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Abstract

Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism adapting lung perfusion to regional ventilation. Perturbations

to HPV, such as those occurring in pneumonia, acute respiratory distress syndrome and liver failure, can result in arterial hypoxemia.

Under conditions of general hypoxia, HPV increases pulmonary vascular resistance and thus causes acute pulmonary hypertension.

Despite intensive research, the underlying mechanisms of HPV have not been fully elucidated. Deciphering signalling

pathways that result in HPV could suggest novel approaches to address a failure of HPV, as well as for the treatment of pulmonary

hypertension associated with HPV. Within this context, this review focuses on current concepts in the oxygen sensing mechanisms that

underlie HPV.

D 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Hypoxic pulmonary vasoconstriction is a physiological

response of the lung to alveolar hypoxia, which redistributes

pulmonary blood flow from areas of low oxygen partial

pressure to areas of high oxygen availability. This mecha-

nism thus optimises gas exchange and helps to prevent

arterial hypoxemia [1,2].

Impairment of HPV under pathophysiological conditions,

including acute respiratory distress syndrome [3] or hepato-

pulmonary syndrome [4], or during anaesthesia [5], may

result in poor arterial blood oxygenation. Alternatively,

global, prolonged alveolar hypoxia that occurs at high

altitude, or during impairment of respiratory functions (for

example, as occurs in chronic obstructive pulmonary disease
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(COPD), pneumonia, fibrosis, or neurological diseases) may

result in pulmonary hypertension. Both persistent HPV and

hypoxia-altered gene regulation may contribute to hypoxia-

induced pulmonary hypertension.

Due to the opposing functions of lung and systemic

vessels–one taking up, the other delivering oxygen–

different responses to hypoxia have emerged. While

systemic vessels of adults dilate during hypoxia, pulmo-

nary vessels constrict. From an ontogenetic point of view,

hypoxic pulmonary vasoconstriction may better be termed

‘‘normoxic pulmonary vasodilation’’. In utero, persistent

vasoconstriction of pulmonary vessels helps prevent

perfusion of non-inflated lungs. After birth, inflation of

the alveoli and the concomitant increase in alveolar oxygen

partial pressure leads to vasodilation and perfusion of the

lung vasculature. Although the importance of HPV for

pulmonary gas exchange was recognised early [6], the

underlying oxygen sensing and signal transduction pro-

cesses have not been clarified. Elucidation of the oxygen

sensing and signal transduction mechanisms of HPV could
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serve as the basis for the development of new therapeutic

approaches to treat diseases associated with a disturbance

in HPV or acute pulmonary hypertension associated with

global HPV. Within this context, this review focuses on

current concepts of oxygen sensing mechanisms that

underlie HPV (Fig. 1).
Fig. 1. Current concepts of the oxygen sensing of hypoxic pulmonary vasoconst

pulmonary vasoconstriction (HPV) in yellow. For details see text. pO2, oxygen

reticulum; HETE, hydroxyeicosatetraenoic acid; EET, epoxyeicosatrienoic acid; D

gated potassium channel; HO-2, hemoxygenase-2. (A) Includes those concepts tha

(red lines), (B) those that comprise an increase in ROS as a trigger for HPV (blu
2. Characteristics of hypoxic pulmonary

vasoconstriction and location of the oxygen sensor

Pulmonary artery pressure is increased during hypoxic

ventilation [7,8], leading von Euler and Liljestrand to suggest

that ventilation-perfusion matching was the purpose of this
riction. Possible oxygen sensors are shown in green, mediators of hypoxic

partial pressure; Dw, mitochondrial membrane potential; SR, sarcoplasmic

Em, cellular membrane potential; BK, large conductance Ca2+- and voltage-

t comprise a decrease in reactive oxygen species (ROS) as a trigger for HPV

e lines).
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increase in pulmonary artery pressure [6]. It was believed that

a self-regulatory mechanism intrinsic to the lung controls

HPV, since HPV still occurs after denervation of the lung and

in explanted lungs, thus excluding neural or humoral effects

[9,10]. Furthermore, there were no histological or pharma-

cological hints of a contribution by neural mechanisms

[11,12]. Along these lines, foetal pulmonary arterioles co-

transplanted with neonatal lung tissue into the hamster cheek

pouch demonstrated HPV before innervation [13].

The strength of the HPV response depends on species,

age, gender, pCO2, pH, and methodology employed

[11,14–16], although its effector mechanism is independent

from these factors. HPV is a highly conserved process in

mammals [17–19], birds [20], reptiles [21], and even fish

[22]. HPV is triggered by mild hypoxia (alveolar pO2<

100 mm Hg) [18]. The precapillary smooth muscle layer

of the resistance vessels, located at the acinus entrance,

has been identified as the effector cell type [23–26]. Since

isolated pulmonary artery smooth muscle cells (PASMC)

respond to hypoxia by contraction and an elevation in

intracellular Ca2+ levels, these cells represent both the sensor

and effector cell type [27–31] in the context of acute

hypoxia. For sustained (>30 min) hypoxia, a contribution of

endothelial cells must also be considered [32,33].

The kinetics of sustained HPV have not been fully

resolved [34–36]. There is no doubt that HPV occurs, and

that HPV can be rapidly switched off, since HPV has to adapt

perfusion to ventilation immediately upon changes in the

alveolar oxygen partial pressure [18]. For sustained hypoxia

a temporary vasodilation has been described, followed by a

secondary vasoconstrictor response. Sustained HPV may be

of major relevance for continuous ventilation-perfusion

matching and under conditions of generalised hypoxia,

which results in pulmonary hypertension.

Pathways leading to contraction of precapillary PASMC

rely on an increase in cytosolic calcium, including an influx

from the extracellular space as well as from intracellular

stores, and membrane depolarisation attributed to closure of

potassium channels [37]. The role of potassium channels in

HPV is reviewed elsewhere in this Review Focus. For

sustained HPV, a Ca2+ sensitisation, in addition to an

increase in cytosolic calcium, possibly via activation of

Rho-kinase, has been suggested [38–40]. However, it is not

yet clear, if Rho-kinase and/or other protein kinases only

play a modulating or an indispensible role in HPV [41].
3. The mitochondria as possible oxygen sensors of HPV

Apart from being the main site of oxygen consumption,

two arguments are in favour of a role for mitochondria as

primary oxygen sensors. First, inhibitors of the mitochondrial

electron transport chain (ETC) specifically inhibit HPV

[31,42,43], and second, PASMCs without a functional

respiratory chain do not show hypoxia-specific responses

[29].
In general, mitochondria have diverse functions in the

cell related to energy conservation, apoptosis, calcium

regulation and intracellular signalling [44]. Mitochondria

generate a proton gradient across the mitochondrial mem-

brane, thereby providing energy for ATP synthesis. The

electrons are transferred along a redox gradient, and finally

to molecular oxygen. The ETC consists of several com-

plexes: complexes I and II, which provide the electrons;

complex III including an electron cycle; and complex IV, the

final centre for the reduction of oxygen.

Electrons from the ETC may be ‘‘accidentally’’ trans-

ferred to molecular oxygen, resulting in the generation of

superoxide radicals. After conversion by superoxide dis-

mutase (SOD), the resulting H2O2 can readily diffuse

through the membrane into the cytosol. Alternatively,

superoxide can pass through an anion channel from the

intermembrane space into the extramitochondrial environ-

ment [43,45,46]. The putative role of mitochondria during

HPV is depicted in Fig. 1, 1.

Two main theories exist concerning a role for mitochon-

dria and reactive oxygen species (ROS) in HPV. (1) The

original redox hypothesis, proposed by Weir, Archer and

colleagues, assumed a decrease in mitochondrial ROS,

shifting the cellular redox state towards a more reduced

state, resulting in the inhibition of Kv channels (Fig. 1A,

1a). This closure of potassium channels is mediated by the

redox pairs GSH/GSSG and NADH/NAD [36,47]. (2) In

contrast, Schumacker, Chandel and co-workers suggested

that an increase in ROS production during hypoxia triggers

intracellular calcium release and thus HPV [43,48] (Fig. 1B,

1a). The latter theory assumes that mitochondrial complex

III is the ROS producing site.

3.1. Mitochondria-dependent decrease of ROS in HPV

Early investigations found that the mitochondrial inhib-

itors rotenone, antimycin A, azide, and cyanide, as well as

dinitrophenol, increased vascular pressure under normoxic

conditions and subsequently inhibited HPV in isolated

blood-perfused rat lungs [49]. Later, Archer, Weir and

colleagues demonstrated that hypoxia and the proximal ETC

inhibitors, rotenone and antimycin A, decreased lung ROS

release (detected by chemiluminescence), whereas distal

inhibition with cyanide increased ROS release during

normoxia. Under normoxic conditions, rotenone and anti-

mycin A increased pulmonary artery pressure and inhibited

HPV, while cyanide increased vascular pressure but did not

decrease HPV [50]. These findings are in line with the

observation that rotenone and antimycin A mimicked HPV

in isolated pulmonary arteries and in PASMCs, and

decreased ROS production, concomitant with inhibition of

potassium channels in PASMCs [31]. In contrast, these

agents had opposing effects in renal tissue. These differ-

ences were attributed to a higher basal ROS production in

the lung pulmonary arteries, compared to renal arteries, due

to the lower respiration rates in lung mitochondria, the
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reduced complexes I and III content, and a lower membrane

potential in pulmonary compared with renal arteries [31].

Higher ROS production has also been observed in patients

with complex I deficiency [51], perhaps explaining the high

ROS production by mitochondria of PASMCs under

normoxic conditions, compared to studies that provide

evidence that there is low or no ROS release by intact

mitochondria at all [52,53]. Archer and colleagues conclud-

ed from these pharmacological interventions that ETC-

inhibition proximal to the site of mitochondrial ROS release

at complex I or III attenuated the reduction potential of this

complex, reduced ROS production, and increased pulmo-

nary arterial pressure. Blockade of the electron mitochon-

drial respiratory chain distal to complex III had no effect on

pulmonary vascular tone [54]. Thus, the decreased ROS

release under hypoxic conditions triggers HPV via K+-

channels as explained above (Fig. 1A, 1a).

3.2. Mitochondria-dependent increase of ROS in HPV

Although a decrease in ROS production during hypoxia

could be explained by decreased availability of oxygen, a

prerequisite for increased mitochondria-derived ROS during

hypoxia indicate an alteration in the properties of the ETC,

which could be achieved by hypoxia-induced inhibition of

cytochrome c oxidase and electron flow as initially

suggested after investigations in hepatocytes [55]. Paul

Schumacker’s group later provided evidence that increased

ROS release from the semiubiquinone binding site in

mitochondrial complex III occurs under hypoxia because

(1) in isolated rat lungs the proximal ETC-inhibitors

rotenone, DPI and myxothiazol inhibited HPV, while the

distal inhibitors antimycin A and cyanide did not [43]; (2)

proximal inhibitors also attenuated hypoxia-induced con-

traction and increase in intracellular Ca2+ concentrations

([Ca2+]i) of PASMCs [29]; (3) catalase overexpression

inhibited the hypoxia-induced [Ca2+]i increase, as well as

the hypoxia-induced increase in ROS [29,43]; and (4)

myxothiazol attenuated hypoxia-induced increase in ROS,

abolished HPV, and blocked hypoxia-induced [Ca2+]i
increase; but (5) antimycin A had no specific effects on

the hypoxia-induced responses in isolated lungs or PASMCs

[29,43]. In line with these observations, inhibition of the

hypoxia-induced elevation in [Ca2+]i by rotenone could be

reversed by succinate in isolated pulmonary arteries of the

rat [56].

Data from our laboratory obtained in isolated perfused

rabbit lungs are consistent with the effect of the proximal

electron chain inhibitors (inhibiting HPV without being

hypoxia mimics) and the complex III inhibitor 2-heptyl-4-

hydroxyquinoline-N-oxide (HQNO) (mimicking HPV), but

disagree with respect to the effects of antimycin A,

inhibiting HPV without being a hypoxia mimic and cyanide,

inhibiting HPV [42,57]. Complex II of the ETC has also

been suggested to be a source of ROS release in HPV in a

study in murine lung sections [58]. While ROS production
under normoxic conditions required complexes I and III in

this investigation, ROS generation under hypoxic conditions

also required complex II. Inhibition of the reversed

enzymatic reaction of the succinate dehydrogenase, i.e.,

fumarate reductase, by application of succinate, specifically

abolished ROS generation under hypoxic, but not normoxic,

conditions [58].

While these studies substantially relied on the use of

inhibitors, PASMCs that lack a functional ETC were

incapable of generating ROS under hypoxic conditions,

and lost their response to hypoxia, although they still

responded to the thromboxane mimetic U46619 [43,59].

It has been suggested that ROS can escape from the

mitochondria through an anion channel, and subsequently

induce vasoconstriction by downstream effects on Ca2+

metabolism and sensitivity (Fig. 1B, 1a). Alternatively,

these channels are dependent on mitochondrial membrane

potential [46]. This may in turn be affected by respiration,

calcium metabolism and mitochondrial ATP-sensitive po-

tassium channels, that may also affect mitochondrial ROS

release and thus again interact with HPV [60], suggesting an

even more complex role in HPV than simple ROS

trafficking. The current data do not support a conclusive

role for mitochondria in HPV, particularly concerning their

contribution to ROS release. The diverging effects of

different mitochondrial inhibitors in various investigations

may be explained by the different experimental settings,

species, tissues and concentrations of the inhibitors used, as

well as the methods used for quantification of ROS. They

may also be attributed to properties of these agents

exceeding simple variation of ROS production, for example,

also affecting calcium homeostasis and ATP production

[45,61].

3.3. Mitochondria and calcium homeostasis

Mitochondria play a role in cytosolic calcium homeosta-

sis through a calcium uniporter that is driven by the

mitochondrial membrane potential, and the concentration

of cytosolic calcium [45]. A decrease in membrane potential

due to impaired respiration induces mitochondrial calcium

release, and the intracellular calcium profile can be shaped

by mitochondrial buffering of changes in [Ca2+]i [44].

In carotid body cells, hypoxia <60 mm Hg leads to

mitochondrial membrane depolarisation [62], which could

reduce mitochondrial Ca2+ uptake, resulting in an increase

in cytosolic calcium (Fig. 1, 1b). Cyanide, rotenone and

uncouplers like carbonyl cyanide m-chlorophenylhydrazone

(CCCP) and carbonyl cyanide 4-(trifluoromethoxy)phenyl-

hydrazone (FCCP) increase [Ca2+]i in PASMCs during

calcium release from the sarcoplasmic reticulum [63–65]. It

was therefore suggested that inhibition of mitochondrial

calcium uptake by FCCP or hypoxia augmented intracellu-

lar calcium increase [66]. Furthermore, an increase in

hypoxic tone and HPV in isolated lungs has been described

using mitochondrial uncouplers [18]. Thus, mitochondria
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may play an as-yet-unproven role in HPV related to Ca2+-

homeostasis independent of or in addition to mitochondrial

ROS release.

3.4. Mitochondrial ATP production, energy state, and

cADP-ribose

The role of ATP as a second messenger for HPV has

been suggested since oxidative phosphorylation is the main

oxygen consumption site, and inhibitors of the ETC and of

glycolysis caused vasoconstriction [67,68]. However, the

role of ATP was questioned because (1) changes in the ATP

content or deterioration of energy state during acute hypoxia

could not be detected [69–71], (2) the Km for cytochrome c

oxidase seemed to be too low to decrease ATP under

conditions of mild hypoxia [72], and (3) inhibitors of the

cytochrome c oxidase induced vasoconstriction under

normoxic conditions, but did not abolish HPV in some

investigations [43]. In contrast oxidative ATP generation

may be impaired and the cellular energy state is maintained

by upregulation of glycolysis during sustained HPV

[56,69,70]. For example, in isolated ferret lungs, Wiener

and colleagues showed that high glucose levels prevented

vasodilation following acute HPV, while pyruvate did not

[73,74], suggesting that glucose metabolism beyond pyru-

vate is responsible for the inhibition of sustained HPV.

Similarly, low glucose levels suppressed sustained HPV in

isolated rat small pulmonary arteries. Since pyruvate did not

reverse suppression of sustained HPV in this study, glucose

may facilitate sustained HPV by a mechanism independent

from glucose metabolism downstream of pyruvate [56].

However, the glucose concentration applied was much

lower than that used by Wiener and colleagues, perhaps

explaining these different results [74].

A recent new concept assumes that mild hypoxia leads to

inhibition of the respiratory chain and a small decrease in

ATP production, which does not affect energy state, but

rather acts as a second messenger (Fig. 1, 1c). Thus, an

increase in the AMP/ATP ratio activates AMP-activated

protein kinase a1 (AMPK) and increases cyclic ADP-ribose

(cADPR) that releases calcium through ryanodine-sensitive

calcium stores as a first step in the HPV signalling

mechanism [75]. This is an extension of the oxygen sensing

mechanism proposed some years ago, assuming that during

sustained HPV, hypoxia increases h-NADH levels, which

then increase the net amount of cADPR synthesised from h-
NAD+ by ADP-ribosyl cyclase, and simultaneously inhibit

cADPR degradation by cADP-ribosyl hydrolase [76]. A

decrease in ATP levels under mild hypoxia may be assisted

by a low oxygen affinity cytochrome c oxidase in PASMCs,

as has been proposed for carotid body cells [77,78].

Alternatively, the cADP-ribose system may also be regulat-

ed by interference with ROS, since low levels of superoxide

stimulated calcium release via cADPR [79]. That this

possible link to ROS plays a role in HPV, however, remains

to be proven.
4. NAD(P)H-oxidase as a possible oxygen sensor of HPV

NAD(P)H-oxidases are superoxide-generating enzymes.

Classical leukocyte NADPH-oxidase is a multiprotein

complex, consisting of membrane-bound gp91phox (now

also termed NOX2) and p22, which comprise the cyto-

chrome b558; and cytosolic p47phox, p67phox, and p40phox.

Superoxide production by NADPH-oxidase is induced by

assembly of these two sets of subunits. Activation can be

induced by at least a phosphorylation of p47phox and Rac

GTPase activation [80]. A variety of NADPH-oxidase

isoforms have been identified that can substitute for

NOX2 (e.g. NOX1, NOX3, NOX4, and DUOX). These

isoforms have unique features, including the release of

superoxide into the intracellular milieu, rather than extra-

cellularly, and produce lower amounts of superoxide than

the phagocytic type [81,82]. Two isoforms of p47phox and

p67phox, termed NOXO1 and NOXA1 interact with NOX1

to generate high amounts of superoxide without activation

by protein kinase C-dependent phosphorylation [83,84].

Regulation of NADPH-oxidase activity may involve phos-

pholipase A2 and protein kinase C [85,86]. NAD(P)H-

oxidases might also be activated by depolarisation of the

cell [87] or lead to depolarisation itself [88].

The concept of NAD(P)H-oxidases as oxygen sensors for

HPV (Fig. 1, 2) emerged against (1) the background that

they are oxygen sensing candidates in other oxygen sensor

systems [89] and (2) the study of Thomas et al. [90] which

demonstrated that the NADPH-oxidase inhibitor DPI

inhibited HPV. We have confirmed these data, and excluded

interference with NO as a second target of DPI [91]. The

NAD(P)H-oxidase concept got a second impetus after the

investigations of Marshall et al. [92] and Wolin et al. [93].

The former group suggested an NADPH-oxidase related

increase in superoxide as the mechanism underlying HPV,

while the latter group suggested that an NADH oxidore-

ductase-related decrease in superoxide and H2O2, through

stimulation of the soluble guanylate cyclase, could decrease

vascular tone under normoxic conditions. This hypothesis

thus suggested a ‘‘loss of normoxic vasodilation’’ during

HPV triggered by this pathway.

Thus, two diverging concepts regarding the contribution

of NAD(P)H-oxidase-derived superoxide currently exist:

one proposing an upregulation (Fig. 1B, 2) and the second

a downregulation of superoxide (Fig. 1A, 2).

4.1. NAD(P)H-oxidase-dependent increase in ROS in HPV

In an elegant study, Marshall and colleagues described an

NAD(P)H-oxidase in pulmonary arteries with an unusually

low redox potential. Isolated smooth muscle cells from

small pulmonary arteries demonstrated an increase in

superoxide production that was derived from an

NAD(P)H-oxidase with an unusually low redox potential

[92]. An upregulation of superoxide, and subsequently

H2O2, as the underlying pathway of HPV has also been
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suggested by data from our laboratory [94]. However, the

major drawback of studies suggesting an NAD(P)H-oxidase

as a pulmonary oxygen sensor was that they relied primarily

on one NAD(P)H-oxidase inhibitor, DPI, which also inhibits

other FAD-dependent enzymes, the mitochondrial ETC, as

well as potassium channels [95,96]. Therefore, different

NAD(P)H oxidase inhibitors were investigated: apocynin,

which, however, interfered with vascular tone in general in

isolated rabbit lung studies [91], and 4-(2-aminoethyl)ben-

zenesulfonyl fluoride, which selectively inhibited HPV in

isolated rabbit lungs, but not vasoconstriction induced by

other mechanisms [97]. This study also suggested an

NAD(P)H-oxidase-derived increase in ROS as the underly-

ing mechanism of HPV [97,98]. In line with these studies,

protein kinase C (PKC), a possible activator of the NADPH-

oxidase, has been suggested to regulate HPV via NADPH-

oxidases [86] (although PKC may also affect HPV without

interaction with an NADPH-oxidase [41]), and a phospho-

lipase A2 knockout mouse exhibited reduced HPV that may

also interfere with the NADPH-oxidase pathway [85,99].

This theory was confounded by the observation that

gp91phox-deficient mice fully responded to acute hypoxia

[100]. Nevertheless, these experiments cannot rule out an

NAD(P)H oxidase isoform being active as an oxygen

sensor. In line with this hypothesis, we recently demon-

strated that mice deficient in the cytosolic NADPH-oxidase

subunit p47 exhibited ¨25% reduced acute, but unchanged

sustained HPV. This supported the concept that isoforms of

the leukocyte NADPH-oxidase may, at least in part,

function as oxygen sensors in HPV. That NADPH-oxidases

in principle are involved in hypoxic signalling pathways

was shown in studies on neuroepithelial bodies (NEB) [89].

4.2. NAD(P)H-oxidase dependent decrease of ROS in HPV

The group of Wolin and Burke-Wolin suggested that an

NADH oxidase-mediated decrease in superoxide, and

subsequently H2O2, under hypoxic conditions may lead to

decreased GMP levels, through reduced stimulation of the

soluble guanylate cyclase (sGC), and thus vasoconstriction

[93,101]. In addition, NO may act synergistically in this

pathway with respect to HPV. In principle, cGMP release

from sGC can be triggered by H2O2, CO and NO. The

release of NO in the lung is dependent on oxygen, as it is

reduced under hypoxic conditions [102,103]. However, the

H2O2-sGC concept was challenged by data that demonstrat-

ed that only NO-triggered sGC stimulation interferes

specifically with HPV [104]. Recently Wolin et al. have

put forward an interesting new version of their oxygen-

sensing concept. According to this hypothesis, the concen-

tration of NADPH, and therefore ROS production, is higher

in pulmonary vessel cells (compared to coronary smooth

muscle cells) due to higher levels of glucose-6-phosphate-

dehydrogenase, the rate-limiting enzyme of pentose phos-

phate metabolism by the pentose phosphate pathway (PPP)

[105]. Under hypoxic conditions, high levels of glucose-6-
phosphate-dehydrogenase compete with glycolysis, main-

tain high NADPH levels, and therefore–in combination

with hypoxic inhibition of NAD(P)H-oxidases–maintain

high reduction levels in pulmonary cells. In contrast, in

coronary smooth muscle cells NADPH is oxidised because

of an inhibited PPP [101]. Thus, inhibition of PPP decreases

HPV via activation of the cGMP pathway [106]. While the

decrease in ROS formation by NAD(P)H-oxidases can be

explained by a lack of the substrate oxygen, it remains

unclear how NAD(P)H-oxidases may increase superoxide

release under hypoxic conditions. The concept of an

NAD(P)H-oxidase-derived increase in ROS has to assume

that oxygen is not the rate limiting factor in ROS production

by NAD(P)H-oxidases, but rather that the activity of the

enzyme is regulated by other mechanisms, for example, an

increased electron flux through the oxidase under hypoxic

conditions. We have recently published data that suggest

that NADPH-oxidase-derived lung superoxide release can

be increased during hypoxia [107]. However, molecular

proof of such mechanism is still lacking.
5. The role of reactive oxygen species (ROS) in HPV

ROS play a key role in HPV signalling, however, there is

no consensus regarding the question of whether ROS are

increased or decreased under hypoxic conditions (for review

see [108,109]) (Fig. 1A and B). This disagreement has

implications for the interpretation of the mitochondrial and

NAD(P)H-oxidase concepts of oxygen sensing, therefore,

we will briefly summarise here the main investigations that

have focused on oxygen-dependent ROS release in the

pulmonary system.

Direct measurement of ROS in isolated rat lungs revealed

a decrease in superoxide under hypoxic conditions using

luminol and lucigenin enhanced chemiluminescence

[50,110]. These results are consistent with (a) decreased

intravascular superoxide release in [107], and (b) decreased

H2O2 levels exhaled from [111] isolated rabbit lungs

undergoing hypoxic ventilation. Furthermore, ROS detec-

tion with three different dyes (amplex red, 2V,7V-dichloro-
fluorescin diacetate (DCFH), and lucigenin) suggested

decreased ROS levels in rat pulmonary arteries maintained

under hypoxic conditions [31]. Intravascular superoxide

release in isolated rabbit lungs quantified with a spin probe

in electron spin resonance spectroscopy (ESR) indicated a

decrease in superoxide release under hypoxic conditions,

however, with a tendency towards a smaller decrease in

severe hypoxia [107]. In contrast, measurements in isolated

porcine pulmonary arteries suggested a hypoxia-mediated

increase in ROS using lucigenin chemiluminescence and

DCFH, and these observations are supported by ESR

spectroscopy measurements indicating release of hydroxyl

and alkyl radicals during hypoxia [30]. Along these lines,

cellular measurement of ROS release suggested a hypoxia-

mediated increase in calf [92], rat [43,112] and rabbit
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new, elegant technique, quantifying ROS with a fluores-

cence resonance energy transfer (FRET) sensor technique,

supporting the concept of increased ROS generation [113].

We have also recently demonstrated an increase in

intravascular superoxide release during hypoxic ventilation

in p47phox-deficient mice, suggesting a non-phagocytic

source of increased ROS release during HPV, that is

camouflaged by an overall decreased phagocytic ROS

release under hypoxic conditions [57].

Although it has been suggested that limitations in the

methods used for ROS detection are responsible for the

discordant effects observed, it also remains possible that

alternative explanations may exist. While fluorescent probes

have been criticised for yielding for false-positive results,

for example, as a consequence of redox cycling, the ESR

techniques may also have some limitation, since they

indirectly quantify ROS generation. Convincing data have

been generated with the new FRET sensor technique [113].

Nevertheless this investigation could also not explain

discrepancies observed by Michelakis et al. [31], using

three different methods that compared the pulmonary and

the renal system, which were by themselves conclusive.

Apart from artefacts related to the ROS detection

methodology, the experimental models (isolated lungs,

vessels, or cells) employed and the kinetics and timeframe

of the measurements must also be taken into account as

potential sources of error. Similarly, the question as to the

location of the ROS must also be considered. For example,

is it intravascular or exhaled ROS release that is represen-

tative of, or participates in, the signalling that underlies

HPV, which is suggested to occur within the vascular

smooth muscle cell? Therefore, the apparently conflicting

conclusions concerning ROS in HPV may be explained by

the hypothesis that a local, subcellular and compartmental-

ised regulation of ROS triggers HPV, and that this signal is

obscured in the background of a general decrease in ROS

production in the remainder of the cell that is not linked to

HPV.
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6. Cytochrome P450 enzymes and heme oxygenase-2 as

possible oxygen sensors of HPV

Arachidonic acid (AA)-associated pathways activated by

cyclooxygenase and lipoxygenase are well known potent

modulators of vessel tone, but have not been shown to

mediate any HPV-specific reaction [14,114]. However, the

third group of metabolites derived from AA by cytochrome

P450 monooxygenases, namely hydroxyeicosatetraenoic

acids (HETEs) and epoxyeicosatrienoic acids (EETs), are

suggested to be involved in HPV [115–117], since oxygen

serves as a substrate for these enzymes (Fig. 1, $).

Cytochrome P450 enzymes are implicated in a new

oxygen-sensing concept: in addition to heme proteins,

hemoxygenase-2 (HO-2) may play a role in oxygen-sensing
via cytochrome P450-dependent release of CO [118]. A

large conductance calcium and voltage dependent potassium

channel (BK (Ca)) is tightly associated with HO-2 and is

activated by HO-2-derived CO under normoxic conditions

[119,120] (Fig. 1, %). Carotid body cells demonstrated an

HO-2-dependent hypoxic BK channel inhibition, which

indicated a possible role of HO-2 as an oxygen sensor that

controls channel activity during oxygen deprivation. How-

ever, this elegant and new concept of oxygen sensing still

needs to be proven in the pulmonary system.
7. Concluding remarks

Although intensive research concerning the mechanism

of HPV started 60 years ago with the recognition of its

importance for pulmonary gas exchange, the current review

demonstrates that we are far from being able to draw a

conclusive picture of its regulation, even at the initial step:

the oxygen sensing process. Currently, more than five

different concepts are discussed, some of them suggesting

completely opposing mechanisms. One major aspect of this

discussion is the fact that some investigations found an

increase, while others a decrease in ROS generation under

hypoxic conditions, which are proposed to be involved in

the downstream signalling of the oxygen sensing process.

While this was initially attributed to the different techniques

used for ROS detection, and criticised as not being reliable,

recent new techniques like ESR spectroscopy and FRET

sensor technologies may help to overcome these problems,

although these techniques are also unlikely to be free of

methodological problems. These conflicting results may

also reflect the different models employed (e.g. cellular,

vessel, intact organ, intact animal investigations), and the

duration of the hypoxic treatment applied. Furthermore, a

localised subcellular increase in ROS may trigger HPV, but

this localised effect may be covered by a decrease in ROS in

the remainder of the cell, which may not be involved in the

HPV pathway. Also, it has to be taken into account that the

different sensors suggested may affect each other, for

example, proper mitochondrial function is a prerequisite

for NAD(P)H-oxidase systems to be operative.

More provocatively, one may also hypothesise that

changes in ROS levels occur as a consequence of the

alteration of the cellular oxygen partial pressure but are not

directly linked to HPV [121], although no convincing

evidence for such a hypothesis has been provided.

Although not discussed in detail in this review, different

signal transduction processes, and possibly oxygen sensing

processes, are involved in the regulation of the very acute

phase of HPV (occurring within seconds) and the sustained

phase (several hours) of hypoxia. The latter is proposed to

result in hypoxia-induced pulmonary hypertension. In this

regard it was shown that ATP, oxidative phosphorylation,

Ca2+ metabolism, NAD(P)H-oxidase and mitochondria play

different roles in acute and sustained HPV. Bearing this in
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mind, we have to take into account that HPV is a

multifactorial process [35]. In this regard, we have recently

suggested that both a mitochondrial and an NAD(P)H-

oxidase mechanism contribute to the regulation of acute

HPV [57].

Identification of the pulmonary oxygen sensing processes

underlying HPV remains a tremendous challenge, even 60

years after von Euler and Liljestrand’s initial observations.

However, elucidation of the molecular mechanism(s) that

regulate this process would be a key step in the development

of novel approaches to address an impaired HPV response,

and for the treatment of HPV-related diseases. To reach this

goal, new molecular tools and subcellular approaches will

have to be developed and refined.
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