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Abstract

The function of vasa vasorum is both to deliver nutrients and oxygen to arterial and venous walls and to remove “waste” products, either
produced by cells in the wall or introduced by diffusional transport through the endothelium of the artery or vein. Although the relationship
between changes in vasa vasorum characteristics and the development of atheromatous plaques is well documented, the role of vasa vasorum,
especially in terms of their appearance and disappearance in disease processes such as atherosclerosis, are still not clearly understood in terms
of their being causative or merely reactive. However, even if their proliferation is merely reactive, these new microvessels may be a source of
disease progression by virtue of endothelial impairment and as a pathway for monocytic cells to migrate to sites of early disease. As both
these features are aspects of the vasa vasorum function, this Review focuses on the following issues: 1) acute modulation of vasa vasorum
patency due to surrounding compressive forces within vessel wall and due to variable tone in the smooth muscle within proximal vasa
vasorum and 2) chronic angiogenic responses due to local cytokine accumulations such as occur in the wall of arteries in the presence of
hypertension, hypercholesterolemia, accumulation of lipids, extravasated blood products (e.g., red blood cells, macrophages, inflammatory
products) which attract monocytes, and response of vasa vasorum to pharmacological stimuli.
© 2007 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Vasa vasorum consist of small arteries which enter the
vascular wall either from the abluminal surface (vasa
vasorum externa) or from the luminal surfaces (vasa vasorum
interna) and then arborize to the outer media. Venous vasa
vasorum drain a network of capillaries/venules laid down
around the outer media to veins in close proximity to the
arteries. In humans, vessels with walls less than 29-cell
layers thick [1] normally do not have vasa [2] and, in general,
vessels less than 0.5mm lumen diameter [3] (all normal
vessels in mice and intramyocardial vessels in humans) do
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not have vasa vasorum. In larger vessels diffusion of solutes
to the media from the vessel lumen is supplemented by vasa
vasorum [4,5].

The vasa vasorum have been the subject of considerable
interest for more than a century [6] because of their possible
role in, atherogenesis [7–12], coronary interventions [13–15],
and in response to risk factors for atherosclerosis, such as
hypercholesterolemia [16–20] and hypertension [21–23].
Although many studies have described the anatomy of the
vasa vasorum in a qualitative manner [24–28], the more
recently described detailed 3D architecture of the vasa
vasorum network (due to the availability of micro-CT imaging
capabilities [29,30]) has made more quantitative information
available. In addition, it is becoming increasingly clear that
vasa vasorum are dynamic in that they can be transiently
compressed by the surrounding arterial wall and/or undergo
vasodilation and vasoconstriction as well as increase in
number (e.g., angiogenesis). Thus, these capabilities of the
d by Elsevier B.V. All rights reserved.
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Fig. 1. Top two panels are micro-CT transaxial images through a porcine
coronary artery. The white regions are a radiopaque silicon-based polymer
injected into the vascular lumen. In the left panel the polymer was injected
into the coronary artery lumen at 100 mmHg pressure and in the right panel it
was injected into the concomitant vein's lumen at 100 mmHg pressure. The
arrows point to opacified vasa vasorum around the main lumen. These
conditions result in the larger coronary arterial lumen due to the higher
intracoronary intralumenal pressure in the left upper panel and the increased
number of vasa vasorum due to the reduced arterial lumen pressure resulting
in a proportional decrease in the intramural pressure in the right panels. The
lower panels are the corresponding axial projections of those arteries after
the contrast in the main lumens was “removed” by image manipulation.
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vasa vasorum underscore their dynamic role in the regulation
of vascular wall perfusion (Table 1).

2. Anatomy and function of vasa vasorum

2.1. Vasa vasorum branching geometry

The vasa vasorum have been shown to function as end
arteries [30], possibly due to the pressure distribution within
the arterial wall which could compress most of the vasa
vasorum.An arterial injection of the silicon polymerMicrofil®
results in high pressure in the arterial lumen and consequently
within the arterial wall consistent with Lame's Law [31]. This
intramural pressure gradient can result in compression of some
of the vasa vasorum. As illustrated in Fig. 1, this phenomenon
is demonstrated when Microfil® is injected into the concom-
itant vein so that the coronary artery is filled retrogradely via
the intramyocardial capillaries and the arterial vasa vasorum
are filled retrogradely via the venous vasa vasorum which
empty directly into the concomitant vein and are therefore also
exposed to the Microfil® injection pressure. Hence, the
luminal pressure in the artery is much reduced, resulting in a
less distended coronary arterial lumen and the compressive
force within the arterial wall is proportionally decreased. This
in turn results in less compression of the vasa vasorum in the
arterial wall because they are both exposed to the increased
pressure in the vasa vasorum as well as to the reduced
intramural pressure. Consequently, the density of perfused
(and therefore opacified) vasa vasorum under these conditions
is increased.

Due to the vasa vasorum both the vascular adventitia and,
to a lesser extent, the media are brought into close proximity
to blood cells and blood solutes. Because the blood pressure
within the main arterial lumen is generally higher than the
extra-vascular tissue pressure, the diffusion of the blood
solutes would tend to be from the main lumen towards the
adventitia, as described by Darcy's Law [32] which links
Table 1
Literature references that address the possible roles of vasa vasorum in
atherosclerosis

Evidence suggesting the role of the vasa vasorum in
atherosclerosis

References

Distribution
Higher vasa vasorum density in vascular beds more

prone for developing atherosclerosis.
[51,105]

Higher density of vasa vasorum in the proximal
segments of the vessels than in the distal segments.

[106]

Heterogeneous distribution of atherosclerotic plaques. [29]
Relationship to coronary artery disease risk factor and reversibility
Induction: increase in vasa vasorum density in models

of atherosclerosis and vascular injury.
[14,16,17,78]

Reversibility: inhibition of vasa vasorum angiogenesis
attenuates the progression of atherosclerosis.

[18,56,57,78,79,82]

Relationship with cardiovascular events
Vasa vasorum neovascularization and hemorrhage

contributing to plaque rupture and cardiovascular
events.

[102,104,107,108]
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diffusion of a solute through a porous medium subjected to a
pressure gradient. The only way that those solutes can leave
the vessel wall is via the venous vasa vasorum and any
lymphatics that may be present in the wall.

The branching structures of the vasa vasorum have also
been explored [4,33,34], but little has been done to use that
structure to explore the fluid dynamic conductive character-
istics of the vasa vasorum [29,30,35].

An important consequence of the anatomic location and
branching architecture of the vasa vasorum, which enter the
arterial wall via the adventitia, is that flow through the vasa
cannot proceed far into the media due to the compressive
force (Pw) within the arterial wall, at location R, as described
by Lamé's Law [31]:

Lame0s Law :
PW Rð Þ
PS

¼ a2
1� b=Rð Þ2
b2 � a2

 !
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Where: PS is the pressure in the coronary artery lumen, a
is the radius of coronary artery lumen, b is the radius of the
outer adventitia, R is the radial distance (from the endothelial
surface) within the coronary arterial wall.

This law indicates that the local compressive pressure
within the vessel wall is equal to lumenal blood pressure in the
sub-endothelial layer (i.e., R ≈ a) but falls-off hyperbolically
towards to adventitia (i.e., R ≈ b). As a consequence, at the
radial location at which the pressure inside the parent vessel
wall exceeds the pressure in the vasa vasorum lumen
(determined largely by pressure drop (▵Pi) along the vasa
vasorum as described by Poiseuille's Law [36]), no perfusion
of the wall can occur closer to the main lumen.

Poiseuille0s Law :DPi~Li=r
4
i

Where: Pi is the pressure in the lumen of the vasa
vasorum at distance L from the origin of the vasa vasorum.
Where: ri is the radius of the ‘proximal’ vasa vasorum lumen
and Li is the distance along the vasa vasorum to the point-of-
interest within the wall.

The vascular resistance to flow in the vasa vasorum is
high because the radii of the vasa vasorum are much smaller
than the parent vessel lumen, hence the pressure within the
distal vasa vasorum close to the media must be lower than
the coronary arterial lumen pressure — hence this intima-
medial zone must be where the compressive pressure within
the wall can exceed the blood pressure within the vasa
vasorum at that location. However, these considerations
assume a steady state. It is conceivable that as the systolic
pressure pulse progresses along the vasa vasorum its arrival
in the terminal vasa vasorum is delayed relative to the
transient increase of systolic pressure propagated within the
arterial wall. Consequently, the extent of transmural
perfusion by vasa vasorum may be underestimated by a
steady-state assumption.

Darcy's Law [32] describes the driving force for diffusion
of extra-vascular solutes to migrate across a vessel wall in the
direction of the pressure gradient within the wall.

Darcy0s Law :
fS
fvv

~
AreaS
Areavv

� �
Rþ T
R

� �3

Where: fS and fvv are the fluxes of solutes from the
coronary arterial lumen and into the venous vasa vasorum
respectively. AreaS is the coronary arterial endothelial
surface area across which solute flux occurs and Areavv
being the area of the vasa endothelial surface within the wall
at distance R within the wall. T is the distance from the
endothelium towards the outer surface of the adventitia (i.e.,
R–a).

This law implies that for the venous vasa vasorum to
match the flux across the main lumen's endothelium, the
venous vasa vasorum endothelial permeability surface area
product must be large enough to cope with this transmural
flux from the main lumen. Thus, ligating the venous vasa
vasorum should result in build-up of solutes such as fatty
compounds [7,11,37].

As veins also have vasa vasorum [38,39], it is of interest
that veins generally do not develop atherosclerosis except
when they are exposed to increased lumen pressure. This is
observed when they are used as arterial shunts (such as
saphenous vein bypass grafts [40–42]) which often undergo
accelerated intimal thickening and plaque formation after
three years. Although the accelerated venous atherosclerosis
may in part be due to damage to the vasa vasorum at the time
of harvesting and transplant of the vein segment, the
combination of the presence of vasa and high intra-vascular
blood pressure [42,43] or very high plasma lipid concentra-
tions [44] appear to be necessary for development of athero-
sclerotic plaques.

The “footprints” of coronary vasa vasorum perfusion
territories (Fig. 2) have also been studied [30]. Microembo-
lization reduced vasa vasorum densities significantly and
increased the size of low-vasa-vasorum-density territories.
Consequently, under normal conditions coronary vasa
vasorum are functional end arteries, even though they may
end up being connected via an anatomic plexus. This char-
acteristic may have a significant impact on the spatial dis-
tribution of perfusion and drainage of the coronary vessel
wall. If the heterogeneous distribution of both coronary
atherosclerosis and of the vasa vasorum along the coronary
vascular tree are anatomically coincident, this would more
directly support the potential role of the vasa vasorum in the
disease process.

2.2. Physiologic reactivity of vasa vasorum

The proximal vasa vasorum display a regularly layered
vascular structure of endothelial cells, vascular smooth
muscle cells, and surrounding connective tissue. These
characteristics are important since they imply that the vasa
vasorum may regulate their own tone and vascular perfusion
[5,45,46] in a manner similar to small coronary arteries, as
was demonstrated by Scotland et al. [47,48].

Vasa vasorum, isolated from porcine aorta, respond to the
endothelium-dependent vasodilators substance P and brady-
kinin similar to the host vessel response. Although vascular
reactivity of the vasa vasorum in different vascular beds is
not known, any differences in reactivity conceivably con-
tribute to the different susceptibilities of different vascular
beds, (such as coronary versus peripheral arteries) to
atherosclerosis [49–51].

2.3. Role of the vasa vasorum in solute transport into and
from arterial wall

The transport physiology of aortic vasa vasorum has
been explored using radiolabeled microsphere-based
estimates of perfusion [5] as well as the oxygenation of
the arterial wall by direct measurement [52,53] and by
model-based analysis of oxygen tension [54]. These



Fig. 2. Upper left panel: Volume-rendered micro-CT image of a porcine right coronary artery (20 μm cubic voxel size). The origin of the vasa vasorum
interna from the main coronary artery lumen is indicated by the arrow. Right panels: grayscale-inverted μ-CT cross-sections with areas of perfusion.
These areas of perfusion enclose the vasa vasorum branches that belong to the tree in the upper left panel. After adding the areas of perfusion in all
contiguous cross-section images, the volume of vessel wall perfused can be assessed (lower left panel). With permission from Gössl M et al., Ref.[29].
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approaches show a nadir of oxygen tension of approxi-
mately 10mmHg at about 300μm from the lumen. Lipid
transport by vasa vasorum into the parent vessel wall has
been shown to be about 30% of the transintimal transport
in rabbit aorta [55].

3. Role of the vasa vasorum in atherosclerosis

Several interacting feedback loops that plausibly in-
volve vasa vasorum during the development of athero-
sclerotic plaques are provided in (Fig. 3). The relative
magnitude and timing of the activation and/or suppression
of these feedback loops would largely determine, 1) the
rate of development of plaques [56] and 2) the stability of
those plaques [57].
3.1. Modification of transport into and out of vascular wall

That endothelial injury and dysfunction are early features
of atherosclerosis is supported by numerous experimental
findings [58]. However, the hypothesis that “injured” en-
dothelium is a causative factor begs the question as to why
early atherosclerosis is not observed in small arteries, in the
outer media (where vasa vasorum endothelium is present) or
in undisturbed veins.

Studies involving measurement of the transport of lipids
and albumin and dyes into the wall from the main lumen
[44,59] generally do not consider the possible role of vasa
vasorum [60] but focused exclusively on the influx of solute,
endothelial permeability and local solute residence times or
heat removal/delivery. Moreover, these studies also did not



Fig. 3. This is a flowchart of the proposed cascade of events triggered by
increased risk factors (such as elevated plasma lipids) and altered endothelial
function. There are positive feedback loops (e.g., A, C) which result in
progressive plaque formation and ultimately plaque rupture or plaque
calcification. The negative feedback loops (e.g., B) involve the salutary
effect of new vasa vasorum formation and the anti-angiogenesis association
of plaque stabilization with calcification. The relative magnitude and time of
onset of these various reactions to the initial stimuli determine the specific
course followed (i.e., relentless progression vs. self limiting) in any one
individual case. (See text for more detailed discussion).
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address the possibility that there may be circumferential
variations in transmural pressure gradient. Thus, a region of
wall that is not supported at its abluminal surface would have a
larger pressure gradient (which would drive diffusion into the
wall via Darcy's Law) than would wall that is supported on its
abluminal surface.

The reason veins and the normal pulmonary artery do not
develop atherosclerosis may be due to the fact that the
transmural flux of solute (as described by Darcy's Law) is
diminished due to the low venous and pulmonary artery
lumen pressures. In addition, with these lumen pressures
generally being lower than the pressure within the arterial
vasa vasorum, these vasa vasorum may never be compressed
during the entire cardiac cycle, thereby maintaining adequate
flow in the vasa vasorum. Nonetheless, the need for a high
density of external vasa vasorum in vein walls is likely due to
the fact that the venous (unlike arterial) blood in the main
lumen provides little, if any, oxygen to the wall via
transendothelial diffusion from the main lumen.

The early stages of histologically detectable atherogenesis
have been shown to involve increased transport of low
density lipoprotein (LDL) across the endothelium, preceding
cellular infiltration/ proliferation in the arterial wall [61–64].
Because of endothelial dysfunction in arterial vasa vasorum,
delivery of LDL (and probably oxidized and inflammatory
products) may occur at a rate greater than can be removed by
venous vasa vasorum [17]. In addition to the increased
delivery (or impaired removal) of LDL from the arterial wall
by the arterial vasa vasorum [65], an early major focus on the
vasa vasorum's possible role in atherogenesis has been the
oxygen delivery [66–68]. Low oxygen tension has been
shown to accelerate atherogenesis and interfere with LDL
transport [69]. Moreover, fatty streaks, especially in diabetic
situations, have been shown to increase oxygen demand
[70]. We speculate that these data suggest the presence of a
positive feedback process so that reduced perfusion from the
vasa vasorum results in local hypoxia and in increased
accumulation of fatty substances in the intima/media, which,
in turn, results in further local hypoxia due to the increased
local oxygen consumption.

3.2. Modification of the vasa vasorum function by
neovascularization

Despite the fact that atherosclerosis encroaches on the
arterial lumen only at its late stage, the majority of research
efforts continue to focus on the luminal side of the vascular
wall. Recent evidence, however, suggests that the adventitia
may play a significant role in maintaining vessel integrity,
and may contribute to the initiation and/or progression of
certain types of vascular disease [71,72]. Indeed, experi-
mental studies demonstrated that manipulation of the
adventitia, and more specifically of the vasa vasorum, such
as handling of the vessels at surgery or deposits of talcum
powder from the gloves, could lead to atherosclerotic
changes of the intima [7,11,12,73,74]. Atherosclerotic lesion
formation is associated with neovascularization of the vasa
vasorum [30,75,76] as illustrated in (Fig. 4).

A number of autopsy-based studies highlighted that this
neovascularization process occurs in the neointima, which
progresses with and determines plaque extent [77]. The latter
aspect was underscored by an experimental study in apoE-
deficient mice, showing that anti-angiogenic therapy not
only reduced plaque neovascularization but eventually
plaque growth [78]. Moreover, the inhibition of angiogenesis
was associated with a reduction of macrophages in the
plaque and around the vasa vasorum [79–81].

3.3. Alteration of the vasa vasorum endothelial function by
disease

Hypercholesterolemia and hypertension are associated
with impaired endothelial function and an increase in



Fig. 4. Micro-CT transaxial images of a double knockout mouse (LDL−/−,
apoE−/−) aorta after it was injected with a radiopaque silicon polymer. The
aortic lumen (large white area) is irregular rather than round because of the
atherosclerotic plaques encroaching into the lumen. The small vessels
around the lumen are vasa vasorum. Note that unlike the “clear” zone
between the vasa vasorum and the main lumen in the normal artery (upper
panels of Fig. 1), the black arrows in this image show vasa vasorum entering
the plaque area close to the main lumen surface. These are the newly formed
vasa vasorum in response to the plaque formation process. Also, the white
arrows point to isolated punctate opacities in the region of the plaques. These
were shown to be small accumulations of iron and calcium, presumably the
remains of red blood cells. Abridged version of Fig. 3 with permission from
Langheinrich AC et al., Ref. [109].
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vascular inflammation such as indicated by increased
expression of the nuclear transcription factor kappaB (NF-
κB) [82]. In addition, an increase of NF-κB has been shown
to cause enhanced endothelial cell apoptosis [83]. Endothelial
dysfunction and an increase in the vascular tone of the vasa
vasorummay be enhanced in these states due to the enhanced
inflammation and the reduction in the bioavailability of nitric
oxide, secondary to the increase in endogenous oxidative
stress. Eventually, these alterations in the balance of
vasoreactive factors and endothelial cell function may lead
to the functional reduction in blood flow to the vascular wall
and local hypoxia potentially resulting in vasa vasorum
neovascularization to meet the perfusion needs of the arterial
wall. The imbalance between vascular nutrient supply and
demand might even be worsened by an enhanced metabolism
and/or size of the vascular wall upon exposure to a
cardiovascular risk factor. This relates to the hypoxia or
anoxemia theory of atherosclerosis [84]. Indeed, recent
studies in hypertensive rats demonstrated increase in
hypoxia-inducible factor 1 alpha (HIF-1α) and VEGF
expression in the aorta, which was subsequently followed
by increase in vasa vasorum density around the aorta [23]. A
similar increase in HIF-1α and VEGF has been demonstrated
in coronary arteries in hypercholesterolemic pigs [85]. This
study also indicated that the reversibility of endothelial
dysfunction at the early stages of atherosclerosis was
associated with a parallel reduction in the coronary vasa
vasorum spatial density (neovascularization). Vasa vasorum
neovascularization has also been shown to precede the
development of atherosclerotic lesion and even the impair-
ment of endothelium-dependent vaso-relaxation, a hallmark
of early atherosclerosis [17]. Hence, there seems to be an
interaction between the pathophysiologic state of the vessel
and the vasa vasorum spatial density, which is a dynamic, not
a static, process.

The reduction in vascular wall hypoxia coincides with the
decrease in the expression of pro-angiogenic factors in the
coronary arterial wall [18,19,86]. Thus, preservation of
endothelial function of the vasa vasorum and thereby
preservation of adventitial blood supply might be a common
mechanism of the neovascularization in different vascular
beds.

Elevated plasma lipid concentration [87] and coronary
artery luminal endothelium damage have been shown to be
major factors in the initiation and progression of atherogen-
esis [88,89]. However, it is plausible that the coronary artery
vasa vasorum have an aggregate endothelial surface area that
is comparable in size to the host vessel's luminal
endothelium, especially in early stages of atherosclerosis,
when there is increased density of vasa vasorum [90,91].
Hence, disparity between the luminal and vasa vasorum
endothelial surfaces areas may be an important factor. In
addition, it seems possible that vasa vasorum blood flow
may be selectively reduced by increased smooth muscle tone
in proximal vasa vasorum due to reduced endothelial
transduction function, infection, inflammation or thrombo-
sis. This would result in hypoxia and reduced removal of
substances from the media, which must now accumulate.
Despite this possible inequality in anatomic endothelial
surface areas it is not clear if the functional surface areas and
endothelial permeabilities (i.e., permeability surface area
products) at the two sites are comparable and equally
susceptible to damage or loss of function. Such mismatch of
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endothelial function would seem plausible [92]. Importantly,
however, the “host artery” endothelium has a high pressure
driving substances into the intima whereas the lower luminal
pressure in the vasa vasorum (due to the small diameter of
these vessels which causes a pressure drop as described by
Poiseuille's Law) creates a pressure gradient which favors
solute transport from host artery lumen towards the
adventitia as described by Darcy's Law. Indeed, that it is
more likely that substances diffuse into the vasa from the
media, rather than the opposite, has been shown by the
clearance of radiolabeled molecules [75,93,94].

One of the possible consequences of infiltration of lipids
into the subintima or media is that vasa proliferate due to the
angiogenic stimulus they generate via the concomitant
oxidative stress [95]. Specific angiogenic factors have been
shown to play a role in the proliferation of vasa vasorum
[93,96–98]. However, the angiogenesis may just not be
enough to meet the need for increased endothelial surface area
product of the vasa vasorum.

3.4. Role of the vasa vasorum as a portal for cellular invasion
of the arterial wall

Neovascularization of the vasa vasorum could conceiv-
ably function as a conduit for entry of macrophages and
inflammatory factors that may potentially promote the
progression of the disease and angiogenesis [79]. More-
over, as increased endothelial permeability and fragility
are cardinal features of pathological neovascularization
[99] pro-atherogenic cellular and soluble plasma compo-
nents may enter the vessel wall more easily through
ruptured and/or leaky vasa vasorum thereby further
enhancing the progression of atherosclerosis [100].
Indeed, there is an increased influx to, as well as a
decreased drainage from, the coronary vessel wall in the
porcine model of hypercholesterolemia [101]. Pathological
and experimental studies are consistent with the conten-
tion that vasa vasorum hemorrhage may be a key factor in
the development of unstable atherosclerotic lesions
[102,103].

Moreno et al. [104] demonstrated that neovascularization,
as manifested by the localized appearance of microvessels, is
increased in ruptured plaques in the human aorta. Further-
more, they could demonstrate that microvessel density is
increased in lesions with inflammation, with intraplaque
hemorrhage, and in thin-cap fibroatheromas. A recent study
by Langheinrich et al. [76] demonstrates the association
among different advanced atherosclerotic lesions, adventitial
vasa vasorum neovascularization and adventitial inflamma-
tion in apoE−/−/LDL−/−double knockout mice.

4. Summary

The role of vasa vasorum in maintaining the integrity of
the walls of vessels more than 0.5 mm in diameter is not fully
understood, although they clearly are present when the wall
is thicker than can be maintained viable by diffusion of
solutes from the lumen alone. There is clearly a strong
association between the density of vasa vasorum in an
arterial vessel wall and severity of plaque formation, but it is
still not clear whether the vasa vasorum play a causative or
merely reactive role. The latter possibility is complicated by
the possibility that the development of new vasa vasorum is
too late and/or that the new vasa vasorum serve as conduit
which facilitates cellular invasion of the vessel wall and
thereby impact on the type of plaque formed.
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