K^+ channel (i.e., the IC₅₀) and adjust the safety margins upwards accordingly, rather than to set a smaller margin based on an intercept derived from an unreliable part of the sigmoidal log concentration-effect curve, barely above the background noise. However, this statement should not be taken to mean that a 10-20% inhibition of IKr current is of negligible physiological significance: from our dataset it is reasonable to conclude that a 10-20% inhibition of IKr current in a hERG assay would translate into detectable increases in APD₉₀ and QT interval, at least for those compounds where the inhibition of I_{Kr} is not offset by interactions at other cardiac ion channels.

4.6. Mixed ion channel activity

From our dataset (Table 2) it would appear that drugs which are relatively selective for the hERG K⁺ channel compared to other cardiac ion channels (especially Class Ia and III antiarrhythmics, with the exception of amiodarone) have concentration-effect curves for inhibition of hERG/I_{Kr}, APD₉₀ and QT interval (in dog and human) that are virtually superimposable (Figures 1 and 3). Those with mixed ion channel activity (e.g. terfenadine) do not: the concentrations required for prolongation of APD₉₀ and QT interval are dissociated from those blocking hERG/IKr. Presumably their effects on other ion channels (primarily the sodium and L-type calcium channels) offsets the effects of inhibition of IKr on APD90 and QT interval.

In order to assess the impact of mixed channel

activity on torsadogenic propensity, we should first consider the torsadogenic potential of selective hERG K⁺ channel blockers. The following drugs from the dataset are relatively selective hERG \mathbf{K}^+ channel blockers: almokalant, dofetilide, cisapride, astemizole, and sertindole. Each of these drugs has a potency at hERG in the low nM range (i.e. 50 nM or less), and has either been associated with TdP in clinical trials (dofetilide, almokalant), or has been withdrawn from sale due to an unacceptably high incidence of TdP (cisapride, astemizole, sertindole). Therefore, it would seem that relatively selective hERG K⁺ channel blockers thus far have been associated with TdP in humans, when plasma concentrations enter the range for inhibition of the channel. So if hERG K⁺ channel block is a key risk factor, it is conceivable that the plasma concentration required for arrhythmogenesis with some mixed-activity compounds could be quite precise - at a certain concentration the combined ion channel effects may interact to produce the conditions for arrhythmogenesis. In this hypothetical scenario, the risk of TdP would be reduced at concentrations above and below this critical point. Evidence exists for this hypothesis in the case of quinidine, for example [49].

One point to make here is that we should not take comfort in a non-antiarrhythmic candidate drug with mixed channel activity that is active at the hERG K⁺ channel at concentrations close to its therapeutic range, but produces relatively little QT prolongation. Given that the holy grail of Class III antiarrhythmic research programmes is to achieve agents with the 'right' balance of ion channel activity [50], the likelihood of a non-antiarrhythmic research programme achieving this by good fortune is surely quite low. Put another way, we are more likely to end up with a 'terfenadine' than a 'verapamil'. We should ask ourselves whether we want potent activity at a range of cardiac ion channels in (say) a drug to treat arthritis.

4.7. Other risk factors

Although it may be the case that the relatively selective hERG K^+ channel blockers in our list are torsadogenic, drugs with the same potency at the channel may not necessarily carry the same torsadogenic risk. The nature of the interaction with the channel may be important; for example, it has been postulated that there may be multiple binding sites on the channel [51] even for a single drug (bepridil) [29], as well as for different classes of drugs, including the possibility of intracellular binding sites [52]. Also, different drugs bind to the channel in its

different states (closed, open, inactivated) [51,53]. There are likely to be further developments in this area. Regardless of how a particular drug binds to the hERG K⁺ channel, the prolongation of APD₉₀ that ensues may not be the defining factor in terms of arrhythmogenesis: the ensuing shape and stability of the action potential may be critical. Prolongation of APD₉₀ together with shortening of APD₃₀ (i.e. 'triangulation') appears to be associated with known arrhythmogenic compounds in a rabbit Langendorff-heart preparation, and leads to the appearance of EADs, whereas prolongation of APD₉₀ per se is antiarrhythmic [54]. Other risk factors for arrhythmogenesis are temporal instability of the action potential duration within a train, and reverse-frequency dependence [54]. Finally, at the multicellular level there is heterogeneity in sensitivity of cell types across the ventricular wall to prolongation of APD by any given drug, and the sensitivity range varies between drugs [55,56].

There are several examples in our dataset of drugs that would be expected to completely inhibit I_{Kr} currents within their therapeutic range (e.g. quinidine, ibutilide, terodiline, thior-Yet even when there is complete idazine). inhibition of IKr current within the myocardium, episodes of TdP do not occur continuously: such electrophysiological conditions merely increase the risk of such episodes occurring. So inhibition of IKr currents leads to two distinct, crucial abnormalities, both reflected by QT prolongation: delayed repolarisation and instability of action potentials in Purkinje fibres and M-cells, leading to the focal genesis of EADs, and dramatic transmural heterogeneity of ventricular repolarisation, enabling propagation of the premature depolarising wavefront and the development of TdP [8,21,55,56,66]. Drugs that merely prolong action potential without causing instability, or do not result in QT dispersion, would not necessarily be torsadogenic.

5. Summary and recommendations

5.1. Importance of I_{Kr} inhibition as a feature of torsadogenic agents

Our dataset has confirmed that I_{Kr} inhibition is a common feature of drugs that induce TdP in man (with the exception of drugs that may induce or exacerbate myocardial ischaemia, resulting in TdP as an extremely rare event). The available evidence indicates that block of hERG K⁺ channels (either selectively or in conjunction with effects on other ion channels) is associated with TdP if it occurs at concentrations close to those achieved in clinical use. Block of hERG K^+ channels is a risk factor in drug-induced TdP, and probably the predominant risk factor, but it requires a combination of factors, possibly coming together in a rare combination at one point in time (i.e. over a few cardiac cycles), to trigger the event.

5.2. Preclinical strategies for assessing torsadogenic risk

Whilst our understanding of the relationship between inhibition of I_{Kr} and the risk of TdP is progressing rapidly, a pragmatic approach for the pharmaceutical industry would be to limit structural/physicochemical similarities to hERG K⁺ channel blockers, then be guided by the chemical series with the least hERG activity. Structural requirements for binding to the hERG K⁺ channel have been characterised, at least for antihistamines [57,58,59] and class III antiarrhythmics [60], and the binding sites on the hERG protein have been modelled [61,62]; nonetheless, a significant effort is required to better understand these structure-activity relationships. However, series with hERG activity need not necessarily be rejected: it depends on the severity of the therapeutic target (see below). Data on hERG activity is useful in the early stages of drug discovery, but as the research project progresses, not only is it prudent to establish the effects on the cardiac action potential, this is recommended by regulatory authorities prior to human exposure [12]. The final risk assessment prior to Phase I clinical trials has to be based on both the in vitro and in vivo data, with the latter derived from both safety pharmacology and toxicology studies. Recommendations on optimal study design (both in vitro and in vivo) have been offered previously [16], several commentators have proposed strategies for preclinical and clinical [7,48,63,64,65] assessment [7,48,66] of torsadogenic risk, and the current views of regulatory authorities have also been discussed, at least informally [67,68,69]. The capability of the pharmaceutical industry to detect QT prolongation in preclinical tests has improved substantially over recent years, but a significant challenge still remains to identify proarrhythmic potential reliably.

The following recommendations merely relate to the information that should be acquired before a decision is taken to enter clinical evaluation; exactly when these tests are done is a matter of choice for the individual companies, and perhaps for individual projects within those companies. So, our proposal would simply be as follows:

(i) determine an IC_{50} at hERG in a

transfected mammalian cell line;

- (ii) test the effects of the compound on mammalian cardiac action potential in any well-characterised in vitro preparation;
- (iii) test the compound for effects on QT interval in vivo, either by telemetry or using anaesthesia, applying either a suitable correction for heart rate changes or a regression approach [16], or alternatively, cardiac pacing.

Much debate has taken place since the CPMP document [12] concerning the selection of an in vitro preparation for detecting drug-induced changes in cardiac action potential, and species differences have been studied systematically in the case of Purkinje fibres [70]. However, we feel that if accompanied by evaluation of hERG activity, the choice of preparation is less important than when this was the mainstay of the in vitro evaluation. The reason for this is that if a drug slows repolarisation in a concentration-dependent manner as predicted from its activity at hERG, then it can reasonably be assumed that it does not possess significant activity at other cardiac ion channels (cf. cisapride in Table 3). If it does not (cf. terfenadine in Table 3), then a further investigation of effects at other cardiac ion channels is required. Computer models may assist with interpretation of effects on action potential characteristics [71]. So, in brief, any well-characterised in vitro cardiac preparation may be used, according to the availability of tissue and the expertise within the laboratory, so long as the outcome is interpreted alongside the hERG data.

5.3. Safety margins

Our dataset suggests that a margin of 30-fold between hERG IC_{50} and C_{max} would be adequate to ensure an acceptable degree of safety from arrhythmogenesis, with a low risk of obtaining false positives. The same margin has been proposed previously based on opinion [65], and has also been suggested on the basis of a smaller dataset of drugs [72]. We would recommend that this margin is acceptable for all currently undergoing drugs clinical development. However, for the future, one should aim for higher margins where possible, as then the concerns over drug interactions, variable pharmacokinetics, and all the other risk factors would recede. This would also address issues of inter-laboratory variability in hERG IC_{50} data (as evident in Table 2): we have used the lowest published hERG IC50 values to arrive at provisional safety margins, but it is likely that any single laboratory would derive a value for any particular drug somewhere within the published range rather than at the lower limit.

Obviously margins should reflect disease severity and medical need. For example, one could envisage that a 10-fold margin might be acceptable for drugs used in diseases which are lethal if untreated (e.g. cancer, AIDS, some other infections, etc), a 30-fold margin may be acceptable for drug treatments for serious debilitating diseases (e.g. stroke, Parkinson's disease, schizophrenia, epilepsy, asthma, arthritis, etc), but a margin of 100-fold or even higher might be required in the case of less serious diseases (e.g. Raynaud's, seasonal rhinitis, eczema, etc). These higher margins would also be appropriate for drugs prescribed to psychiatric patients at risk from suicidal overdose. Furthermore, one has to consider changes to therapeutic target, patient population, and route of administration.

The emphasis here should be on 'provisional margins as a starting point' - an integrated evaluation of in vitro and in vivo electrophysiology data is essential for risk assessment, and will ultimately be superseded by clinical data. Drugs with small margins for hERG activity are not necessarily unsafe, as evidenced by several that have been in safe use for years, generally due to the mitigating effects of actions at other ion channels. However, for the purposes of future drug development, candidate drugs with a margin smaller than 30fold (for hERG IC₅₀, 10% increase in APD₉₀, or 10% increase in QT interval - whichever is the smallest margin) over the C_{max}, would probably require evaluation in a proarrhythmic model, and the clinical programme may have to be augmented [12]. At the other end of the margin scale, despite our best efforts, some new drugs may induce TdP in susceptible individuals as extremely rare events by indirect mechanisms unrelated to actions at ion channels.

5.4. 'Class effects'

It is clear from our dataset that potency in hERG assays, prolongation of APD_{90} and QT, and torsadogenic risk, have little to do with therapeutic class. The hERG K⁺ channel shows promiscuous binding characteristics across a wide range of chemical structures [53]. Obviously, if similar molecular structures have been synthesized using an opportunistic approach in order to improve on a marketed drug, then if one of these drugs has hERG activity, this may well be shared by all its competitors to a greater or lesser extent, but this is not a 'class effect' in the strictest sense of the term. Except in the case of Class Ia and III

antiarrhythmics, for adverse effects so remote from their target organs, and with a molecular mechanism quite distinct from their primary molecular target, the use of the term 'class effect' is unhelpful here. It is probably also unnecessary to invoke this term when considering torsadogenic risk, so long as preclinical data from the strategy outlined above (hERG IC₅₀, effects on cardiac action potential, QT interval) are collated for submission to regulatory authorities. Astemizole and cetirizine are both non-sedating antihistamines, yet whereas astemizole is an extremely potent hERG blocker with a margin around 3-fold, and was withdrawn after approximately 16 years on the market due to an unacceptable risk of TdP, cetirizine is a very weak hERG blocker, with a margin approaching 2,000-fold, and has been used clinically for the same period of time without a single report of TdP.

5.5. Concluding remarks

Although 'torsade de pointes' was first characterized by Dessertenne in 1966 [73], the electrocardiographic features had been reported more than forty years earlier [74], and sudden deaths due to antipsychotic drugs were documented soon after their introduction in the It is therefore not a new 1950s [75]. phenomenon, and the CPMP's 1997 'Points to Consider' document [12] was arguably long overdue. Hopefully our survey of the published literature has helped to clarify the task of preclinical risk assessment with respect to proarrhythmic potential of new drugs. The more drugs with a long track record of clinical use for which there are full datasets on in vitro and in vivo cardiac electrophysiology, the clearer our understanding will become. The challenge to the pharmaceutical industry is to minimise hERG activity so as to eliminate the major risk factor, but not at the expense of discarding therapeutically useful drugs that are urgently required to treat a myriad of diseases for which there is presently a paucity of quality treatment.

Table 1

Background information on the initial list of 100 drugs selected for this literature survey

	Drug class/application	Market span	Recommended adult dosage	Typical duration of treatment	Association with TdP	TdP on label
CATEGORY 1						
Ajmaline	Class Ia antiarrhythmic	1993-	200-300 mg o.d.	Long term	Isolated reports of TdP after i.v. use only [76]	
Disopyramide	Class Ia antiarrhythmic	1982-	300-800 mg o.d.	Long term	Probably ~1-8% [77]	Yes
Procainamide	Class Ia antiarrhythmic	1985-	50 mg/kg o.d.	Long term	Numerous reports of TdP [76;1;66]	Yes
Quinidine	Class Ia antiarrhythmic	1918-	200-400 mg t.i.d/q.i.d.	Long term	1-8.8% [1;77;66]	Yes
Almokalant	Class III antiarrhythmic	Discontinued after Phase III trials	4.5-29 mg	Long term?	Development stopped pre-market due to TdP	N/A
Amiodarone	Class III antiarrhythmic	1982-	200 mg o.d.	Long term	0.7% Incidence [77]	Yes
Azimilide	Class III antiarrhythmic	1999-	100-125 mg o.d.	Long term	0.9% Incidence [78]	
Clofilium [†]	Class III antiarrhythmic	Discontinued after Phase III trials?	20-300 μg/kg i.v.	Single dose only investigated	No reports; not marketed	N/A
Dofetilide	Class III antiarrhythmic	2000-	0.1-0.5 mg b.i.d.	Long term	1-4% Incidence [77]; 3-4% i.v., 0.8-1.5% oral [Al-Dashti & Sami, 01]	Yes
Ibutilide	Class III antiarrhythmic	1996-	1-2 mg i.v.	Acute	8.3% Incidence (i.v. use) [79]	Yes
Sematilide	Class III antiarrhythmic	Discontinued after Phase III trials	75-200 mg t.i.d.	Long term	1 report, high i.v. dose [80]	
D,L-sotalol	Class III antiarrhythmic	1970s	160-320 mg o.d.	Long term	1.8-4.8% Incidence [5;66]	Yes
Tedisamil	Class III antiarrhythmic	Currently in Phase II trials	50-100 mg b.i.d.	Long term	No reports to date.	
Terikalant [†]	Class III antiarrhythmic	Discontinued	No information in humans	No information in humans	No reports to date.	N/A
CATEGORY 2	2					
Astemizole	Antihistamine	1983-1999	10 mg i.d. (30 mg i.d.) [81]	> 7 days [81]	Very low: 8.5 per 10,000 person-years [82]; withdrawn from market due to TdP	Yes
Cisapride	Prokinetic	1988-2000	10 mg t.i.d./q.i.d.	4 weeks for dyspepsia; 12	Very low (1/120,000) [5]; withdrawn from market due to TdP	Yes

	Drug class/application	Market span	Recommended adult dosage	Typical duration of treatment weeks for GORD	Association with TdP	TdP on label
Droperidol	Antipsychotic	1970-2001	5-20 mg t.i.d. [81]	Acute tranquillisation	Withdrawn from market due to TdP	Yes
Grepafloxacin	Antibiotic	1997-1999	600 mg o.d.	10 days	Several cases of TdP and sudden cardiac deaths [83]; withdrawn from market due to TdP	Yes
Levomethadyl [†]	Opioid agonist (heroin dependency)	1993-2001	According to need (up to 100 mg three times a week have been given)	Short term	Several cases of TdP reported [84]; withdrawn from use in EU due to TdP; use restricted in US [19]	Yes
Prenylamine [†]	Anti-anginal	1960s-1988	60 mg t.i.d. max 300 mg daily	y Long term	Withdrawn from market due to TdP	
Sertindole	Antipsychotic	1996-1998	12-20 mg o.d.	Long term	Withdrawn from market due to TdP	Yes
Terfenadine	Antihistamine	1982-1997	120 o.d.	Seasonal	Very low: 1.0 per 10,000 person-years [82]; withdrawn from market due to TdP	Yes
Terodiline	Bladder incontinence	1986-1991	25 mg b.i.d.	Long term	Incidence unknown; several cases documented [78;85]; withdrawn from market due to TdP	
CATEGORY	3					
Aprindine	Class Ib antiarrhythmic	1982-	50-100 md o.d.	Long term	Several cases documented [1]	
Bepridil	Antianginal	1986-	100 mg t.i.d.	Long term	~1% [86]	Yes
Chlorpromazine	Antipsychotic	1954-	75-300 mg o.d.	Long term	Several cases of TdP documented [87]	Yes
Erythromycin i.v.	Antibiotic	1982-	250-500 q.i.d	21 days	Numerous cases documented after i.v. use [19;76]	Yes
Flecainide	Class Ic antiarrhythmic	1982-	100 mg b.i.d.	Long term	Several reports of TdP [88;89; Ohki et al, 01] including a suicidal overdose [90]	Yes
Halofantrine	Antimalarial	1988-	1.5 g per week	2 weeks	Numerous reports of TdP [76]	Yes
Haloperidol	Antipsychotic	1958-	5-10 mg o.d.	Long term	Numerous reports of TdP with oral and i.v. use [4;91]	Yes
Lidoflazine	Antianginal	1984-	120 mg t.i.d.	Long term	Reports of sudden death attributed to TdP [76]; TdP risk considered greater than quinidine [92]	No
Maprotiline	Antidepressant	1984-	25-150 mg o.d./b.i.d.	Long term	Several reports of TdP [93;94;95;96] including suicidal overdose where thioridazine also present [97]	No
Pentamidine	Anti-protozoal	1988-	4 mg/kg o.d.	14 days	Numerous reports of TdP with oral and i.v. use [76]	Yes
Pimozide	Antipsychotic	1971-	2-20 mg o.d.	Long term	Numerous reports to CSM of arrhythmias and sudden death [19]; one published report of TdP following suicidal overdose [98]	Yes
Thioridazine	Antipsychotic	1959-	150-600 mg o.d.	Long term	Highest risk of TdP amongst antipsychotics [4; Ray et al, 01]; restricted use.	Yes

	Drug class/application	Market span	Recommended adult dosage	Typical duration of treatment	Association with TdP	TdP on label
CATEGORY 4	4					
Amantadine	AntiParkinsonian	1983-	100 mg t.i.d.	Long term	One case of TdP following suicidal overdose (2.5 g ingested) [99]	No
Amitriptyline	Antidepressant	1982-	30-75 mg o.d.	Long term	One case of TdP following suicidal overdose [100]	Yes
Chloral hydrate [†]	Sedative	1869-(now rarely used)	Max 2 g o.d.	Variable	Isolated reports after accidental i.v. administration [101]	No
Chloroquine [†]	Antimalarial	1982-	300 mg weekly	Min 6 weeks	One report of TdP following self medication [102]	No
Ciprofloxacin	Antibiotic	1986-	250-750 b.d.	5 days	2 reports of TdP: incidence 0.3 cases/10 million prescriptions [37]	No
Clarithromycin	Antibiotic	1990-	250-500 mg t.i.d.	Up to 14 days	TdP in 2 patients with drug alone [103]; drug interactions leading to TdP [5]	Yes
Cocaine	Drug of abuse (originally used as a local anaesthetic)	1884-	-	-	Isolated reports in patients with idiopathic long QT syndrome [104;105]	N/A
Desipramine	Antidepressant	1993-	50 mg t.i.d/q.i.d.	Long term	One case of TdP reported [106]	Yes
Diphenhydramine	Antihistamine	1945-	25-50 mg o.d.	Symptomatic	Two cases of TdP reported [40], yet no TdP after overdose [41]	No
Domperidone	Prokinetic	1978-	10-20 mg q.i.d.	12 weeks	TdP only reported with i.v. use: several cases documented [19]	No
Doxepin	Antidepressant	1983-	75 mg o.d.	Long term	Two cases reported; one after therapeutic dose in a patient with resting arrhythmia [107], the other after suicidal overdose (6 g ingested) [108]	No
Erythromycin p.o.	Antibiotic	1982-	250-500 q.i.d	21 days	One case documented after oral administration [19;76]	Yes
Fexofenadine	Antihistamine	1996-	120-180 mg o.d.	Seasonal	One report of TdP [109]	No
Fluoxetine	Antidepressant	1986-	20 mg o.d.	Long term	One report of TdP [110]	Yes
Furosemide	Diuretic	1970s	20-40 mg o.d.	Long term	Isolated reports secondary to diuretic-induced hypokalaemia [111]	
Imipramine	Antidepressant	1982-	10-100 mg b.i.d.	Long term	Well documented proarrhythmic effects, but not of the TdP type [76]; one report of TdP after suicidal overdose [112]	No
Ketanserin	Antihypertensive	1985-	40 mg b.i.d.	Long term	Isolated reports of TdP [76]	Yes
Mexiletine	Class Ib antiarrhythmic	1977-	400-800 mg t.i.d./q.i.d.	Long term	One report of TdP [113]	No
Mibefradil	Antihypertensive (calcium channel blocker)	1997-1998	50-100 mg o.d.	Long term	One report of TdP [18]. Withdrawn after less than one year on the market due to drug interactions leading to TdP [5].	Yes
Nifedipine	Antihypertensive/ antianginal	1982-	10-40 mg b.i.d.	Long term	Two reports of TdP [42;43;44;45]	
Papaverine	Antispasmodic	1982-	40-120 mg o.d./t.i.d.	Variable	Isolated reports of TdP after intracoronary arterial injection	

	Drug class/application	Market span	Recommended adult dosage	Typical duration of treatment	Association with TdP	TdP on label
					[114;115;116]	
Perhexiline	Antianginal	1970s-	50-100 mg b.i.d.	Long term	One report of TdP [117]	No
Probucol	Antilipemic	1977-	500 mg b.i.d.	Long term	Isolated reports of TdP [76]	Yes
Propafenone	Class Ic antiarrhythmic	1982-	300 mg t.i.d.	Long term	Isolated reports [118;119]	
Sparfloxacin	Antibiotic	1993-	400 mg loading dose then 200 mg o.d.	10 days	Isolated reports of TdP [120]	Yes
Spiramycin [†]	Antibiotic	1982-	1-2 g b.i.d.	Up to 4 weeks	One report of TdP when co-administered with mequitazine [121]	No
Sultopride	Antipsychotic	1984-	0.4-0.6 g o.d.	Long term	Two reports of TdP: one during standard therapy [122], the other after suicidal overdose (16 g ingested) [123]	Yes
Tacrolimus	Immunosuppressant	1993-	0.10-0.15 mg/kg/day (i.v.)	Up to 6 months	Two reports of TdP [124;125]	No
Zimeldine	Antidepressant	1980s-	200-300 mg o.d.	Variable	One report of TdP following suicidal overdose (~5-6g)[126]	
CATEGORY 5	5					
Amlodipine	Antihypertensive (calcium channel blocker)	1990-	5-10 mg o.d.	Long term	No reports of TdP.	
Captopril [†]	Antihypertensive (ACE inhibitor)	Early 1980s-	50 mg t.i.d.	Long term	No reports of TdP.	
Cetirizine	Antihistamine	1987-	10 mg o.d.	Seasonal	No reports of TdP.	No
Chlorcyclizine	Antihistamine	Early 1950s-	50-100 mg o.d/b.i.d.	Short term	No reports of TdP.	
Chlorpheniramine	Antihistamine	1982-	4 mg t.i.d.	Seasonal	No reports of TdP.	No
Cibenzoline	Class Ic antiarrhythmic	1985-	260-390 mg o.d.	Long term	No reports of TdP.	
Clemastine	Antihistamine	1988-	1 mg b.d.	Seasonal	No reports of TdP.	No
Cyproheptadine	Antihistamine	1982-	4 mg t.i.d/q.i.d	Seasonal /Long term (migraine)	No reports of TdP.	No
Diltiazem	Antihypertensive	1982-	60 mg t.i.d	Long term	No reports of TdP.	
Doxorubicin	Anticancer	1982-	450mg/m2	Total cumulative	No reports of TdP.	
Ebastine	Antihistamine	1990-	10 mg o.d.	Seasonal/Long tern	nNo reports of TdP.	No
Emetine [†]	Amoebicide	1829-	Max 60 mg o.d.	Max 10 days	No reports of TdP.	
Encainide	Class Ic antiarrhythmic	1980s-1991	25-50 mg t.i.d.	Long term	No reports of TdP.	
Epinastine [†]	Antihistamine	1994-	5-20 mg o.d.	Seasonal	No reports of TdP.	No
Erythromycylamine	Antibiotic	?	500 mg o.d.	Short term	No reports of TdP.	
Felbamate [†]	Antiepileptic	1993-	Max 3600 mg/day	Long term	No reports of TdP.	Yes

	Drug class/application	Market span	Recommended adult dosage	Typical duration of treatment	Association with TdP	TdP on label
Foscarnet [†]	Antiviral	1986-	60 mg/kg o.d.	2-3 weeks	No reports of TdP.	No
Fosphenytoin [†]	Antiepileptic	1996-	50-100 mg/min i.v.	Acute	No reports of TdP.	No
Ganciclovir [†]	Antiviral	1988-	1 g t.i.d.	Long term	No reports of TdP.	
Hydroxyzine	Antihistamine	1970s-	25-100 mg t.i.d./q.i.d	Variable	No reports of TdP.	
Ketoconazole	Antifungal	1982-	200 mg o.d.	Up to 6 months	No reports of TdP when sole medication. CYP3A4 inhibitor: TdP when used in conjunction with other drugs in categories 1-3 above (e.g. terfenadine) [127]	No
Loratadine	Antihistamine	1988-	10 mg o.d.	Seasonal	No reports of TdP.	No
Mefloquine	Antimalarial	1970s-	1250 mg single oral dose (acute therapy); 250 mg/week (prophylaxis)	> 5 weeks	No reports of TdP	
Melperone [†]	Antipsychotic	1983-	25-100 mg t.i.d./q.i.d.	Long term	No reports of TdP.	
Mesoridazine [†]	Antipsychotic	1970-	50 mg t.i.d.	Long term	No reports of TdP; ECG abnormalities [76]	Yes
Mizolastine	Antihistamine	1998-	10 mg o.d.	Seasonal/long term	No reports of TdP.	Yes
Nitrendipine	Antihypertensive	1985-	20 mg o.d.	Long term	No reports of TdP.	
Olanzapine	Antipsychotic	1996-	10 mg o.d.	Long term	No reports of TdP.	Yes
Phenytoin	Antiepileptic	1938-	300-400 mg o.d.	Long term	No reports of TdP.	
Pyrilamine	Antihistamine	1945-	100 mg t.i.d.	Seasonal	No reports of TdP.	No
Quetiapine	Antipsychotic	1997-	150-225 mg b.i.d.	Long term	No reports of TdP.	No
Risperidone	Antipsychotic	1993-	3 mg b.i.d.	Long term	No reports of TdP. One report of sudden death without TdP [128]	Yes
$Sumatriptan^{\dagger}$	Antimigraine	1991-	50-100 mg	Variable	No reports of TdP.	No
Tamoxifen	Anticancer	1982-	10-20 mg b.i.d.	Variable	No reports of TdP.	No
Tocainide	Class Ib antiarrhythmic	1982-	400-800 mg t.i.d.	Long term	No reports of TdP.	
Verapamil	Class IV antiarrhythmic. antihypertensive/ antianginal	/1982-	80-160 mg b.i.d/t.i.d.	Long term	No reports of TdP.	No
$Zolmitriptan^{\dagger}$	Antimigraine	1997-	Max 10 mg o.d.	Variable	No reports of TdP.	No

Drugs are listed in alphabetical order within each category; within Category 1, Class Ia antiarrhythmics are listed alphabetically before Class III antiarrhythmics. Market span dates are approximate, and are for guidance only. Data on doses and dosing regimens obtained from BNF and PDR unless otherwise indicated. 'TdP on label' refers to either Europe or US regulatory territories. [†]Drug does not appear in table 2, due to absence of any in vitro, in vivo or human electrophysiology data. For description of categories refer to text.

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) Ε IC ₅₀ μΜ (range)	10-20% increase APD ₉₀ μM (range)			10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
CATEGORY 1										
Ajmaline	326.4	38	34	65		3 decreased in PF, increased in atrial and VM [129]	I		1 iv increase in QT and TdP	[19;130;131;129;132]
Disopyramide	339.5	58	200 - 600	247 - 742	1.8	5 - 40	15 - 30		2 - 7.5	
						dog PF; rabbit PF: decrease at 10-20µM [136]			iv	[81;19;133;134;135;136; 137;138;139;140;141]
Procainamide	235.3	15	7500 - 15000	27093 - 54186	310 - 380	100			[18 µM]	
					AT-1 (22°C)	rabbit LH; no effect in dog PF at 320 µM [142]			$(total = 24 \ \mu M \ [5.6 \ mg/ml])$	5[19;76;143;144;145;146]
Quinidine	324.4	85	2000 - 7000	924 - 3237	0.3 - 1	1 - 10	4 - 12.5	0.3 - 0.7	[0.56 - 2.3 µM]	
					Ltk (22°C)	GP VM		$(total = 2 - 4.6 \ \mu M)$	· ·	[19;147;144;148;49;149; 5150;151;152;153;154;155]
Almokalant		20		70 - 150	0.05	0.03 - 0.1	0.04 - 0.35	0.08 - 0.2 μM	[40 nM]	
								$(total = 0.1 - 0.25 \\ \mu M)$	(total = 50 nM)	[156;157;158;159;160;153 ;161;162]
Amiodarone	645.3	99.98	500 - 2500	0.1 - 0.5	1 - 9.8	5 - 59	10 - 400	0.0003 - 0.0006		
					AT-1 (22°C), Ltk (22°C), rabbit VM			$(total = 1.5 - 2.9 \ \mu M)$		[81;20;163;164;144;28; 165;166;167;168;169;170; 168]
Azimilide	457.9	94	305 - 534	40 - 70	0.1 - 0.4	0.1 - 3	3 - 30	0.17 - 0.33		
								$(total = 2.8 - 5.5 \\ \mu M)$		[19;171;172;173;174;175]
Dofetilide	441.6	65	0.5 - 2.5	0.4 - 2.0	0.005 - 10	0.003 - 10	0.01 - 0.9	0.03	[0.001 - 0.003 µM]	
					IKr GP myocytes,	GP PM		$(total = 0.09 \ \mu M)$	(totals = 1.73 and	[19;176;177;178;179;180;

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) IC ₅₀ μM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)	10-20% increase in vivo QTc μM unbound (range)	10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
					GP myocytes				3.63 mg/L]	181;158;182;159;183;184; 185;186]
Ibutilide	384.6	40	0.5 - 90	0.7 - 140	0.01 - 0.02	0.01 - 0.1	0.01 - 0.3	0.02 - 0.07	0.015 - 0.025	
						GP VM		$(total = 0.04 - 0.12 \ \mu M)$	iv	[187;19;188;189;143;190; 191;192;193;194;195;196; 197]
Sematilide	312.2	4	653 - 1447	2008 - 4449	25 - 50	10	0.7 - 4.1	11	[3.4 µM]	
								$(total = 11 \ \mu M)$	$(total = 3.6 \ \mu M $ [1.1 mg/ml])	[76;79;198;199;200;201; 202;184]
D,L-sotalol	271.5	0	500 - 4000	1842 - 14733	74 - 169	0.5 - 100	1 - 34	3 - 23	4	
					GP PM	dog PF; GP VM				[19;203;76;204;205;136; 206;148;207;208;209;210]
Tedisamil		96		80	2.5	1	100 - 1000		0.3 - 1.4	
						human PF, 29%			iv 0.3; po 1.4	[211;212;213;214;215; 216]
CATEGORY 2										
Astemizole	458.6	96.7	2.7 - 3.6	0.20 - 0.26	0.0009 - 0.026 HEK	0.0003 - 0.3	1	0.013	0.2	
					HEK; GP myocytes]	17.5% GP VM 1Hz; 10% rabbit PF	anaes. dog	$(total = 0.4 \ \mu M)$	po <i>no effect</i> in children	[19;217;218;219;220;221; 208]
Cisapride	466.0	98	60	2.6 - 4.9	0.002 - 0.045	0.01 - 3	0.1 - 1.4	0.0002 - 0.003	0.7 - 1.3	
					HEK RT; 37°C	rabbit PF 1 Hz	dog pentobarb	$(total = 0.008 - 0.148 \ \mu M)$		[19;222;223;224;225;226; 227;228;229;230;231;232; 233;234;235;236]
Droperidol	379.4		60		0.028 - 0.032	0.01 - 1			0.25	
					GP VM 30°C; HEK RT	GP VM			iv	[81;76;237;238;239;240]
Grepafloxacin	359.4	50	1200 - 1500	1669 - 2087	27 - 104	14 - 26	2			
					CHO RT; AT-1	dog PF	2mg/kg/min rabbit pentobarb			[187;76;241;242;243;230; 244]
Prenylamine	329.6	n/a	23			20	3		2.6	

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) IC ₅₀ μM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)		10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
						GP VM	[iv]			[19;245;246;247]
Sertindole	440.9	99.5	2 - 140	0.02 - 1.59	0.014 - 0.062	0.3 - 0.45		0.0025 - 0.1	0.25 - 0.34	
					HEK293 2 s	2 s stim, dog PF		$(\text{total} = 0.5 - 20 \\ \mu\text{M})$	ро	[19;203;179;248;230;249; 250;251]
Terfenadine	471.7	97	1.5 - 4.5	0.10 - 0.29	0.02 - 0.20	0.01 - 10	100	0.00015 - 0.0003	[0.0002 µM]	
				1.2-9 nM in	HEK 37°C;	GP myocytes; rabbit	Dog pentobarb	(totals = 5 & 10)	(total = 8nM)	[81;19;76;232;232;254;22
				presence of P450 inhibitor [231;252]	Human VM	PF; <i>no effect</i> in dog PF at 10 μM [230;253]		nM, cyno monkey; 11nM, dog)		6;2;13;220;255;256;257]
Terodiline	281.4	92		8 - 12	0.004 - 0.7	0.01 - 10	3 - 10		[21 - 78 µM]	
					GP VM				$(totals = 140 and 521 \mu M]$	[19;225;258;259;260;261; 262;263;230;231;232;264; 265;266]
CATEGORY 3										
Aprindine	322.4	90	770	239	0.23				100	
-					COS RT				ро	[19;267;268;269]
Bepridil	384.5	99	400 - 1268	10 - 33	0.6 - 13	10 - 26			3 - 5.7	
					COS; GP myocytes	dog PF; also <i>decreased</i> by 14% dog PF [270]			iv 8%; po 5%	[19;76;271;29;272;273; 274]
Chlorpromazine	318.9	96.5	30 - 350	3 - 38		10				
-						no effect [275]				[19;20]
Erythromycin (i.v.)	733.9	75	8500 - 25000	2895 - 8516	72.2-100	27 - 136	40		18 - 83	
					HEK 35°C; GP VM 37°C	dog PF	iv anaesthetised dogs		iv	[81;19;276;46;308;277; 278;230;279]
Flecainide	414.4	61	400 - 800	376 - 753	3.91	2.4 - 24				
					HEK 37℃	Mixed reports - decreased: PF [280], 20 µM [281]; decreased GP PM 0.3Hz; decreased at				[19;20;284]

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) ΕIC ₅₀ μM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)	10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
						30μM [282]; increased: (VentMF) [280]; increased up to 10μM [283]			
Halofantrine	500.4	n/a	143 - 246		0.197 HEK 37℃; CHO		30 31% increase	[0.2 - 0.5 μM] NB: Total concentration	[19;285;286;287;288]
Haloperidol	375.9	92	6 - 17	1.2 - 3.6	0.027 HEK 37℃			З ро ~50%	[81;19;289;62;290]
Lidoflazine	491.6					5 dog PF		5.1 po	[81;272;291]
Maprotiline	277.4	88	15 - 300	6 – 130		10 to 100 PM			[19;203;292;293]
Pentamidine	280.6	n/a	209 - 612 [IM], [IV]					4 - 5 iv <i>no effect</i> [294] inhalation route <i>no</i> <i>effect</i> [295]	
Pimozide	461.5	99	n/a - n/a	0.09 - 0.43 1 nM in presence of CYP3A4 inhibitor [296]	0.015 - 0.055 I _{Kr} GP myocytes; HEK 37℃; CHO RT			0.3 po 5%	[19;20;297;62;298;299]
Thioridazine	370.6	45	140 - 660	208 - 979	0.033 - 1.25 HEK 37°C; tsA- 201 RT	10 7% increase PF		0.7 po ~20-30%	[19;76;62;300;238;301]
CATEGORY 4 Amantadine	151.2	63	110 - 302	269 - 739				35.7 ~50% increase after 36 hours	[19;302;99]
Amitriptyline	277.4	94.8	60 - 220	11 - 41	4.66	1 - 10	2	2.9	

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) IC ₅₀ µM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)	10-20% increase in vivo QTc μM unbound (range)	10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
					XO	decreased in dog PF [303], decreased in GP PF [275]			po 4%	[19;20;304;305;306]
Ciprofloxacin	331.4	30	1140 - 2500	2408 - 5281	>100 - 966	200			5.7	
					CHO 23°C; CHO RT				no mention of effect. [307]	[285;76;241;242;243]
Clarithromycin	748	80	1000 - 4510	267 - 1206	32.9				dose?	
					HEK 37°C				no effect	[19;203;308;309;310;311]
Cocaine	303.4	91	55 - 144	16 - 43	7.2	3 - 30	4 - 5	1.8 - 2		
				[340nM], [1400nM]		decreased [312]		$(total = 20 - 23 \ \mu M)$		[19;313;314;315;316;317; 318;319;312]
Desipramine	266.3	82	40 - 160	27 - 108	1.39	1			2.9	
					HEK 36°C	decreased in dog PF [320]			ро 6%	[19;20;62;306]
Diphenhydramine	255.4	78	25 - 40	22 - 34	30	2.5 - 10			1.4 - 7.1	
						GP isolated hearts				[19;20;321;2;322;41]
Domperidone	425.9	90	21 - 140	5 - 19	0.16	0.1				
										[81;19;323]
Doxepin	279.3	76	30 - 150	26 - 129		100	1 mg/kg per min	9.6	1.6 - 2.4	
						decreased in dog PF [320]		$(total = 40 \ \mu M)$	ро 5%	[19;203;20;324;325;326]
Erythromycin (p.o.)	733.9	75	300 - 500	102 - 170	72.2-100	37 - 136			18 - 83	
					HEK 35°C; GP VM 37°C	dog PF				[81;19;46;308;230;278;27 9]
Fexofenadine	501.6	65	494	345	5 - 23					
					cat VM; COS RT					[19;327;328;329]
Fluoxetine	309.3	94	45 - 150	9 - 29	3.1	58			0.5	
					XO	decreased [230]			po no effect	[81;20;19;330;326]

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) IC ₅₀ μM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)		10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
Imipramine	280.4	90.1	100 - 300	35 - 106	3.4	1			2.1	
						decreased dog PF [320]			po <1% increase	[81;20;331;332]
Ketanserin	395.4	95	40 - 140	5 - 18		0.01 - 1			0.2 - 0.6	
						increased 0.01 to 3, decreased at $10 \ \mu M$			0.57 mg/kg po 5% increase; 0.2 mg/kg iv 6% increase	[81;333;334;335;336;337] g
Mexiletine	179.2	63	700 - 2000	1445 - 4129		10			1.43	
						decreased dog PF			po qid TdP but no increase in QT	[19;20;338;113]
Mibefradil	495.6	99	300 - 600	6 – 12	0.35 - 1.43	0.03 - 1	30	0.034		
						decreased [339]		$(total = 3.43 \ \mu M $ [1700ng/mL])		[19;285;340;30;143;341]
Nifedipine	346.3	96	27 - 67	3.1 - 7.7	275	2.5 - 5				
						<i>decreased</i> at 2.5 μM [342]; <i>increased</i> at 5 μM [343]				[81;20;344]
Papaverine	339.4	90	201 - 271	59 - 80			6 – 21 mg intracoronary		6 mg - 12 mg intracoronary	
							anaes dog		· · · · · · · · · · · · ·	[19;345;346;347]
Perhexiline	277.6		150 - 660	540 - 2378	7.8		-		1.43	
					CHO-K1, RT		no effect		po 20-30% increase & TdP	[19;327;348;349;117]
Probucol	516.8	n/a	N/a						7.1	
D (07	176 1640		0.44				~ •	[19;350]
Propafenone	341.4	95	176 - 1648	26 - 241	0.44 HEK293 37℃	1 rabbit LH			6.4 no effect	[10.76.284.145.110.251]
Sparfloxacin	392.4	45	140 - 1260	196 - 1766	0.23 - 34.4	9 - 12	3	6.3	<i>no effect</i> 5.7 mg/kg	[19;76;284;145;119;351]
Sparnozacii	572.4		140 - 1200	170 - 1700	0.23 – 54.4 I _{Kr} AT-1; CHO	dog PF	3 3mg/kg/10min iv dog halothane		$[3.0 \ \mu M]$ (total = 5.4 μM)	[19;76;352;244;241;242;2 43;353;354]
Sultopride	354.5		726 - 1274	2048 - 3594		3	6		(, -,-, ,

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) I IC ₅₀ μM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)		10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
						_				[81;19;238]
Tacrolimus	822	99	7 – 20	0.09 - 0.24		5 (67% increase)		0.003 (total = 0.3 µM	0.04 iv 29% increase	[19;76;355;356;124]
						(1111)		[260ng/mL])		
Zimeldine	408.2								71	
									overdose, 100% increase in QTtop	[76;126]
CATEGORY 5										
Amlodipine	408.9	93	2 - 10	0.34 - 1.75						
Catininia	388.8	93	311	56	108 - 300		5			[76;327;357]
Cetirizine	300.0	93	511	50	rabbit VM		no effect dog			[81;327;358;329;208]
					37°C;COS		halothane			[01,027,000,027,200]
Chlorcyclizine	337.3					10				
						(increase in QT cat LH)				[81;359]
Chlorpheniramine	319.9	70	2 - 12	2 - 11	1.6	5				
					GP myocytes	(cat LH)				[19;76;220;359;360]
Cibenzoline	262.4	55	293 - 569	502 - 976	23	decreased/mixed effects/no effect			[1.23 µM]	
					IC_{50} for I_K as a				~5% increase	[81;361;362;363;364;365;
					whole				$(total = 2.74 \ \mu M$ [720 ng/ml])	366;367]
Clemastine	344		0.45 - 1.61	1.3 - 4.7		1				
						(increase in QT cat LH)				[19;368;359]
Cyproheptadine	287.4					10				
						(increase in QT cat LH)				[19;359]
Diltiazem	414.5	78	100 - 229	53 - 122	10 – 17.3	10				
					COS 22°C; HEK	decreased GP PM				[19;20;285;271;369;370]

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)	ETPC unbound nM (range)	hERG (or I _{Kr}) I IC ₅₀ μM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)	10-20% increase in vivo QTc µM unbound (range)	10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
					RT				_	
Doxorubicin	543.5	79-85								
Ebastine	469.7	98	90 - 120	3.8 - 5.1	0.3	10	10 - 30		<i>no effect</i> 0.14 - 1.43	[19;20;371]
					GP VM	<i>no effect</i> rabbit PF	iv GP 120 mg/kg po GP (in presence of ketoconazole) no effect [35]		0.14 mg/kg po no effect [372]; 1.43 mg/kg po <10% increase [127]	[81;373;374;14;375]
Encainide	352.4	70	250	213		1 - 3	2.7		3.5	
				[0.9nM]		Increased [376;377]; no effect at 1-3 μM [378]; decreased at 10 μM [378]			po <i>no effect</i>	[19;20;379;380;381]
Hydroxyzine	447.8					1				
						(increase in QT cat LH)				[81;359]
Ketoconazole	531.4	99	1500 - 9400	28 - 177	1.9 - 49		35			
					HEK 36°C; XO					[81;20;382;383;62;33;384 34]
Loratadine	382.9	98	2.0 - 8.6	0.10 - 0.45	0.173				0.14 - 0.29	
					HEK 37℃				0.14 mg/kg po no effect [309]; 0.29 mg/kg po 2% increase [385]	[81;203;254;386]
Mefloquine	378.3	98	1800	95.2	5.6	10	0.3-30 mg/kg i.v.		250 mg once/week	
					СНО	<i>decreased</i> in GP myocytes	<i>no effect</i> in aneasthetised GP		~5% increase in QT	[327;76;387;24;388]
Mizolastine	432.5	98.4	234	8.7	0.35					
										[10.203.380.300]

[19;203;389;390]

Drug	Mol Wt	% ppb (human)	ETPC ng/ml (range)		hERG (or I _{Kr}) IC ₅₀ µM (range)	10-20% increase APD ₉₀ μM (range)	10-20% increase in vivo QTc mg/kg - (range)	10-20% increase in vivo QTc µM unbound (range)	10-20% increase human QTc mg/kg (low) or [µM] unbound (range)	References
Nitrendipine	360.4	98	2 - 54	0.11 - 3.02	10 - 50 HEK RT; COS 22℃					[19;76;391;392;271;369]
Olanzapine	312.4	93	8 - 23	1.8 - 5.2	0.231 HEK 36℃					[19;76;393;394;62]
Phenytoin	252.3	89	10000	4360	100 (Cell type unknown)					[81;20;395]
Pyrilamine	285.3				1.1		3			
					GP myocytes		iv no effect			[19;220]
Quetiapine	383.5	83	22 - 74	10 – 33					[0.43 µM]	
Risperidone	410.5	88	2.1 - 6.2	0.61 - 1.81	0.15				no effect 0.03	[187;203;396;397]
					HEK 37℃				~20% increase in one patient, during cardiac arrest	
Tamoxifen	371.6	98.8	35 - 654	1 - 21	1 - 3.3	3.3			80mg/square metre	
						no effect				[19;398;399;400]
Tocainide	192.2	10	300 - 1000	1405 - 4683						
										[19;20]
Verapamil	491.1	90	125 - 400	25 - 81	0.14 - 0.83	1 - 10	0.03 - 0.3			
						<i>increased</i> in dog PF [401]; GP VM [402]; <i>decreased</i> in GP myocytes [339]				[81;20;19;369;30;403]

For the human QT data, doses in the source publications have generally been reported in 'mg'; these have been converted to 'mg/kg' by assuming a body weight of 70 kg. Also in this column, any information on plasma concentrations (unbound) are indicated in square brackets. For both the human and the in vivo (animal) data, the total concentrations are indicated in the comments, as these are the data that appeared in the source references. In order to simplify the table, references to data sources for each drug have been collated into a single column; it is generally possible to ascertain from the titles of the publications as to which data have been sourced from which publication. Where there are complex effects (e.g. biphasic effects; different effects in different tissues; conflicting reports) the references have been inserted next to the comments in the table. For full details refer to the source publications. *Abbreviations:* Mol Wt = molecular weight; %ppb = % plasma protein binding; ETPC = effective therapeutic plasma concentration; hERG (or I_{Kr}) $IC_{50} = IC_{50}$ in a hERG-transfected mammalian cell line (cell type indicated) unless otherwise indicated, or at I_{Kr} (where indicated); APD₉₀ = action potential duration in an in vitro cardiac preparation measured at 90% repolarisation; QTc = QT interval corrected for any change in heart rate; RT = room temperature (generally 20-25°C); XO = *Xenopus* oocytes; GP = guinea-pig; PF = Purkinje fibres; LH = Langendorff heart; PM = papillary muscle; VM = ventricular muscle; pentobarb = pentobarbitone anaesthesia.

Table 3

Comparison of effects of cisapride (relatively selective I_{Kr} blocker) with terfenadine (mixed ion channel activity) on action potential duration in different in vitro cardiac preparations

CISAPRIDE	0.01 µM	0.03 µM	0.1 μΜ	0.3 µM	1 μΜ	3 μΜ	10 µM		
hERG IC ₅₀	$IC_{50} = 0.002$	-0.045 μM [226;	227;228]						
Dog Purkinje fibres Pig Purkinje fibres	(no publishe	d data)			↑A	PD ₉₀ ; EADs [2	230]		
Rabbit Purkinje fibres	` I	,	↑APD ₉₀ ; E.	ADs [404;229]					
Rabbit ventricular myocytes Rabbit Langendorff heart			↑QT						
Guinea-pig ventricular myocytes Guinea-pig papillary muscle	(no publishe	d data)		↑API	000 [231]				
Guinea-pig Langendorff heart	↑APD ₉₀ [231] ↑MAPD ₉₀ [405]								
							Jade		
							a Tro		
TERFENADINE	0.01 µM	0.03 μΜ	0.1 μΜ	0.3 μΜ	1 µM	3 μΜ	Maded Trom 10 μM ητιρις//		
hERG IC ₅₀	$IC_{50} = 0$	0.02-0.20 µM [2]	20;232;254]				tips:/		
Dog Purkinje fibres			no effect [25	3]		-	no effect [230]		
Pig Purkinje fibres Rabbit Purkinje fibres				minin					
Rabbit ventricular myocytes					no effect [40		aem [4] mic.oup		
Rabbit Langendorff heart Guinea-pig ventricular myocytes	↑ Δ P	D ₉₀ [220]			1.87		ج 409] ↑APD ₉₀ [409]		
Guinea-pig ventreular hydeytes Guinea-pig papillary muscle		D90 [220] D90 [410]					412]		
Guinea-pig Langendorff heart					↑APD ₉₀ [41	2] ↓APD ₉₀ [4	412] <u>Sa</u>		

TdP propensity	drug	0.3 nM	1 3	10	30 1	00 3	00 1µM 3	3 10 3	30 100 300 1m	ηM
	dofetilide		I 		\bigtriangledown					L.,
1	ibutilide			D						
	almokalant									
-	azimilide									
	quinidine					Q	7 ft —			
	amiodarone	~						1		
	disopyramide									
	tedisamil				-		1			
	sematilide							🖣 🔍 I		
	D,L-sotalol						1			
	procainamide							\ T∎	• (1)	Ł.
	astemizole			Ø						L
^	cisapride	\bigtriangledown								
2	terodiline									
_	sertindole		- 🦻	Î						
	terfenadine	V =	┢╸ᠷ╞					\mathbf{D}		
	grepafloxacin									
	pimozide	* >>	1							
2	haloperidol									
J	thioridazine							()		
-	aprindine									
	bepridil	N N						ÛŪ		
	flecainide									
	erythromycin i.v.							1		
-	domperidone	1			0	D				1
Λ	sparfloxacin									
4	mibefradil									
	propafenone					-				
	desipramine					•				
	fluoxetine									
	imipramine					•				
	amitryptiline									
	fexofenadine									
	diphenhydramine	е			-			2		
	clarithromycin									
	erythromycin p.o							1	\mathbb{P}	
	nifedipine		•							
	ciprofloxacin									
	verapamil									
ち	risperidone									
J	loratadine	–								
	olanzapine		▎╺┿							
	ebastine							$ \varphi$		
	mizolastine				_			L		
	tamoxifen				•					
	chlorpheniramin	e						1		
	ketoconazole									
	mefloquine									
	diltiazem					T				
	nitrendipine									
	cibenzoline						— Τ			
	phenytoin									
	cetirizine				-	1				

Fig. 1 Schematic representation of in vitro and in vivo electrophysiological data in comparison to therapeutic plasma concentrations for 49 drugs with hERG/I_{Kr} and ETPC_{free} data. Effective free therapeutic plasma concentration (ETPC_{free}) range; \longrightarrow ETPC_{free} in presence of P450 inhibitor; \square hERG/I_{Kr} block (from lowest published IC₅₀ upwards);

hERG/I_{Kr} block (from lowest published IC₅₀ upwards); 10-20% increase in APD₉₀; \bigcirc decrease in APD₉₀; \bigcirc no effect on APD₉₀; \bigcirc increase in QTc in vivo; increase in QTc in humans. For details refer to Table 2.

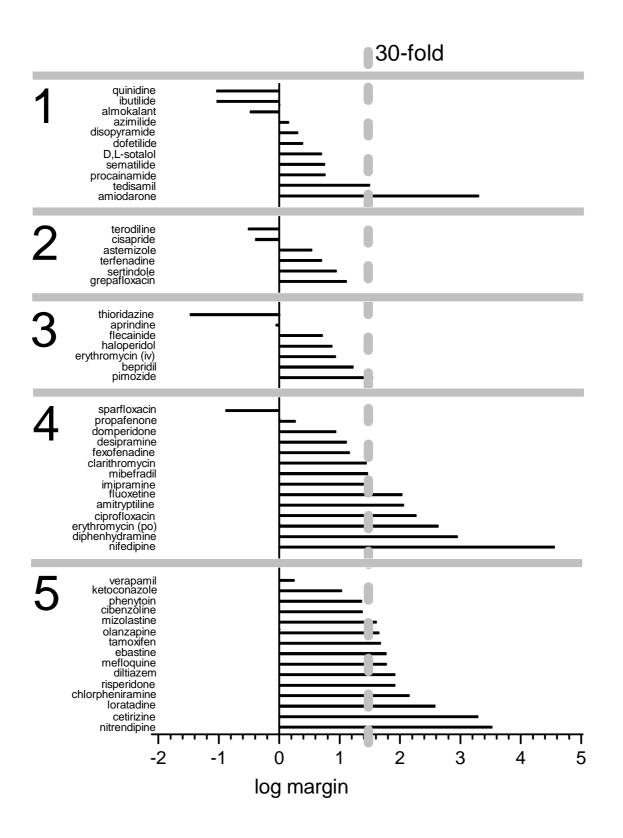
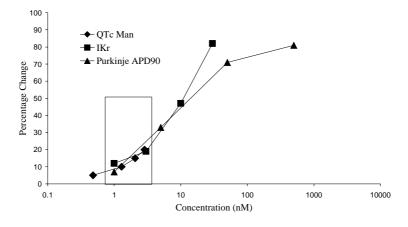
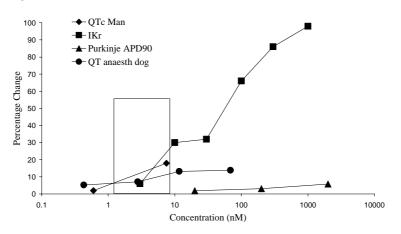




Fig. 2 Log margins of lowest published values for hERG/I_{Kr} IC₅₀ divided by the upper end of the ETPC_{unbound} range. Plots to the left of the origin indicate hERG activity within the therapeutic plasma concentration range. The vertical dotted line indicates a ratio of 30. For terfenadine the margin is based on a value of 4 nM for ETPC_{unbound} (max) as a concentration attained in the presence of a P₄₅₀ inhibitor [225]. For source data refer to Table 2.

Category 1: dofetilide

Category 2: terfenadine

Category 5: tamoxifen

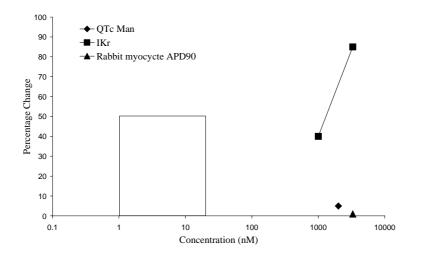


Fig. 3 Overlay plots of concentration-effect data for $hERG/I_{Kr}$, APD_{90} , QT in dog, and QT in human for representatives of categories 1, 2 and 5. In vivo data are plotted as unbound plasma concentration. Rectangle indicated effective therapeutic plasma concentration (unbound) in humans; for terfenadine this indicates the range obtained in the presence of a P450 inhibitor. For source references see Table 2.

References

¹ Raehl CL, Patel AK, LeRoy M. Drug-induced torsade de pointes. Clin Pharmacy 1985;4:675-690.

² Woosley RL. Cardiac actions of antihistamines. Ann Rev Pharmacol Toxicol 1996;36:233-252.

³ Yap YG, Camm AJ. The current cardiac safety situation with antihistamines. Clin Exp Allergy 1999;29 suppl 1:15-24.

⁴ Glassman AH, Bigger, JT. Antipsychotic drugs: prolonged QTc interval, torsade de

pointes, and sudden death. Am J Psychiat 2001;158:1774-1782.

⁵ Darpö, B. Spectrum of drugs prolonging QT interval and the incidence of torsades de pointes. Eur Heart J Supplements 2001;3 suppl K:K70-K80.

⁶ Viskin S. Long QT syndromes and torsade de pointes. Lancet 1999;354:1625-1633.

⁷ Haverkamp W, Breithardt G, Camm AJ et al. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Cardiovasc Res 2000;47:219-233 (published simultaneously in Eur Heart J 2000;21:1216-1231).

⁸ El-Sherif N, Turitto G. The long QT syndrome and torsade de pointes. Pacing Clin Electrophysiol 1999;22:91-110.

⁹ De Ponti F, Poluzzi E, Montanaro N. QT-interval prolongation by non-cardiac drugs: lessons to be learned from recent experience. Eur J Clin Pharmacol 2000;56:1-18.

¹⁰ De Ponti F, Poluzzi E, Montanaro N. Organising evidence on QT prolongation and occurrence of *Torsades de Pointes* with non-antiarrhythmic drugs: a call for consensus. Eur J Clin Pharmacol 2001;57:185-209.

¹¹ Catterall WA, Chandy KG, Gutman GA (eds). The IUPHAR Compendium of Voltage-gated Ion Channels, pp. 128-129. Leeds: IUPHAR Media, 2002.

¹² Committee for Proprietary Medicinal Products (CPMP) Points to Consider: The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products. CPMP/986/96, 1997.

¹³ Davis AS. The pre-clinical assessment of QT interval prolongation: a comparison of *in vitro* and *in vivo* methods. Human Exp Toxicol 1998;17:677-680.
 ¹⁴ Cavero I, Mestre M, Guillon J-M, Heuillet E. & Roach A. Preclinical *in vitro* cardiac electrophysiology: a method of predicting arrhythmogenic potential of antihistamines in humans? Drug Safety 2000;21 Suppl. 1:19-31 (and Panel Discussion pp. 81-87).

¹⁵ Carlsson L. Drug-induced torsade de pointes: the perspectives of industry. Eur Heart J Supplements 2001;3 suppl K:K114-K120.

¹⁶ Hammond TG, Carlsson L, Davis AS et al. Methods of collecting and evaluating non-clinical cardiac electrophysiology data in the pharmaceutical industry: results of an international survey. Cardiovasc Res 2001;49:741-750.

¹⁷ SoRelle R Withdrawal of Posicor from market. Circulation 1998;98:831-832.

¹⁸ Gläser S, Steinbach M, Opitz C, Wruck U, Kleber

FX. Torsades de Pointes caused by mibefradil. Eur J Heart Failure 2001; 3:627-630.

¹⁹ Martindale Online © The Pharmaceutical Press (2002)

²⁰ Goodman and Gilman's 'The Pharmacological Basis of Therapeutics', 8th edition, A.G. Gilman et al. (eds)., pp. 1655-1715. New York: Pergamon Press (1990).

(1990).²¹ Antzelevitch C, Shimizu W, Yan GX et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 1999;10:1124-1152.

²² Vos MA, van Opstal JM, Leunissen JDM, Verduyn SC. Electrophysiologic parameters and predisposing factors in the generation of druginduced Torsade de Pointes arrhythmias. Pharmacol Ther 2001;92:109-122.

²³ Kang J, Chen X-L, Wang L, Rampe D. Interactions of the antimalarial drug mefloquine with the human cardiac potassium channels KvLQT1/minK and HERG. J Pharmacol Exp Ther 2001;299:290-296.

²⁴ Coker SJ, Batey AJ, Lightbown ID, Díaz ME, Eisner DA. Effects of mefloquine on cardiac contractility and electrical activity *in vivo*, in isolated cardiac preparations, and in single ventricular myocytes. Br J Pharmacol 2000;129:323-330.

²⁵ Roden DM: Pharmacogenetics and drug-induced arrhythmias. Cardiovasc Res 2001;50:224-231.

²⁶ Roden DM: Taking the "idio" out of "idiosyncratic": predicting torsades de pointes. Pacing Clin Electrophysiol 1998;21:1029-1034.

²⁷ Krikler DM, Curry, PVL. Torsade de pointes, an atypical ventricular tachycardia. Br Heart J 1976;38:117-120.

²⁸ Kodama I, Kamiya K, Toyama J. Cellular electropharmacology of amiodarone. Cardiovasc Res 1997;35:13-29.

²⁹ Wang J-C, Kiyosue T, Kiritama K, Arita M. Bepridil differentially inhibits two delayed rectifier K^+ currents, I_{Kr} and I_{Ks} , in guinea-pig ventricular myocytes. Br J Pharmacol 1999;128:1733-1738.

 30 Chouabe C, Drici M-D, Romey G, Barhanin J. Effects of calcium channel blockers on cloned cardiac K^+ channels I_{Kr} and I_{Ks} . Thérapie 2000;55:195-202.

³¹ Hollingshead LM, Faulds D, Fitton A. Bepridil. A review of its pharmacological properties and therapeutic use in stable angina pectoris. Drugs 1992;44:835-857.

³² Nadamenee K, Singh BN. Control of cardiac arrhythmias by calcium antagonists. Ann NY Acad Sci 1988;522:536-552.

 33 Gras J, Llenas J, Palacios JM, Roberts DJ. The role of ketoconazole in the QTc interval prolonging effects of H₁-antihistamines in a guinea-pig model of arrhythmogenicity. Br J Pharmacol 1996;119:187-188.

³⁴ Williams A, Redfern WS, Day A, Gracie KJ, Patmore L. Prolongation of QTc interval by ketoconazole in conscious guinea-pigs implanted with ECG telemetry transducers. Br J Phamacol 1996;119:356P (Abstract).

³⁵ Gras J, Llenas J. Effects of H1 antihistamines on

animal models of QTc prolongation. Drug Safety 1999;21 suppl 1:39-44.

³⁶ McFadden EP. Clarke JG. Davies GJ. Kaski JC. Haider AW, Maseri A. Effect of intracoronary serotonin on coronary vessels in patients with stable angina and patients with variant angina. New Engl J Med 1991;324:648-654.

Frothingham R. Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifoloxacin, and moxifloxacin. Pharmacother 2001;21:1468-1472.

³⁸ Furuhata K, Hayakawa H, Soumi K, Arai H, Watanabe Y, Narita H. Histamine-releasing properties of T-3762, a novel fluoroquinolone antimicrobial agent in intravenous use. I. Effects of doses and infusion rate on blood pressure, heart rate and plasma histamine concentration. Biol Pharmaceutical Bull 1998;21:456-460.

³⁹ Lieberman P. The use of antihistamines in the prevention and treatment of anaphylaxis and anaphylactoid reactions. J Allergy Clin Immunol 1990;86:684-686.

⁴⁰ Pratt CM, Hertz RP, Ellis BE, Crowell SP, Louv W, Moyé L. Risk of developing life-threatening ventricular arrhythmia associated with terfenadine in comparison with over-the-counter antihistamines, ibuprofen and clemastine. Am J Cardiol 1994:73:346-352.

⁴¹ Zareba W, Moss AJ, Rosero SZ, Hajj-Ali R, Konecki J, Andrews M. Electrocardiographic findings in patients with diphenhydramine overdose. Am J Cardiol 1997;80:1168-1173. ⁴² Grayson HA, Kennedy JD. Torsades de pointes

and nifedipine. Ann Int Med 1982;97:144.

⁴³ Krikler DM, Rowland E. Torsade de pointes and nifedipine. Ann Int Med 1982;97:618-619.

⁴⁴ Gravson HA, Kennedy JD, Nifedipine and torsades de pointes. Ann Int Med 1983;99:281-282.

⁴⁵ Peters FPJ, de Zwaan C, Kho L. Prolonged QT interval and ventricular fibrillation after treatment with sublingual nifedipine for malignant hypertension. Arch Int Med 1997;157:2665-2666.

Daleau P, Lessard E, Groleau M-F, Turgeon J. Erythromycin blocks the rapid component of the delayed rectifier potassium current and lengthens repolarization of guinea pig ventricular myocytes. Circulation 1995;91:3010-3016.

⁴⁷ Benet LZ, Hoener B-A. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 2002;71:115-121.

⁴⁸ De Ponti F, Poluzzi E, Cavalli A, Recanatini M, Montanaro N. Safety of non-antiarrhythmic drugs that prolong the QT interval or induce torsade de pointes: an overview. Drug Safety 2002;25:263-286.

Sosunov E, Anyukhovsky EP, Rosen MR. Effects of quinidine on repolarisation in canine epicardium, midmyocardium, and endocardium. Circulation 1997;96:4011-4018.

⁵⁰ Nattel S, Singh BN. Evolution, mechanisms, and classification of antiarrhythmic drugs: focus on class III actions. Am J Cardiol 1999;84:11R-19R.

⁵¹ Tseng G-N. I_{Kr}: the hERG channel. J Mol Cell Cardiol 2001;33:835-849.

⁵² Spector PS, Curran ME, Keating MT, Sanguinetti

MC. Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K⁺ channel. Circ Res 1996:78:499-503.

⁵³ Vandenberg JI, Walker BD, Campbell TJ. HERG K⁺ channels: friend and foe. Trends Pharmacol Sci 2001;22:240-246.

⁵⁴ Hondeghem LM, Carlsson L, Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential Circulation antiarrhythmic. prolongation is 2001;103:2004-2013.

⁵⁵ Antzelevitch C, Sicouri S, Litovsky SH et al. Heterogeneity within the ventricular wall: electrophysiology and pharmacology of epicardial, endocardial and M cells. Circ Res 1991;69:1427-1449.

⁵⁶ Antzelevitch C. Heterogeneity of cellular repolarization in LQTS: the role of M cells. Eur Heart J Supplements 2001;3 suppl K:K2-K16.

Zhang M-Q. Chemistry underlying the cardiotoxicity of antihistamines. Current Med Chem 1997;4:171-184.

⁵⁸ Taglialatela M, Pannaccione A, Castaldo P et al. Molecular basis for the lack of HERG K⁺ channel block-related cardiotoxicity by the H₁ receptor blocker cetirizine compared to other secondgeneration antihistamines. Mol Pharmacol 1998:54:113-121.

⁵⁹ Segarra V, López M, Ryder H, Palacios JM, Roberts DJ. Computer-assisted comparison of the structural and electronic dispositions of ebastine and terfenadine. Drug Safety 1999;21 suppl 1:45-61.

⁶⁰ Morgan TK, Sullivan ME: An overview of class III electrophysiological agents: A new generation of antiarrhythmic therapy. In Progress in Medicinal Chemistry, ed by GP Ellis & DK Luscombe, pp 65-108. Elsevier Science Publishers BV. Amsterdam, 1992.

⁶¹ Mitcheson JS, Chen J, Lin M, Culbertson C, Sanguinetti MC. A structural basis for drug-induced long OT syndrome. PNAS 2000:97:12329-12333.

⁶² Ekins S, Crumb WJ, Sarazan RD, Wikel JH, Wrighton SA. Three-dimensional quantitative structure-activity rlationship for inhibition of human ether a-go-go-related gene potassium channel. J Pharmacol Exp Ther 2002;301:427-434.

⁶³ Crumb W, Cavero I. QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. PSTT 1999;2:270-280.

⁴ Champeroux P, Martel E, Vannier C et al. The preclinical assessment of the risk for QT interval prolongation. Thérapie 2000;55:101-109.

⁶⁵ Cavero I, Mestre M, Guillon J-M, Crumb W. Drugs that prolong QT interval as an unwanted effect: assessing their likelihood of inducing hazardous cardiac dysrhythmias. Exp. Opin. Pharmacother. 2000;1:947-973.

⁶⁶ Malik M, Camm AJ. Evaluation of drug-induced QT interval prolongation: implications for drug approval and labelling. Drug Safety 2001;24:323-351.

⁶⁷ Gralinski MR. The assessment of potential for QT interval prolongation with new pharmaceuticals: impact on drug development. J Pharmacol Toxicol Methods 2000;43:91-99.

⁶⁸ Shah RR. Drug-induced prolongation of the QT interval: why the regulatory concern? Fund Clin Pharmacol 2002;16:119-124.

⁶⁹ Shah RR. Drug-induced prolongation of the QT interval: regulatory dilemmas and implications for approval and labelling of a new chemical entity. Fund Clin Pharmacol 2002;16:147-156.

⁷⁰ Lu HR, Mariën R, Saels A, De Clerck F. Species plays an important role in drug-induced prolongation of action potential duration and early afterdepolarizations in isolated Purkinje fibres. J Cardiovasc Electrophysiol 2002;12:93-102.

⁷¹ Puglisi JL, Bers DM. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am J Physiol Cell Physiol 2001;281:C2049-C2060.

⁷² Webster R, Leishman D, Walker D. Towards a drug concentration effect relationship for QT prolongation and torsades de pointes. Current Opinion Drug Disc Dev 2002;5:116-126.

⁷³ Dessertenne F. La tachycardie ventriculaire à deux foyers opposés variables. Arch Mal Couer Vaiss 1966;59:263-272.

⁷⁴ MacWilliam JA. Some applications of physiology to medicine: II. Ventricular fibrillation and sudden death. Br Med J 1923;2:215-219.

⁷⁵ Hollister LE, Kosek JC. Sudden death during treatment with phenothiazine derivatives. JAMA 1965;192:93-96.

⁷⁶ DRUGDEX®, DrugKnowledge® System, Thomson Micromedex.

⁷⁷ Faber TS, Zehender M, Just H. Drug-induced torsade de pointes. Incidence, management and prevention. Drug Safety 1994; 11:463-476.
 ⁷⁸ Connolly SJ, Schnell DJ, Page RL, Wilkinson WE,

⁷⁸ Connolly SJ, Schnell DJ, Page RL, Wilkinson WE, Marcello SR, Pritchett EL. Dose-response relations of azimilide in the management of symptomatic, recurrent, atrial fibrillation. Am J Cardiol 2001; 88:974-979.

⁷⁹ Stambler BS, Wood MA, Ellenbogen KA, Perry KT, Wakefield LK, VanderLugt JT, and the ibutilide repeat dose study investigators. Efficacy and safety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter and fibrillation. Circulation 1996; 1613-1621.

⁸⁰ Wong W, Pavlou HN, Birgersdotter UM, Hilleman DE, Mohiuddin SM, Roden DM. Pharmacology of the class III antiarrhythmic sematilide in patients with arrhythmias. Am J Cardiol 1992; 69:206-212.

⁸¹ Reynolds JEF, Martindale. The Extra Pharmacopoeia. The Pharmaceutical Press, London (1989).

⁸² De Abajo FJ, Rodriguez LAG. Risk of ventricular arrhythmias associated with nonsedating antihistamine drugs. Br J Clin Pharmacol 1999; 47:307-313.

⁸³ Ball P. Quinolone-induced QT interval prolongation: a not-so-unexpected class effect. J Antimicrob Chemother 2000; 45:557-559.

⁸⁴ Deamer RL, Wilson DR, Clark DS, Prichard JG. Torsades de pointes associated with high dose levomethadyl acetate (ORLAAM). J Addict Dis 2001; 20:7-14. ⁸⁵ Stewart DA, Taylor J, Ghosh S et al. Terodiline causes polymorphic ventricular tachycardia due to reduced heart rate and prolongation of QT interval. Eur J Clin Pharmacol 1992; 42:577-580.

⁸⁶ Singh BN. Safety profile of bepridil determined from clinical trials in chronic stable angina in the United States. Am J Cardiol 1992; 69:68D-74D.

⁸⁷ Hoehns JD, Stanford RH, Geraets DR, Skelly KS, Lee HC, Gaul BL. Torsades de pointes associated with chlorpromazine: case report and review of associated ventricular arrhythmias. Pharmacother 2001; 21:871-883.

⁸⁸ Wickers F, Haissaguere M, Palussiere J. QT prolongation and induction of torsades de pointe by flecainide. Apropos of a case. Arch Mal Coeur Vaiss 1988; 81:1283-1285.

⁸⁹ Prystowsky EN. Inpatient versus outpatient initiation of antiarrhythmic drug therapy for patients with supraventricular tachycardia. Clin Cardiol 1994; 17:II7-II10.

⁹⁰ Palitzsch KD, Bode H, Huck K, Usadel KH. Successful multiple resuscitation in flecainide poisoning. Dtsch Med Wodenschr 1992; 117:56-60.

⁹¹ Hunt N, Stern RA. The association between intravenous haloperidol and torsades de pointes. Three cases and a literature review. Psychosomatics. Psychosomatics 1995; 36:541-549.

⁹² Kennelly BM. Comparison of lidoflazine and quinidine in prophylactic treatment of arrhythmias. Br Heart J 1977; 39:540-546.

⁹³ Herrmann HC, Kaplan LM, Bierer BE. QT prolongation and torsades de pointes ventricular tachycardia produced by the tetracyclic antidepressant agent maprotiline. Am J Cardiol 1983; 51:904-906.

⁹⁴ Abinander EG. QT prolongation and torsades de pointes ventricular tachycardia produced by maprotiline. Am J Cardiol 1984; 53:654.

⁹⁵ Rialan A, Richard M, Deutsch P, Ouattara B. Torsades de pointes in a patient under long-term maprotiline therapy. Apropos of a case. Ann Cardiol Angeiol 1996; 45:123-125.

⁹⁶ Lentini S, Rao ML, Schroder R, Luderitz B, Bauriedel G. QT prolongation and torsade de pointes tachycardia during therapy with maprotiline. Differential diagnosis and therapeutic aspects. Dtsche Med Wochenschrift 2001; 126:1396-1400.

⁹⁷ Curtis RA, Giacona N, Burrows D, Bauman JL, Schaffer M. Fatal maprotiline intoxication. Drug Intell Clin Pharm 1984; 18:716-720.

⁹⁸ Krahenbuhl S, Sauter B, Kupferschmidt H, Krause M, Wyss PA, Meier PJ. Case report: reversible QT prolongation with torsades de pointes in a patient with pimozide intoxication. Am J Med Sci 1995; 309:315-316.

⁹⁹ Sartori M, Pratt CM, Young JB. Torsade de pointe. Malignant cardiac arrhythmia induced by amantadine poisoning. Am J Med 1984; 77:388-391.

¹⁰⁰ Davison ET. Amitriptyline-induced torsade de pointes. Successful therapy with atrial pacing. J Electrocardiol 1985; 18:299-302.

¹⁰¹ Sing K, Erickson T, Amitai Y, Hryhorczuk D. Chloral hydrate toxicity from oral and intravenous administration. J Toxicol Clin Toxicol 1996; 34:101¹⁰² Demaziere J, Fourcade JM, Busseuil CT, Adeleine P, Meyer SM, Saissy JM. The hazards of chloroquine self prescription in west Africa. J Toxicol Clin Toxicol 1995; 33:369-370.

¹⁰³ Kamuchi H, Nii T, Eguchi K et al. Clarithromycin associated with torsades de pointes. Jap Circ J 1999; 63:421-422.

¹⁰⁴ Schrem SS, Belsky P, Schwartzman D, Slater W. Cocaine-induced torsades de pointes in a patient with the idiopathic long QT syndrome. Am Heart J 1990; 120:980-984.

 ¹⁰⁵ Singh N, Singh HK, Singh PP, Khan IA. Cocaineinduced torsades de pointes in idiopathic long QT syndrome. Am J Ther 2001; 8:299-302.
 ¹⁰⁶ Casazza F, Fiorista F, Rustici A, Brambilla G.

¹⁰⁶ Casazza F, Fiorista F, Rustici A, Brambilla G.
 Torsade de pointes caused by tricyclic antidepressive agents. Description of a clinical case. Giornale Ital Cardiol 1986; 16:1058-1061.
 ¹⁰⁷ Strasberg B, Coelho A, Welch W, Swiryn S,

¹⁰⁷ Strasberg B, Coelho A, Welch W, Swiryn S, Bauernfeind R, Rosen K. Doxepin induced torsade de pointes. Pacing Clin Electrophysiol 1982; 5:873-877.

¹⁰⁸ Alter P, Tontsch D, Grimm W. Doxepin-induced torsade de pointes tachycardia. Annals Int Med 2001; 135:384-385.

¹⁰⁹ Pinto YM, van Gelder IC, Heeringa M, Crijns HJGM. QT lengthening and life-threatening arrhythmias associated with fexofenadine. Lancet 1999; 353:980.

¹¹⁰ Appleby M, Mbewu A, Clarke B. Fluoxetine and ventricular torsade - is there a link? Int J Cardiol 1995; 49:178-180.

¹¹¹ Chvilicek JP, Hurlbert BJ, Hill GE. Diureticinduced hypokalaemia inducing torsades de pointes. Can J Anaesthesia 1995; 42:1137-1139.

¹¹² Tzivoni D, Keren A, Cohen AM et al. Magnesium therapy for torsades de pointes. Am J Cardiol 1984; 53:528-530.

¹¹³ Cocco G, Strozzi C, Chu D, Pansini R. Torsades de pointes as a manifestation of mexiletine toxicity. Am Heart J 1980; 100:878-880.

¹¹⁴ Jain A, Jenkins MG. Intracoronary electrocardiogram during torsade des pointes secondary to intracoronary papaverine. Cathet Cardiovasc Diagn 1989; 18:255-257.

¹¹⁵ Kern MJ, Deligonul U, Serota H, Gudipati C, Buckingham T. Ventricular arrhythmia due to intracoronary papaverine: analysis of QT intervals and coronary vasodilatory reserve. Cathet Cardiovasc Diagn 1990; 19:229-236.

¹¹⁶ Vrolix M, Piessens J, De Geest H. Torsades de pointes after intracoronary papaverine. Eur Heart J 1991; 12:273-276.

¹¹⁷ Kerr GD, Ingham G. Torsade de pointes associated with perhexiline maleate therapy. Aust N Z J Med 1990; 20:818-820.

¹¹⁸ Rosengarten M, Brooks R. Torsade de pointes ventricular tachycardia in a hypothyroid patient treated with propafenone. Can J Cardiol 1987; 3:234-239.

¹¹⁹ Hii JT, Wyse DG, Gillis AM, Cohen JM, Mitchell LB. Propafenone-induced torsade de pointes: cross-reactivity with quinidine. Pacing Clin Electrophysiol

1991; 14:1568-1570.

¹²⁰ Zhanel GG, Ennis K, Vercaigne L et al. A critical review of the fluoroquinolones: focus on respiratory infections. Drugs 2002; 62:13-59.

¹²¹ Verdun F, Mansourati J, Jobic Y et al. Torsades de pointe with spiramycine and metiquazine therapy. Apropos of a case. Arch Mal Coeur Vaiss 1997; 90:103-106.

¹²² Lande G, Drouin E, Gauthier C et al. Arrhythmogenic effects of sultopride chlorhydrate: clinical and cellular electrophysiological correlation. Ann Fr Anaesth Reanim 1992; 11:629-635.

¹²³ Montaz L, Varache N, Harry P et al. Torsades de pointes during sultopride poisoning. J Toxicol Clin Exp 1992; 12:481-486.

¹²⁴ Johnson MC, So S, Marsh JW, Muphy AM. QT prolongation and Torsades de Pointes after administration of FK506. Transplantation 1992; 53:929-930.
¹²⁵ Hodak SP, Moubarak JB, Rodriquez I, Gelfand

¹²⁵ Hodak SP, Moubarak JB, Rodriquez I, Gelfand MC, Alijani MR, Tracy CM. QT prolongation and near fatal cardiac arrhythmia after intravenous tacrolimus administration. A case report. Transplantation 1998; 66:535-537.

¹²⁶ Liljeqvist JA, Edvarsson N. Torsade de pointes tachycardias induced by overdosage of zimeldine. J Cardiovasc Pharmacol 1989; 14:666-670.

¹²⁷ Moss AJ, Chaikin P, Garcia JD, Gillen M, Roberts DJ, Morganroth J. A review of the cardiac systemic side-effects of antihistamines: ebastine. Clin Exp Allergy 1999; 29 Suppl 3:200-205.

¹²⁸ Ravin DS, Levenson JW. Fatal cardiac event following initiation of risperidone therapy. Ann Pharmacother 1997; 31:867-870.

¹²⁹ Bojorges R, Pastelin G, Sanchez-Perez S, Medez R, Kabela E. The effects of ajmaline in experimental and clinical arrhythmias and their relation to some electrophysiological parameters of the heart. J Pharmacol Exp Ther 1975; 193:182-193.

¹³⁰ Padrini R, Piovan D, Javarnaro A, Cucchini F,
 Ferrari M. Pharmacokinetics and electrophysiological effects of intravenous ajmaline.
 Clin Pharmacokinet 1993; 25:408-414.

¹³¹ Padrini R, Compostella L, Piovan D, Javarnaro A, Cucchini F, Ferrari M. Ajmaline test in a patient with chronic renal failure. A pharmacokinetic and pharmacodynamic study. Clin Pharmacokinet 1991; 21:150-154.

¹³² Kaul U, Mohan JC, Narula J, Nath CS, Bhatia ML. Ajmaline-induced torsade de pointes. Cardiology 1985; 72:140-143.

¹³³ Campbell TJ, Williams KM. Therapeutic drug monitoring: antiarrhythmic drugs. Br J Clin Pharmacol 2001; 52:21S-34S.

¹³⁴ Johnson JA, Livingston TN. Differences between blacks and whites in plasma protein binding of drugs. Eur J Clin Pharmacol 1997; 51:485-488.

¹³⁵ Virag L, Varro A, Papp JG. Effect of disopyramide on potassium currents in rabbit ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 1998; 357:268-275.

¹³⁶ Wyse KR, Ye V, Campbell TJ. Action potential prolongation exhibits simple dose-dependence for sotalol, but reverse dose-dependence for quinidine

^{106.}

and disopyramide: implications for proarrhythmia due to triggered activity. J Cardiovasc Pharmacol 1993; 21:316-322.

¹³⁷ Winslow E, Campbell JK, Marshall RJ. Comparative electrophysiological effects of disopyramide and bepridil on rabbit atrial, papillary, and Purkinje tissue: modification by reduced extracellular potassium. J Cardiovasc Pharmacol 1986; 8:1208-1216.

¹³⁸ Crosby HH, Hamlin RL, Strauch SM. Effects of disopyramide on the electrocardiogram and ventricular function in the unanesthetized dog. J Vet Pharmacol Ther 1984; 7:167-175.

 ¹³⁹ Cobbe SM, Hoffmann E, Ritzenhoff A, Brachmann J, Kubler W, Senges J. Actions of disopyramide on potential reentrant pathways and ventricular tachyarrhythmias in conscious dogs during the late post-myocardial infarction phase. Am J Cardiol 1984;53:1712-1718.
 ¹⁴⁰ Nowinski K, Bergfeldt L. "Normal" response of

¹⁴⁰ Nowinski K, Bergfeldt L. "Normal" response of the Q-T interval and Q-T dispersion following intravenous injection of the sodium channel blocker disopyramide: methodological aspects. Cardiovasc Drugs Ther 1995; 9:573-580.

¹⁴¹ Kurita T, Ohe T, Shimizu W et al. Early afterdepolarizationlike activity in patients with class IA induced long QT syndrome and torsades de pointes. Pacing Clin Electrophys 1997; 20:695-705. ¹⁴² Coyle JD, Carnes CA, Schaal SF, Muir WW.

¹⁴² Coyle JD, Carnes CA, Schaal SF, Muir WW. Electrophysiologic Interactions of Procainamide and N-Acetylprocainamide in Isolated Canine Cardiac Purkinje Fibers. J Cardiovasc Pharmacol 1992; 20:197-205.

¹⁴³ Yang T, Snyders D, Roden DM. Drug block of I(Kr): model systems and relevance to human arrhythmias. J Cardiovasc Pharmacol 2001; 38:737-744.

¹⁴⁴ Yang T, Snyders DJ, Roden DM. Discordance between IKr block and torsade de pointes. Circulation 1997; 96:I-554.

¹⁴⁵ Koller B, Franz MR. New classification of moricizine and propafenone based on electrophysiologic and electrocardiographic data from isolated rabbit heart. J Cardiovasc Pharmacol 1994; 24:753-760.

¹⁴⁶ Trohman RG, Sahu J. Drug-Induced Torsade de Pointes. Circulation 1999; 99:E7.

¹⁴⁷ Po SS, Wang DW, Yang IC, Johnson JPJ, Nie L, Bennett PB. Modulation of HERG potassium channels by extracellular magnesium and quinidine. J Cardiovasc Pharmacol 1999; 33:181-185.

¹⁴⁸ Komeichi K, Tohse N, Nakaya H, Shimizu M, Zhu MY, Kanno M. Effects of N-acetylprocainamide and sotalol on ion currents in isolated guinea-pig ventricular myocytes. Eur J Pharmacol 1990; 187:313-322.

¹⁴⁹ Lu HR, Marien R, Saels A, De Clerck F. Are there sex-specific differences in ventricular repolarization or in drug-induced early afterdepolarizations in isolated rabbit purkinje fibers? J Cardiovasc Pharmacol 2000; 36:132-139.

¹⁵⁰ Benton RE, Sale M, Flockhart DA, Woosley RL. Greater quinidine-induced QTc interval prolongation in women. Clin Pharmacol Ther 2000; 67:413-418. ¹⁵¹ Lu HR, Remeysen P, Somers K, Saels A, De Clerck F. Female gender is a risk factor for druginduced long QT and cardiac arrhythmias in an in vivo rabbit model. J Cardiovasc Electrophysiol 2001; 12:538-545.

¹⁵² Anyukhovsky EP, Sosunov EA, Feinmark SJ, Rosen MR. Effects of quinidine on repolarization in canine epicardium, midmyocardium, and endocardium: II. In vivo study. Circulation 1997; 96:4019-4026.

¹⁵³ Duker G, Almgren O, Carlsson L. Electrophysiologic and hemodynamic effects of H 234/09 (almokalant), quinidine, and (+)-sotalol in the anesthetized dog. J Cardiovasc Pharmacol 1992; 20:458-465.

¹⁵⁴ Darbar D, Fromm MF, Dellorto S, Roden DM. Sympathetic activation enhances QT prolongation by quinidine. J Cardiovasc Electrophys 2001; 12:9-14.

¹⁵⁵ Webb CL, Dick M, Rocchini AP et al. Quinidine syncope in children. J Am Coll Cardiol 1987; 9:1031-1037.

¹⁵⁶ Darpö B, Almgren O. Almokalant - a selective class III antiarrhythmic compound. Cardiovasc Drugs Rev 1996;14:60-83.

¹⁵⁷ Carmeliet E. Use-dependent block and usedependent unblock of the delayed K+ current by almokalant in rabbit ventricular myocytes. Circ Res 1993;73:857-868.

¹⁵⁸ Abrahamsson C, Duker G, Lundberg C, Carlsson L. Electrophysiological and inotropic effects of

H 234/09 (almokalant) in vitro: a comparison with two other novel IK blocking drugs, UK-68,798 (dofetilide) and E-4031. Cardiovasc Res 1993;27:861-867.

¹⁵⁹ Ohler A, Amos GJ, Wettwer E, Ravens U. Frequency-dependent effects of E-4031, almokalant, dofetilide and tedisamil on action potential duration: no evidence for "reverse use dependent" block. Naunyn Schmiedebergs Arch Pharmacol 1994;349:602-610.

¹⁶⁰ Hallman K, Carlsson L. Prevention of class IIIinduced proarrhythmias by flecainide an animal model of the acquired long QT syndrome. Pharmacol Toxicol 1995;77:250-254.

¹⁶¹ Carlsson L, Abrahamsson C, Andersson B, Duker G, Schiller-Linhardt G. Proarrhythmic effects of the class III agent almokalant: importance of infusion rate, QT dispersion, and early afterdepolarisations. Cardiovasc Res 1993;27:2186-2193.

¹⁶² Darpö B, Almgren O, Bergstrand R, Franzen S, Edvardsson N. Assessment of frequency dependency of the class III effects of almokalant: a study using programmed stimulation and recording of monophasic action potentials and ventricular paced QT intervals. Cardiovasc Drugs Ther 1996;10:539-547.

¹⁶³ Veronese ME, McLean S, Hendriks R. Plasma protein binding of amiodarone in a patient population: measurement by erthrocyte partitioning and a novel glass-binding method. Br J Clin Pharmacol 1988;26:721-731.

¹⁶⁴ Greene HL. The efficacy of amiodarone in the treatment of ventricular tachycardia or ventricular fibrillation. Progr Cardiovasc Dis 1989;31:319-354.

¹⁶⁵ Kamiya K, Nishiyama A, Yasui K, Hojo M, Sanguinetti MC, Kodama I. Short- and long-term effects of amiodarone on the two components of cardiac delayed rectifier K+ current. Circulation 2001;103:1317-1324.

¹⁶⁶ Pallandi RT, Campbell TJ. Resting, and ratedependent depression of Vmax of guinea-pig ventricular action potentials by amiodarone and desethylamiodarone. Br J Pharmacol 1987;92:97-103.

¹⁶⁷ Quintero RA, Biagetti MO. Chronic versus acute effects of amiodarone on the Vmax-conduction velocity relationship and on the space constant in canine myocardium. J Cardiovasc Pharmacol 1994;24:122-132.

¹⁶⁸ Patterson E, Eller BT, Abrams GD, Vasiliades J, Lucchesi BR. Ventricular fibrillation in a conscious canine preparation of sudden coronary deathprevention by short- and long-term amiodarone administration. Circulation 1983;68:857-864.

¹⁶⁹ Winslow E, Campbell JK, Barron E. Effects of amiodarone on cardiac electrophysiology and inducibility of arrhythmias in chronically infarcted dogs: late arrhythmias, haemodynamics, and sympatholytic actions. J Cardiovasc Pharmacol 1990;16:896-904.

¹⁷⁰ Merot J, Charpentier F, Poirier JM, Coutris G, Weissenburger J. Effects of chronic treatment by amiodarone on transmural heterogeneity of canine ventricular repolarization in vivo: interactions with acute sotalol. Cardiovasc Res 1999;44:303-314.

¹⁷¹ Karam R, Marcello S, Brooks RR, Corey AE, Moore A. Azimilide dihydrochloride, a novel antiarrhythmic agent. Am J Cardiol 1998;81:40D-46D.

¹⁷² Salata JJ, Brooks RR. Pharmacology of azimilide dihydrochloride (NE-10064, a class III antiarrhythmic agent. Cardiovasc Drug Rev 1997;15:137-156.

¹⁷³ Bril A, Forest MC, Cheval B, Faivre JF. Combined potassium and calcium channel antagonistic activities as a basis for neutral frequency dependent increase in action potential duration: comparison between BRL-32872 and azimilide. Cardiovasc Res 1998;37:130-140.

¹⁷⁴ Qi XQ, Newman D, Dorian P. Azimilide decreases defibrillation voltage requirements and increases spatial organization during ventricular fibrillation. J Interv Cardiac Electrophysiol 1999;3:61-67.

¹⁷⁵ Xue Y, Yamada C, Chino D, Hashimoto K. Effects of azimilide, a KV® and KV(s) blocker, on canine ventricular arrhythmia models. Eur J Pharmacol 1999;376:27-35.

¹⁷⁶ Falk RH, DeCara JM. Dofetilide: a new pure class III antiarrhythmic agent. Am Heart J 2000;140:697-706.

¹⁷⁷ Tham TCK, MacLennan A, Burke MT, Harron DWG. Pharmacodynamics and pharmacokinetics of the class III antiarrhythmic agent dofetilide (UK-68,798) in humans. J Cardiovasc Pharmacol 1993;21:507-512.

¹⁷⁸ Carmeliet E. Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by

dofetilide. J Pharmacol Exp Ther 1992;262:809-817. ¹⁷⁹ Rampe D, Murawsky MK, Grau J, Lewis EW. The antipsychotic agent sertindole is a high-affinity antagonist of the human cardiac potassium channel

HERG. J Pharmacol Exp Ther 1998;286:788-793. ¹⁸⁰ Jurkiewicz NK, Sanguinetti MC. Rate-dependent

prolongation of cardiac action potentials by a methanesulfonanilide Class III antiarrhythmic agent.

Circ Res 1993;72:75-83.

¹⁸¹ Kiehn J, Villena P, Beyer T, Brachmann J. Diffrential effects of the new class III agent dofetilide on potassium currents in guinea pig cardiomyocytes. J Cardiovasc Pharmacol 1994;24:566-572.

¹⁸² Montero M, Schmitt C. Recording of transmembrane action potentials in chronic ischemic heart disease and dilated cardiomyopathy and the effects of the new class III antiarrhythmic agents D-sotalol and dofetilide. J Cardiovasc Pharmacol 1996;27:571-577.

¹⁸³ Gout B, Jean J, Bril A. Comparative effects of a potassium channel blocking drug, UK-68,798, and a specific bradycardic agent, UL-FS 49, on exercise-induced ischemia in the dog: significance of diastolic time on ischemic cardiac function. J Pharmacol Exp Ther 1992;262:987-994.

¹⁸⁴ Black SC, Chi L, Mu DX, Lucchesi BR. The antifibrillatory actions of UK-68,798, a class III antiarrhythmic agent. J Pharmacol Exp Ther 1991;258:416-423.

¹⁸⁵ Andersen HR, Wiggers H, Knudsen LL, Simonsen I, Bloch Tomsen PE, Christiansen N. Dofetilide reduces the incidence of ventricular fibrillation during acute myocardial ischaemia. A randomised study in pigs. Cardiovasc Res 1994;28:1635-1640.

¹⁸⁶ Demolis JL, Funck-Brentano C, Ropers J, Ghadanfar M, Nichols DJ, Jaillon P. Influence of dofetilide on QT-interval duration and dispersion at various heart rates during exercise in humans. Circulation 1996;94:1592-1599.

¹⁸⁷ International Drug Directory 17th Edition.

¹⁸⁸ Foster RH, Wilde MI, Markham A. Ibutilide - A review of its pharmacological properties and clinical potential in the acute management of atrial flutter and fibrillation. Drugs 1997;54:312-330.

¹⁸⁹ Stambler BS, Wood MA, Ellenbogen KA, Perry KT, Wakefield LK, VanderLugt JT and the Ibutilide Repeat Dose Study Investigators. Efficacy and safety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter and fibrillation. Circulation 1996;1613-1621.

¹⁹⁰ Yang T, Snyders DJ, Roden DM. Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (IKr) in AT-1 cells. Concentration-, time-, voltage-, and use-dependent effects. Circulation 1995;91:1799-1806.

¹⁹¹ Lee KS. Ibutilide, a new compound with potent class III antiarrhythmic activity, activates a slow inward Na+ current in guinea pig ventricular cells. J Pharmacol Exp Ther 1992;262:99-108.

¹⁹² Lee KS, Tsai TD, Lee EW. Membrane activity of Class III antiarrhythmic compounds;a comparison between ibutilide, d-sotalol, E-4031, sematilide and dofetilide. Eur J Pharmacol 1993;234:43-53.

¹⁹³ Amos GJ, Abrahamsson C, Duker G, Hondeghem L, Palmer M, Carlsson L. Potassium and calcium current blocking properties of the novel antiarrhythmic agent H 345/52: implications for proarrhythmic potential. Cardiovasc Res 2001;49:351-360.
¹⁹⁴ Buchanan LV, Kabell G, Turcotte UM, Brunden

¹⁹⁴ Buchanan LV, Kabell G, Turcotte UM, Brunden MN, Gibson JK. Effects of ibutilide on spontaneous and induced ventricular arrhythmias in 24-hour canine myocardial infarction: a comparative study with sotalol and encainide. J Cardiovasc Pharmacol 1992;19:256-263.

¹⁹⁵ Nabih MA, Prcevski P, Fromm BS et al. Effect of ibutilide, a new class III agent, on sustained atrial fibrillation an a canine model of acute ischemia and myocardial dysfunction induced by microembolization. Pacing Clin Electrophys 1993;16:1975-1983.

¹⁹⁶ Wesley RC, Farkhani F, Morgan D, Zimmerman D. Ibutilide: enhanced defibrillation via plateau sodium current activation. Am J Physiol 1993;264:H1269-H1274.

¹⁹⁷ Abi-Mansour P, Carberry PA, McCowan RJ, Henthorn RW, Dunn GH, Perry KT. Conversion efficacy and safety of repeated doses of ibutilide in patients with atrial flutter and atrial fibrillation. Am Heart J 1998;136:632-642.

¹⁹⁸ Ishii Y, Muraki K, Kurihara A, Imaizumi Y, Watanabe M. Effects of sematilide, a novel class III antiarrhythmic agent, on membrane currents in rabbit atrial myocytes. Eur J Pharmacol 1997;331:295-302.

¹⁹⁹ Ishii Y, Muraki K, Kurihara A, Imaizumi Y, Watanabe M. Effects of sematilide, a novel class III antiarrhythmic agent, on delayed rectifier K+ current in guinea pig atrial myocytes. Jpn J Pharmacol 1996;71:361-365.

²⁰⁰ Sawanobori T, Adaniya H, Namiki T, Hiraoka M. Rate-dependent effects of sematilide on action potential duration in isolated guinea pig ventricular myocytes. J Pharmacol Exp Ther 1994;271:302-310.

²⁰¹ Brooks RR, Drexler AP, Maynard AE, Al-Khalidi H, Kostreva DR. Proarrhythmia of azimilide and other class III antiarrhythmic agents in the adrenergically stimulated rabbit. Exp Biol Med 2000;223:183-189.

²⁰² Beatch GN, Davis DR, Laganière, Williams BA. Rate-dependent effects of sematilide on ventricular monophasic action potentials duration and delayed rectifier K+ current in rabbits. J Cardiovasc Pharmacol 1996;28:618-630.

²⁰³ ABPI Data Sheet Compendium, 1999-2000.

²⁰⁴ Drug Consults.

²⁰⁵ Carmeliet E. Electrophysiologic and voltage clamp analysis of the effects of sotalol on isolated cardiac muscle and Purkinje fibers. J Pharmacol Exp Ther 1985;232:817-825.

²⁰⁶ Montero M, Schmitt C. Differential effects of Dsotalol on endocardial and epicardial action potentials of human ventricular myocardium in dilated cardiomyopathy. J Cardiovasc Pharmacol 1994;24:883-889.

²⁰⁷ Kidwell GA, Gonzalez MD. Effects of flecainide and D-sotalol on myocardial conduction and refractoriness: relation to antiarrhythmic and proarrhythmic drug effects. J Cardiovasc Pharmacol 1993;21:621-632.

²⁰⁸ Weissenburger J, Noyer M, Cheymol G, Jaillon P.
 Electrophysiological effects of cetirizine, astemizole and d-sotalol in a canine model of long QT syndrome. Clin Exp Allergy 1999;29:190-196.
 ²⁰⁹ Gomoll AW, Lekich RF, Bartek MJ, Comereski

²⁰⁹ Gomoll AW, Lekich RF, Bartek MJ, Comereski CR, Antonaccio MJ. Comparability of the electrophysiologic responses and plasma and myocardial tissue concentrations of sotalol and its d stereoisomer in the dog. J Cardiovasc Pharmacol 1990;16:204-211.

²¹⁰ Cui G, Sen L, Sager P, Uppal P, Singh BN. Effects of amiodarone, sematilide, and sotalol on QT dispersion. Am J Cardiol 1994;74:896-900.

²¹¹ Doggrell SA. Tedisamil: master switch of nature? Exp Opinion Invest Drugs 2001;10:129-138.

²¹² Dukes ID, Cleemann L, Morad M. Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharmacol Exp Ther 1990;254:560-569.

²¹³ Nemeth M, Virag L, Hala O et al. The cellular electrophysiological effects of tedisamil in human atrial and ventricular fibers. Cardiovasc Res 1996;31:246-248.

²¹⁴ Wallace AA, Stupienski RF, Baskin EP et al. Cardiac electrophysiologic and antiarrhythmic actions of tedisamil. J Pharmacol Exp Ther 1995;273:168-175.

²¹⁵ Bargheer K, Bode F, Klein HU, Trappe HJ, Franz MR, Lichtlen PR. Prolongation of monophasic action potential duration and the refractory period in the human heart by tedisamil, a new potassium-blocking agent. Eur Heart J 1994;15:1409-1414.

²¹⁶ Demolis JL, Martel C, Funck-Brentano C, Sachse A, Weimann H, Jaillon P. Effects of tedisamil, atenolol and their combination on heart and rate-dependent QT interval in healthy volunteers. Br J Clin Pharmacol 1997;44:403-409.

²¹⁷ Paton DM, Webster DR. Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines). Clin Pharmacokinet 1985;10:477-497.

²¹⁸ Simons FE, Kesselman MS, Giddins NG, Pelech AN, Simons KJ. Astemizole-induced torsade de pointes. Lancet 1988;2(8611):624.

²¹⁹ Zhou Z, Vorperian VR, Gong Q, Zhang S, January CT. Block of HERG potassium

channels by the antihistamine astemizole and its metabolites desmethylastemizole and

norastemizole. J Cardiovasc Electrophysiol 1999;10:836-843.

²²⁰ Salata JJ, Jurkiewicz NK, Wallace AA, Stupienski RF, Guinosso PJ, Lynch JJ. Cardiac electrophysiological actions of the histamine H1receptor antagonists astemizole and terfenadine compared with chlorpheniramine and pyrilamine. Circ Res 1995;76:110-119.

²²¹ Adamantidis MM, Lacroix DL, Caron JF, Dupuis BA. Electrophysiological and arrhythmogenic effects of the histamine Type-1 receptor antagonist astemizole on rabbit Purkinje fibers: clinical

relevance. J Cardiovasc Pharmacol 1995;26:319-327.

²²² Corinaldesi R, Stanghellini V, Tosetti C et al. The effect of different dosage schedules of cisapride on gastric emptying in idiopathic gastroparesis. Eur J Clin Pharmacol 1993;44:429-432.

²²³ Meuldermans W, Van Peer A, Hendrickx J et al. Excretion and biotransformation of cisapride in dogs and humans after oral administration. Drug Metab Dispos 1988;16:403-409.

²²⁴ Gross AS, Goh YD, Addison RS, Shenfield GM. Influence of grapefruit juice on cisapride pharmacokinetics. Clin Pharmacol Ther 1999;65:395-401.

²²⁵ Webster R, Allan G, Anto-Awuakye K et al. Pharmacokinetic/pharmacodynamic assessment of the effects of E4031, cisapride, terfenadine and terodiline on monophasic action potential duration in dog. Xenobiotica 2001;31:633-650.

²²⁶ Rampe D, Roy M-L, Dennis A, Brown AM. A mechanism for the proarrhythmic effects of

cisapride (Propulsid): high-affinity blockade of the human cardiac potassium channel HERG. FEBS Lett 1997;417:28-32.

²²⁷ Mohammad S, Zhou Z, Gong Q, January CT. Blockage of the HERG human cardiac K+

channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol 1997;273:H2534-H2538.

²²⁸ Walker BD, Singleton CB, Bursill JA et al. Inhibition of the human ether-a-go-go-related gene (HERG) potassium channel by cisapride: affinity for open and inactivated states. Br J Pharmacol 1999;128:444-450.

²²⁹ Carlsson L, Amos GJ, Andersson B, Drews L, Duker G, Wadstedt G. Electrophysiological

characterization of the prokinetic agents cisapride and mosapride in vivo and in vitro:

Implications for proarrhythmic potential. J Pharmacol Exp Ther 1997; 282:220-227.

²³⁰ Gintant GA, Limberis JT, McDermott JS, Wegner CD, Cox BF. The canine Purkinje fiber: An in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol 2001;37:607-618.

²³¹ Kii Y, Ito T. Effects of 5-HT4-receptor agonists, cisapride, mosapride citrate, and zacopride, on cardiac action potentials in guinea pig isolated papillary muscles. J Cardiovasc Pharmacol 1997;29:670-675.

²³² Leishman DJ, Helliwell R, Wakerell J, Wallis RM. Effects of E-4031, cisapide, terfenadine and terodiline on cardiac repolarisation in canine Purkinje fibre and HERG channels expressed in HEK293 cells. Br J Pharmacol 2001;133:130P (Abstract).
²³³ Spacing A, W title and T

²³³ Sugiyama A, Hashimoto K. Effects of gastrointestinal prokinetic agents, TKS159 and cisapride, on the in situ canine heart assessed by cardiohemodynamic and electrophysiological monitoring. Toxicol Appl Pharmacol 1998;152:261-269.

²³⁴ Modini C, Croci T, Langlois M, de Ponti F, Crema F. Intestinal prokinesia by two esters of 4amino-5-chloro-2-methoxybenzoic acid: involvement of 5-hydroxytryptamine-4 receptors and dissociation from cardiac effects in vivo. J Pharmacol Exp Ther 1999;288:1045-1052.

²³⁵ Hill SL, Evangelista JK, Pizzi AM, Mobassaleh M, Fulton DR, Berul CI. Proarrhythmia associated with cisapride in children. Pediatrics 1998;101:1053-1056.

²³⁶ Lupoglazoff JM, Bedu A, Faure C et al. Long QT syndrome under cisapride in neonates and infants. Arch Pediat 1997;4:509-514.

²³⁷ Drolet B, Zhang S, Deschenes D et al. Droperidol lengthens cardiac repolarization due to block of the rapid component of the delayed rectifier potassium current. J Cardiovasc Electrophysiol 1999;10:1597-1604.

²³⁸ Adamantidis MM, Kerram P, Dupuis BA. In vitro electrophysiological detection of iatrogenic

arrhythmogenicity. Fundam Clin Pharmacol 1994;8:391-407.

²³⁹ Adamantidis MM, Kerram P, Caron JF, Dupuis BA. Droperidol exerts dual effects on repolarization and induces early afterdepolarizations and triggered activity in rabbit Purkinje fibers. J Pharmacol Exp Ther 1993;266:884-893.

²⁴⁰ Lischke V, Behne M, Doelken P, Schledt U, Probst S, Vettermann J. Droperidol causes a dosedependent prolongation of the QT interval. Anesth Analg 1994;79:983-986.

²⁴¹ Bischoff U, Schmidt C, Netzer R, Pongs O. Effects of fluoroquinolones on HERG currents. Eur J Pharmacol 2000;406:341-343.

²⁴² Kang J, Wang L, Chen XL, Triggle DJ, Rampe D. Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol 2001;59:122-126.

²⁴³ Patmore L, Fraser S, Mair D, Templeton A. Effects of sparfloxacin, grepafloxacin, moxifloxacin, and ciprofloxacin on cardiac action potential duration. Eur J Pharmacol 2000;406:449-452.

²⁴⁴ Anderson ME, Mazur A, Yang T, Roden DM. Potassium Current Antagonist Properties

and Proarrhythmic Consequences of Quinolone Antibiotics. J Pharmacol Exp Ther 2001;296:806-810.

²⁴⁵ Shimoni Y, Posner P, Spindler AJ, Noble D. The effects of prenylamine on single ventricular myocytes of guinea-pig. Br J Pharmacol 1988;94:319-324.

²⁴⁶ Aidonidis I, Egel E, Hilbel T, Kuebler W, Brachmann J. Effects of prenylamine and AQ-A 39 on reentrant ventricular arrhythmias induced during the late myocardial infarction period in conscious dogs. J Cardiovasc Pharmacol 1993;22:401-407.

²⁴⁷ Oakley D, Jennings K, Puritz R, Krikler D, Chamberlain D. The effect of prenylamine on the QT interval of the resting electrocardiogram in patients with angina pectoris. Postgrad Med J 1980;56:753-756.

²⁴⁸ Frederiksen K, Adamantidis M. The atypical neuroleptic compound sertindole do not induce EAD's in rabbit Purkinje fibres despite a strong blocking effect of the HERG current (Ikr): comparison to other neuroleptic drugs. Soc Neurosci Abs 2000;26:1-2.

²⁴⁹ Drici MD, Wang WX, Liu XE, Woosley RL, Flockhart DA. Prolongation of QT Interval in Isolated Feline Hearts by Antipsychic Drugs. Br J Clin Psychopharmacol 1998;18:477-481.

²⁵⁰ Pezawas L, Quiner S, Moertl D et al. Efficacy, cardiac safety and tolerability of sertindole: a drug surveillance. Int Clin Psychopharmacol 2000;15:207-214.

²⁵¹ Hale A, Azorin J-M, Kasper S et al. Sertindole is associated with a low level of extrapyramidal symptoms in schizophrenic patients: Results of a phase III trial. Int J Psychiatry Clin Prac 2000;4:47-

54. ²⁵² Coutant JE, Westmark PA, Nardella PA, Walter SM. Okerholm RA. Determination of terfenadine and terfenadine acid metabolite in plasma using solidphase extraction and high-performance liquid chromatography with fluorescence detection. J Chromatogr 1991;570:139-148.

²⁵³ Lang DG, Wang CM, Wenger TL. Terfenadine alters action potentials in isolated canine purkinje fibers more than acrivastine. J Cardiovasc Pharmacol 1993;22:438-442.

²⁵⁴ Crumb WJ. Loratidine blockade of K+ channels in human heart: comparison with terfenadine under physiological conditions. J Pharmacol Exp Ther 2000;292:261-264. ²⁵⁵ Ohmura T, Chachin M, Tarui S et al. Effects of

terfenadine, astemizole and epinastine on cynomolgus electrocardiogram in conscious monkeys. Eur J Pharmacol 1999;378:169-175.

²⁵⁶ Lainée P, Perez L, Dubreuil B, Gillet G. Electrocardiographic effects of mizolastine and terfenadine in conscious dogs: Modifications induced by ketoconazole pretreatment. Jpn Pharmacol Ther 1998;26: 251-261.

²⁵⁷ Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR. Terfenadine-ketoconazole Pharmacokinetic interaction. and electrocardiographic consequences. JAMA 1993;269:1515-1518.

²⁵⁸ Hallen B, Gabreilsson J, Nyambati S, Johansson A, Larsson E, Guilbaud O. Concomitant single-dose and multiple-dose pharmacokinetics of terodiline in man, with a note on its enantiomers and major metabolites. Pharmacol Toxicol 1995;76:171-177.

²⁵⁹ Hartigan-Go K, Bateman DN, Daly AK, Thomas SHL. Stereoselective cardiotoxic effects of terodiline. Clin Pharmacol Ther 1996;60:89-98.

²⁶⁰ Yang T, Roden DM. The effects of erythromycin and several antibiotics on IKr in AT-1 cells. www.fenichel.net/QT%20stuff/pbydrug.htm. (1999).

261 Shuba LM, Kasamaki Y, Jones SE, Ogura T, McCullough JR, McDonald TF. Action potentials, contraction, and membrane currents in guinea pig ventricular preparations treated with the antispasmodic agent terodiline. J Pharmacol Exp Ther 1999;290:1417-1426.

²⁶² Jones SE, Ogura T, Shuba L, McDonald TF. Inhibition of the rapid component of the delayedrectifier K+ current by therapeutic concentration of the antispasmodic agent terodiline. Br J Pharmacol 1998;125:1138-1143.

263 Hayashi S, Natsukawa T, Suma C, Ukai Y, Yoshikuni Y. Kimura Κ. Cardiac electrophysiological actions of NS-21 and its active metabolite, RCC-36, compared with terodiline.

Naunyn Schmiedebergs Arch Pharmacol 1997:355:651-658.

²⁶⁴ Jones SE, Shuba LM, Zhabyeyev P, McCullough JR, McDonald TF. Differences in the effects of urinary incontinence agents S-oxybutynin and terodiline on cardiac K(+) currents and action potentials. Br J Pharmacol 2000;131:245-254. ²⁶⁵ Natsukawa T, Matsuzaki T, Hayashi S, Ukai Y,

Yoshikuni Y, Kimura K. Comparison of the effects of NS-21 and terodiline on the QTc interval in dogs. Gen Pharmacol 1998;30:137-142.

²⁶⁶ Pressler ML, Warner MR, Rubart M, Rardon DP, Zipes DP. In vivo and in vitro electrophysiologic effects of terodiline on dog myocardium. J Cardiovasc Electrophys 1995;6:443-454.

²⁶⁷ Yokota M, Inagaki H, Uematsu H et al. Nonlinear pharmacokinetics of aprindine hydrochloride in oral administration. Arzneimittel-Forschung 1987:37:184-188.

²⁶⁸ Horie M, Yoshida H. An antiarrhythmic agent with class Ib action, aprinidine, inhibits human IKr but not IKs heterologously expressed in COS7 cells. Circulation 1999;100:I-280.

Scagliotti D, Strasberg B, Hai HA, Kehoe R, K. Aprindine-induced Rosen polymorphous ventricular tachycardia. Am J Cardiol 1982;49:1297-1300.

²⁷⁰ Kato R, Singh BN. Effects of bepridil on the electrophysiologic properties of isolated canine and rabbit myocardial fibers. Am Heart J 1986;111:271-279. ²⁷¹ Chouabe C, Drici M-D, Romey G, Barhanin J,

Lazdunski M. HERG and KvLOT1/IsK, the

cardiac K+ channels involved in long-QT syndromes, are targets for calcium-channel blockers. Mol Pharmacol 1998:54:695-703.

²⁷² Campbell RM, Wooslev RL, Iansmith DHS, Roden DM. Lack of triggered automaticity despite repolarization abnormalities due to bepridil and lidoflazine. Pacing Clin Electrophys 1990;13:30-36.

Schmitt C, Brachmann J, Holzel C et al. Electrophysiological effects of bepridil in patients with refractory ventricular tachycardia assessed by programmed electrical stimulation. Clin Cardiol 1990;13:864-868.

²⁷⁴ Hill JA, Pepine CJ. Effects of bepridil on the resting electrocardiogram. Int J Cardiol 1984;6:319-

323. ²⁷⁵ Studenik C, Lemmens-Gruber R, Heistracher P. Proarrhythmic effects of antidepressants and neuroleptic drugs on isolated, spontaneously beating guinea-pig Purkinje fibers. Eur J Pharm Sci 1998:7:113-118.

²⁷⁶ Austin KL, Mather LE, Philpot CR, McDonald PJ. Intersubject and dose-related variability after intravenous administation of erythromycin. Br J Clin Phamacol 1980;10:273-279.

Rubart M, Pressler ML, Pride HP, Zipes DP. Electrophysiological mechanisms in a canine model of erythromycin-associated long QT syndrome. Circulation 1993:88:1832-44

²⁷⁸ Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX. Cellular and ionic mechanisms underlying

erythromycin-induced long QT intervals and torsade

de pointes. J Am Coll Cardiol 1996;28:1836-1848.

²⁷⁹ Oberg KC, Bauman JL. QT interval prolongation and torsades de pointes due to erythromycin lactobionate. Pharmacother 1995;15:687-692.

²⁸⁰ Ikeda N, Singh BN, Davis LD, Hauswirth O. Effects of flecainide on the electrophysiologic properties of isolated canine and rabbit myocardial fibers. J Am Coll Cardiol 1985;5:303-310.

²⁸¹ Winslow E, Campbell JK. Comparative frequency-dependent effects of three class Ic agents, Org 7797, flecainide, and propafenone, on ventricular action potential duration. J Cardiovasc Pharmacol 1991;18:911-917

²⁸² Kinnaird AA, Lederman CL, Man RY. Electrophysiological actions of flecainide in normal and infarcted canine Purkinje fibers. Eur J Pharmacol 1985;112:57-64

²⁸³ Borchard U, Boisten M. Effect of flecainide on action potentials and alternating current-induced arrhythmias in mammalian myocardium. J Cardiovasc Pharmacol 1982;4:205-212

²⁸⁴ Paul AA, Witchel HJ, Hancox JC. Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. Br J Pharmacol 2002;136:717-729.

²⁸⁵ Dollery C. Therapeutic Drugs, 2nd ed. London: Churchill Livingstone, 1999.

²⁸⁶ Abernethy DR, Wesche DL, Barbey JT et al. Stereoselective halofantrine disposition and effect: concentration-related QTc prolongation. Br J Clin Pharmacol 2001;51:231-237.

²⁸⁷ Tie H, Walker BD, Singleton CB et al. Inhibition of HERG potassium channels by the antimalarial agent halofantrine. Br J Pharmacol 2000;130:1967-1975.

²⁸⁸ Lightbown ID, Lambert JP, Edwards G, Coker SJ. Potentiation of halofantrine-induced QTc prolongation by mefloquine: correlation with blood concentrations of halofantrine. Br J Pharmacol 2001;132:197-204.

²⁸⁹ Ulrich S, Wurthmann C, Brosz M, Meyer FP. The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clin Pharmacokinet 1998;34:227-263.

²⁹⁰ Henderson RA, Lane S, Henry JA. Lifethreatening ventricular arrhythmia (torsades de pointes) after haloperidol overdose. Human Exp Toxicol 1991;10:59-62.

²⁹¹ Hanley SP, Hampton JR. Ventricular arrhythmias associated with lidoflazine: side-effects observed in a randomized trial. Eur Heart J 1983;4:889-893.

²⁹² Manzanares J, Valenzuela C, Delgado C, Tamargo J. Comparison of six new antidepressants on isolated rat atria. Arzneimittelforschung 1988;38:805-809.

²⁹³ Igawa O, Kotake H, Kurata Y et al. Electrophysiological effects of maprotiline, a tetracyclic antidepressant agent, on isolated cardiac preparations. J Cardiovasc Pharmacol 1998;11:167-173.

²⁹⁴ Girgis I, Gualberti J, Langan L et al. A prospective study of the effect of I.V. pentamidine

therapy on ventricular arrhythmias and QTc prolongation in HIV-infected patients. Chest 1997;112:646-653.

²⁹⁵ Cardoso JS, Mota-Miranda A, Conde C, Moura B, Rocha-Goncalves F, Lecour H. Inhalatory pentamidine therapy and the duration of the QT interval in HIV-infected patients. Int J Cardiol 1997;59:285-289.

²⁹⁶ Desta Z, Kerbusch T, Flockhart DA. Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther 1999;65:10-20.

²⁹⁷ Drolet B, Rousseau G, Daleau P, Cardinal R, Simard C, Turgeon J. Pimozide (Orap) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J Cardiovasc Pharmacol Ther 2001;6:255-260.

²⁹⁸ Kang J, Wang L, Cai F, Rampe D. High-affinity blockade of the HERG K+ channel by the neuroleptic pimozide. Eur J Pharmacol 2000;392:137-140.

²⁹⁹ Fulop G, Philips RA, Shapiro AK, Gomes JA, Shapiro E, Nordlie JW. ECG changes during haloperidol and pimozide treatment of Tourette's disorder. Am J Psychiatry 1987;144:673-675.

³⁰⁰ Drolet B, Vincent F, Rail J et al. Thioridazine lengthens repolarization of cardiac ventricular myocytes by blocking the delayed-rectifier potassium current. J Pharmacol Exp Ther 1999;288:1261-1268.

³⁰¹ Denvir MA, Sood A, Dow R, Brady AJ, Rankin AC. Thioridazine, diarrhoea and torsades de pointe. J Royal Soc Med 1998;91:145-147.

³⁰² Aoki FY, Stiver HG, Sitar DS, Boudreault A, Ogilvie RI. Prophylactic amantadine dose and plasma concentration-effect relationships in healthy adults. Clin Pharmacol Ther 1985;37:128-136

³⁰³ Wyse KR, Bursill JA, Campbell TJ. Differential effects of antiarrhythmic agents on post-pause repolarization in cardiac Purkinje fibres. Clin Exp Pharmacol Physiol 1996;23:825-829.

 304 Jo S-H, Youm JB, Lee CO, Earm YE, Ho W-K. Blockade of the HERG human cardiac K⁺ channel by the antidepressant drug amitriptyline. Br J Pharmacol 2000;129:1474-1480.

³⁰⁵ Nishimoto M, Hashimoto H, Ozaki T, Taguchi T, Ohara K, Nakashima M. Effects of imipramine and amitriptyline on intraventricular conduction, effective refractory period, incidence of ventricular arrhythmias induced by programmed stimulation, and on the electrocardiogram after muocardial infarction in dog. Arch Int Pharmacodyn Ther 1994;328:39-53.

³⁰⁶ Veith RC, Bloom V, Bielski R, Friedel RO. ECG effects of comparable plasma concentrations of desipramine and amitriptyline. J Clin Psychopharmacol 1982;2:394-398.

³⁰⁷ Bertino JJ, Fish D. The Safety Profile of the Flouroquinolones. Clin Ther 2000;22:798-817.

³⁰⁸ Volberg WA, Koci BJ, Su W, Lin J, Zhou J. Blockade of cardiac potassium channel human ethera-go-go-related gene (HERG) by macrolide antibiotics. J Pharmacol Exp Ther 2002;302:320-327. ³⁰⁹ Carr RA, Edmonds A, Shi H et al. Steady-state pharmacokinetics and electrocardiographic pharmacodynamics of clarithromycin and loratadine after individual or concomitant administration. Antimicrob Agents Chemother 1998;42:1176-1180.

³¹⁰ Kundu S, Williams SR, Nordt SP, Clark RF. Clarithromycin-induced ventricular tachycardia. Ann Emerg Med 1997;30:542-544

³¹¹ Sekkarie MA. Torsades de pointes in two chronic renal failure patients treated with cisapride and clarithromycin. Am J Kidney Dis 1997;30:437-439

³¹² Clarkson CW, Chang C, Stolfi A, George WJ, Yamasaki S, Pickoff AS. Electrophysiological effects of high cocaine concentrations on intact canine heart. Evidence for modulation by both heart rate and autonomic nervous system. Circulation 1993;87:1046-1047.

³¹³ Lukas SE, Sholar M, Lundahl LH et al. Sex differences in plasma cocaine levels and subjective effects after acute cocaine administration in human volunteers. Psychopharmacol 1996;125:346-354.

 ³¹⁴ Van Dyke C, Jatlow P, Ungerer J, Barash PG,
 Byck R. Oral cocaine: plasma concentrations and central effects. Science 1978; 200:211-213.
 ³¹⁵ Jeffcoat AR, Perez-Reyes M, Hill JM, Sadler BM,

³¹⁵ Jeffcoat AR, Perez-Reyes M, Hill JM, Sadler BM, Cook CE. Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking. Drug Metab Dispos 1989;17:153-159.

³¹⁶ Zhang S, Rajamani S, Chen Y et al. Cocaine blocks HERG, but not KvLQT1+minK, potassium channels. Mol Pharmacol 2001;59:1069-1076.

³¹⁷ Boutjdir M, Assadi M, el-Sherif N. Electrophysiologic effects of cocaine on subendocardial Purkinje fibers surviving 1 day of myocardial infarction. J Cardiovasc Electrophysiol 1995;6:729-736.

³¹⁸ Temesy-Armos PN, Fraker TDJ, Brewster PS, Wilkerson RD. The effects of cocaine on cardiac electrophysiology in conscious, unsedated dogs. J Cardiovasc Pharmacol 1992;19:883-891.

³¹⁹ Beckman KJ, Parker RB, Hariman RJ, Gallastegui JL, Javaid JI, Bauman JL. Hemodynamic and electrophysiological actions of cocaine. Effects of sodium bicarbonate as an antidote in dogs. Circulation 1991;83:1799-1807.

³²⁰ Muir WW, Strauch SM, Schaal SF. Effects of tricyclic antidepressant drugs on the electrophysiological properties of dog Purkinje fibres. J Cardiovasc Pharmacol 1982;4:82-90.

³²¹ Khalifa M, Drolet B, Daleau P et al. Block of potassium currents in guinea pig ventricular myocytes and lengthening of cardiac repolarization in man by the histamine H1 receptor antagonist diphenhydramine. J Pharmacol Exp Ther 1999;288:858-865.

³²² Lefez C, Plante S, Gleeton O, O'Hara G, Gilbert M, Turgeon J. Diphenhydramine Lengthens QTc in Man and prolongs Monophasic Action potential Duration in isolated guinea pig heart. Circulation 1994;90:I-248.

³²³ Drolet B, Rousseau G, Daleau P, Cardinal R, Turgeon J. Domperidone Should Not Be Considered a No-Risk Alternative to Cisapride in the Treatment of Gastrointestinal Motility Disorders. Circulation 2000;102:1883-1885.

³²⁴ Dumovic P, Burrows GD, Vohra J, Davies B, Scoggins BA. The effect of tricyclic antidepressants on the heart. Arch Toxicol 1976;35:255-262.

³²⁵ Giardina EG, Cooper TB, Suckow R, Saroff AL. Cardiovascular effects of doxepin in patients with ventricular arrhythmias. Clin Pharmacol Ther 1987;42:20-27.

³²⁶ Baker B, Dorian P, Shapiro C, Schell C, Mitchell J, Irvine MJ. Electrocardiographic effects of fluoxetine and doxepin in patients with major depressive disorder. J Clin Psychopharmacol 1997;17:15-21.

³²⁷ Physicians' Desk Reference® ©1974-2002. The Medical Economics Company.

³²⁸ Woosley RL, Chen Y, Freiman JP, Gillis RA. Mechanism of the cardiotoxic actions of

terfenadine. JAMA 1993;269:1532-1536.

³²⁹ Pratt C, Brown AM, Rampe D et al. Cardiovascular safety of fexofenadine HCl. Clin Exp Allergy 1999;29:212-216.

³³⁰ Thomas D, Gut B, Wendt-Nordahl G, Kiehn J. The antidepressant drug fluoxetine is an inhibitor of human ether-a-go-go-related gene (HERG) potassium channels. J Pharmacol Exp Ther 2002;300:543-548.

³³¹ Valenzuela C, Sanchez-Chapula J, Delpon E, Elizalde A, Perez O, Tamargo J. Imipramine blocks rapidly activating and delays slowly activating K+ current activation in guinea pig ventricular myocytes. Circ Res 1994;74:687-699.

³³² Czekalla J, Gastpar M, Hubner WD, Jager D. The effect of hypericum extract on cardiac conduction as seen in the electrocardiogram compared to that of imipramine. Pharmacopsychiatry 1997;30:86-88.

³³³ Persson B, Heykants J, Hedner T. Clinical pharmacokinetics of ketanserin. Clin Pharmacokinet 1991;20:263-279.

³³⁴ Zaza A, Malfatto G. Electrophysiologic effects of ketanserin on canine Purkinje fibers, ventricular myocardium and the intact heart. J Pharmacol Exp Ther 1989;250:397-405.

³³⁵ Le Grand B, Talmant JM, Rieu JP, Patoiseau JF, Colpaert FC, John GW. Investigation of the mechanism by which ketanserin prolongs the duration of the cardiac action potential. J Cardiovasc Pharmacol 1995;26:803-809.

³³⁶ Zehender M MT, Hohnloser S, Geibel A, Hartung J, Seiler KU:. Incidence and clinical relevance of QT prolongation caused by the new selective serotonin antagonist ketanserin. Multicenter Ketanserin Research Group. Clin Physiol Biochem 1990;8 Suppl 3:90-100.

³³⁷ Kaye GC, Mehta D, Wafa S, Camm AJ. Acute electrophysiologic effects of an HT2-serotonin antagonist, ketanserin, in humans. Cardiovasc Drugs Ther 1990;4:1157-1160.

³³⁸ Roden DM, Iansmith DH, Woosley RL. Frequency-dependent interactions of mexiletine and quinidine on depolarization and repolarization in canine Purkinje fibers. J Pharmacol Exp Ther 1987;243:1218-1224.

³³⁹ Benardeau A, Weissenburger J, Hondeghem L, Ertel E. Effects of the T-Type Ca2+ channel blocker mibefradil on repolarization of guinea pig, rabbit, dog, monkey and human cardiac tissue. J Pharmacol Exp Ther 2000;292:561-575.

 ³⁴⁰ Welker HA, Banken L. Mibefradil pharmacokinetic and pharmacodynamic population analysis. Int J Clin Pharmacol Res 1998;18:63-71.
 ³⁴¹ du Souich P, Besner JG, Clozel JP, Welker HA,

³⁺¹ du Souich P, Besner JG, Clozel JP, Welker HA, Lefebvre M, Caille G. Nonlinear kinetics and pharmacologic response to mibefradil. Clin Pharmacol Ther 2000;67:249-257.

³⁴² Sziligeti P, Banyasz T, Magyar J et al. Intracellular calcium and electrical restitution in mammalian cardiac cells. Acta Physiologica Scand 1998;163:139-147.

³⁴³ Verheijck EE, van Ginneken AC, Wilders R, Bouman LN. Contribution of L-type Ca2+ current to electrical activity in sinoatrial nodal myocytes of rabbits. Am J Physiol 1999;276:H1064-H1077.

³⁴⁴ Zhabyeyev P, Missan S, Jones SE, McDonald TF. Low-affinity block of cardiac K(+) currents by nifedipine. Eur J Pharmacol 2000;401:137-134.

³⁴⁵ Martin SE, Schmarkey LS, Oh DJ. Intracoronary papaverine but not adenosine reduces regional ventricular function. Cardiovasc Res 1993;27:2028-2036.

³⁴⁶ Christensen CW, Rosen LB, Gal RA, Haseeb M, Lassar TA, Port SC. Coronary vasodilator reserve. Comparison of the effects of papaverine and adenosine on coronary flow, ventricular function, and myocardial metabolism. Circulation 1991;83:294-303.

³⁴⁷ Inoue T, Asahi S, Takayanagi K, Morooka S, Takabatake Y. QT prolongation and possibility of ventricular arrhythmias after intracoronary papaverine. Cardiology 1994;84:9-13.

³⁴⁸ Walker BD, Valenzuela SM, Singleton CB et al. Inhibition of HERG channels stably expressed in a mammalian cell line by the antianginal agent perhexiline maleate. Br J Pharmacol 1999;127:243-251.

³⁴⁹ Vera Z, Gray DR, Harter KW, Janzen DA, Massumi RA, Mason DT. Electrophysiologic properties of perhexiline. Clin Pharmacol Ther 1975;18:623-628.

³⁵⁰ McDowell IF, Brennan GM, McEneny J et al. The effect of probucol and vitamin E treatment on the oxidation of low-density lipoprotein and forearm vascular responses in humans. Eur J Clin Invest 1994;24:759-765.

³⁵¹ Sarubbi B, Ducceschi V, Briglia N et al. Sotalol, propafenone, and flecainide: compared multiparametric analysis of ventricular repolarization in subjects without organic cardiopathy. Cardiologia 1996;41:645-651.

³⁵² Morganroth J, Hunt T, Dorr MB, Magner D, Talbot GH. The cardiac pharmacodynamics of therapeutic doses of sparfloxacin. Clin Ther 1999;21:1171-1181.

³⁵³ Satoh Y, Sugiyama A, Chiba K, Tamura K, Hashimoto K. QT-prolonging effects of sparfloxacin, a fluroquinolone antibiotic, assessed in the in vivo canine model with monophasic action potential monitoring. J Cardiovasc Pharmacol 2000;36:510-515. ³⁵⁴ Chiba K, Sugiyama A, Satoh Y, Shiina H, Hashimoto K. Proarrhythmic Effects of Fluoroquinolone Antibacterial Agents: in vivo Effects as Physiologic Substrate for Torsades. Toxicol App Pharmacol 2000;169:8-16.

³⁵⁵ DuBell WH, Lederer WJ, Rogers TB. K+ currents responsible for repolarization in mouse ventricle and their modulation by FK-506 and rapamycin. Am Phys Soc 2000;278:H886 - H897.

³⁵⁶ Minematsu T, Ohtani H, Sato H, Iga T. Sustained QT Prolongation Induced by Tacrolimus in Guinea Pigs. Life Sci 1997;65:197-202.

³⁵⁷ Donnelly R, Meredith PA, Miller SH, Howie CA, Elliott HL. Pharmacodynamic modeling of the antihypertensive response to amlodipine. Clin Pharmacol Ther 1993;54:303-310.

³⁵⁸ Carmeliet E. Effects of cetirizine on the delayed K+ currents in cardiac cells: comparison with terfenadine. Br J Pharmacol 1998;124:663-668.

³⁵⁹ Wang WX, Ebert SN, Liu XK, Chen YW, Drici MD, Woosley RL. 'Conventional' antihistamines slow cardiac repolarization in isolated perfused (Langendorff) feline hearts. J Cardiovasc Pharmacol 1998;32:123-128.

³⁶⁰ Kane KA, Garcia GYB, Sanchez PS, Pastelin G. Electrophysiological effects of lidocaine, lchlorpheniramine, and bepridil on rabbit sinus node pacemaker cells. J Cardiovasc Pharmacol 1983;5:102-108.

³⁶¹ Harron DWG, Brogden RN, Faulds D, Fitton A. Cibenzoline. A review of its pharmacological properties and therapeutic potential in arrhythmias. Drugs 1992;43:734-759.

³⁶² Sato T, Wu B, Kiyosue T, Arite M. Effects of cibenzoline, a new class Ia antiarrhythmic drug, on various membrane ionic currents and action potentials of guinea-pig ventricular cells. Naunyn Schmiedebers Arch Phamacol 1994;350:167-173.

³⁶³ Millar JS, Vaughan Williams EM. Effects on rabbit nodal, atrial, ventricular and Purkinje cell potentials of a new antiarrhythmic drug, cibenzoline, which protects against action potential shortening in hypoxia. Br J Pharmacol 1982;75:469-78

³⁶⁴ Arena JP, McArdle JJ, Laxminarayan S. Characterization of the class I antiarrhythmic activity of cibenzoline succinate in guinea pig papillary muscle. J Pharmacol Exp Ther 1987;240:441-450.

³⁶⁵ Satoh H, Ishii M, Hashimoto K. Effect of cibenzoline, a class I antiarrhythmic drug, on action potential in canine ventricular muscle. Jpn J Pharmacol 1987;44:113-119.

³⁶⁶ Poole-Wilson PA, Cobbe SM, Fry CH. Acute effects of diuretics on potassium exchange, mechanical function and the action potential in rabbit myocardium. Clin Sci Mol Med Suppl 1978;55:555-559.

559. ³⁶⁷ Touboul P, Atallah G, Kirkorian G et al. Electrophysiologic effects of cibenzoline in humans related to dose and plasma concentration. Am Heart J 1986;112:333-9

³⁶⁸ Schran HF, Petryk L, Chang CT, O'Connor R, Gelbert MB. The pharmacokinetics and bioavailability of clemastine and phenylpropanolamine in single-component and combination formulations. J Clin Pharmacol 1996;36:911-922.

³⁶⁹ Zhang S, Zhou ZF, Gong QM, Makielski C, January CT. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 1999;84:989-998.
 ³⁷⁰ Gjini V, Schreieck J, Korth M, Weyerbrock S,

³⁷⁰ Gjini V, Schreieck J, Korth M, Weyerbrock S, Schomig A, Schmitt C. Frequency dependence in the action of the Class III antiarrhythmic drug dofetilide is modulated by altering L-type calcium current and digitalis glucoside. J Cardiovasc Pharmacol 1998;31:95-100.

³⁷¹ Raabe NK, Storstein L. Cardiac arrhythmias in patients with small cell lung cancer and cardiac disease before, during and after doxorubicin administration. An evaluation of acute cardiotoxicity by continuous 24-hour Holter monitoring. Acta Oncol 1991;30:843-846.

³⁷² Geary WJI, Garcia JD, Dockhorn RJ. Electrocardiographic safety of 10 mg of ebastine in healthy elderly and young adult volunteers. Allergy 1995;50:199.

³⁷³ Wiseman LR, Faulds DE. A review of its pharmacological properties and clinical efficacy in the treatment of allergic disorders. Drugs 1996;51:260-277.

³⁷⁴ Ko CM, Ducic I, Fan J, Shuba YM, Morad M. Suppression of mammalian K+ channel family by ebastine. J Pharmacol Exp Ther 1997;281:233-244.

³⁷⁵ Hey JA, del Prado M, Sherwood J, Kreutner W, Egan RW. Comparative analysis of the cardiotoxicity proclivities of second generation antihistamines in an experimental model predictive of adverse clinical ECG effects. Arzneimittelforschung 1996;46:153-158.

³⁷⁶ Campbell TJ. Kinetics of onset of rate-dependent effects of Class I antiarrhythmic drugs are important in determining their effects on refractoriness in guinea-pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res 1983;17:344-352.

³⁷⁷ Lee JH, Rosen MR. Use-dependent actions and effects on transmembrane action potentials of flecainide, encainide, and ethmozine in canine purkinje fibers. J Cardiovasc Pharmacol 1991;18:285-292

 ³⁷⁸ Case CL, Hewett KW, Gillette PC.
 Developmental electrophysiology of encainide and its major metabolites on the Purkinje fiber action potential. Biol Neonate 1994;66:330-338.
 ³⁷⁹ Roden DM, Wood AJ, Wilkinson GR, Woosley

³⁷⁹ Roden DM, Wood AJ, Wilkinson GR, Woosley RL. Disposition kinetics of encainide and metabolites. Am J Cardiol 1986;58:4C-9C.

³⁸⁰ Samuelsson RG, Harrison DC. Electrophysiological evaluation of encainide with use of monophasic action potential recording. Am J Cardiol 1981;48:871-876.

³⁸¹ Jackman WM, Zipes DP, Naccarelli GV, Rinkenberger RL, Heger JJ, Prystowsky EN. Electrophysiology of oral encainide. Am J Cardiol 1982;49:1270-1278.

³⁸² Summers KK, Hardin TC, Gore SJ, Graybill JR. Therapeutic drug monitoring of systemic antifungal therapy. J Antimicrob Chemother 1997;40:753-764. ³⁸³ Dumaine R, Roy ML, Brown AM. Blockade of HERG and Kv1.5 by ketoconazole. J Pharmacol Exp Ther 1998;286:727-735.

³⁸⁴ Hicks PE, Redfern WS, Patmore L, Sheridan RD. Assessing the arrhythmogenic potential of compounds: regulatory and clinical perspectives, animal models and experience with terfenadine. General Pharmacology/Safety Pharmacology Discussion Group 1997;5th Annual Meeting (Abstract).

³⁸⁵ Abernethy DR, Barbey JT, Franc J et al. Loratadine and terfenadine interaction with nefazodone: Both antihistamines are associated with QTc prolongation. Clin Pharmacol Ther 2001;69:96-103.

³⁸⁶ Barecki ME, Casciano CN, Johnson WW, Clement RP. In vitro characterization of the inhibition profile of loratadine, desloratadine, and 3-OH-desloratadine for five human cytochrome P-450 enzymes. Drug Metab Dispos 2001;29:1173-1175.

³⁸⁷ Kang J, Chen X-L, Wang L, Rampe D. Interactions of the antimalarial drug mefloquine with the human cardiac potassium channels KvLQT1/minK and HERG. J Pharmacol Exp Ther 2001;299:290-296.

³⁸⁸ Coyne PE, Ajayi F, Harris J, Wiley T, Worthham D, Cantilena LR. ECG pharmacodynamics and pharmacokinetics of halofantrine and mefloquine. Clin Pharmacol Ther 1996;59:160.

³⁸⁹ Mesnil F, Dubruc C, Mentre F, Huet S, Mallet A, Thenot J, P. Pharmacokinetic analysis of mizolastine in healthy young volunteers after single oral and intravenous doses: noncompartmental approach and compartmental modeling. J Pharmacokinet Biopharm 1997;25:125-147.

³⁹⁰ Taglialatela M, Pannaccione A, Castaldo P, Giorgio G, Annunziato L. Inhibition of HERG1 K(+) channels by the novel second-generation antihistamine mizolastine. Br J Pharmacol 2000;131:1081-1088.

³⁹¹ Lasseter KC, Shamblen EC, Murdoch AA et al. Steady-state pharmacokinetics of nitrendipine in hepatic insufficiency. J Cardiovasc Pharmacol 1984;6 Suppl 7:S977-981.

³⁹² Kirch W, Hutt HJ, Heidemann H, Ramsch K, Janisch HD, Ohnhaus EE. Drug interactions with nitrendipine. J Cardiovasc Pharmacol 1984;6 Suppl 7:S982-985.

³⁹³ Lucas RA, Gilfillan DJ, Bergstrom RF. A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol 1998;54:639-643.

³⁹⁴ Perry PJ, Lund BC, Sanger T, Beasley C. Olanzapine plasma concentrations and clinical response: acute phase results of the North American Olanzapine Trial. J Clin Psychopharmacol 2001;21:14-20.

³⁹⁵ Danielsson BR, Skold AC, Azarbayjani F. Class III antiarrhythmics and phenytoin: teratogenicity due to embryonic cardiac dysrhythmia and reoxygenation damage. Curr Pharm Des 2001;7:787-802.

³⁹⁶ McConville BJ, Arvanitis LA, Thyrum PT et al. Pharmacokinetics, tolerability, and clinical effectiveness of quetiapine fumarate: an open-label trial in adolescents with psychotic disorders. J Clin Psychiatry 2000;61:252-260.

³⁹⁷ Pollak T, Zbuck K. Quetiapine fumarate overdose: Clinical and pharmacokinetic lessons from extreme conditions. Clin Pharmacol Ther 2000;68:92-97.

³⁹⁸ Lien EA, Solheim E, Lea OA, Lundgren S, Kvinnsland S, Ueland PM. Distribution of 4hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res 1989;49:2175-2183.

³⁹⁹ Liu X, Katchman A, Ebert S, Woosley R. The Antiestrogen Tamoxifen Blocks the Delayed Rectifier Potassium Current Ikr, in Rabbit Ventricular Myocytes. J Pharmacol Exp Ther 1998;287:877-883.

⁴⁰⁰ Trump DL, Smith DC, Ellis PG et al. High-dose oral tamoxifen, a potential multidrug-resistancereversal agent: phase I trial in combination with vinblastine. J Natl Cancer Inst 1992;84:1811-1816.

⁴⁰¹ Kinnaird AAA, Man RYK. The interaction of cycle length with the electrophysiological effect

of lidocaine, tocainide and verapamil on canine Purkinje fibers. Eur J Pharmacol 1984;99:63-71.

⁴⁰² Zhang S, Sawanobori T, Hirano Y, M. H. Multiple modulations of action potential duration by different calcium channel blocking agents in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 1997;30:489-496.

⁴⁰³ Bril A, Gout B, Bonhomme M et al. Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872. J Pharmacol Exp Ther 1996;276:637-646.
⁴⁰⁴ Puisieux FL, Adamantadis MM, Dumotier BM,

⁴⁰⁴ Puisieux FL, Adamantadis MM, Dumotier BM, Dupuis BA. Cisapride-induced prolongation of cardiac action potential and early afterdepolarizations in rabbit Purkinje fibres. Br J Pharmacol 1996;117:1377-1379.

⁴⁰⁵ Drolet B, Khalifa M, Daleau P, Hamelin BA, Turgeon J. Block of the rapid component of

the delayed-rectifier potassium current by the prokinetic agent cisapride underlies drug-related lengthening of the QT interval. Circulation 1998;97:204-210.

⁴⁰⁶ Maginn M, Algate CM, Gower AJ, Munt PL, Algate DR. Terfenadine evoked prolongation of the QTc interval in isolated porcine fibres – an experimental model for the assessment of arrhythmogenic potential in man. NS Arch Pharmacol 1998;358 suppl 1:P57.39 (Abstract).

⁴⁰⁷ Nishio M, Habuchi Y, Tanaka H, Morikawa J, Yamamoto T, Kashima K. Blockage by terfenadine of the adenosine triphosphate (ATP)-sensitive K+ current in rabbit ventricular myocytes. J Pharmacol Exp Ther 1998;287:293-300.

⁴⁰⁸ Kato Y, Mori T, Ohmori K, Ichimura M. Effect of terfenadine and KW-4679, a novel antiallergic compound, on action potential of guinea pig ventricular myocytes. Jap J Pharmacol 1996; 70:199-202.

⁴⁰⁹ Ming Z, Nordin C. Terfenadine blocks timedependent Ca2+, Na+, and K+ channels in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 1995; 26:761-769

⁴¹⁰ Kii Y, Inui A, Ito T. Effects of histamine H_1 receptor antagonists on action potentials in guineapig isolated papillary muscles. Arch Int Pharmacodyn Ther 1996;331:59-73.

⁴¹¹ Fraser S, Templeton AGB, Rothaul LM, Wood LM, Patmore L, Sheridan RD. Elecrophysiological effects of terfenadine in the guinea-pig Langendorff heart and isolated papillary muscle preparations. Br. J. Pharmacol 1997:122:390P (Abstract).

⁴¹² Pinney SP, Koller BS, Franz MR, Woosley RL. Terfenadine increases the QTinterval in isolated guinea pig heart. J Cardiovasc Pharmacol 1995;25:30-34.