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Over the past two decades, extensive research has focused on arterial remodelling in both physiological
and pathological ageing. The concept now describes the growth as well as the rearrangement of cellular
components and extracellular matrix, resulting in either reduction or increase in vessel lumen. In dia-
betes, remodelling extends to capillaries, microvascular beds, and arteries of different calibre. This
process is paralleled by accelerated atherosclerosis and accounts for an increased incidence of ischae-
mic complications. The incapacity of pre-existing and de novo formed collaterals to bypass atheros-
clerotic occlusions, combined with a decline in tissue capillary density, is responsible for the delayed
recovery from ischaemia and ultimately leads to organ failure. The mechanisms of vascular remodelling
are incompletely understood, but metabolic and mechanical factors seem to play an important role.
Hyperglycaemia represents the main factor responsible for the fast progression of atherosclerosis as
well as microangiopathy. However, intensive blood glucose control alone is insufficient to reduce the
risk of macrovascular complications. Pharmacological control of oxidative stress and stimulation of
nitric oxide release have proved to exert beneficial effects on vascular remodelling in experimental dia-
betic models. New approaches of regenerative medicine using vascular progenitor cells for the treat-
ment of ischaemic disease have been shown to be safe and are now being tested for efficacy in pre-
clinical and clinical trials.
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1. Introduction

With the number of people with diabetes mellitus (DM) rising
exponentially, the disease represents one of the greatest
medical and socioeconomic challenges worldwide. Despite
adapted treatment strategies, vascular complications rep-
resent the leading cause of morbidity and mortality in dia-
betic patients.1 Therefore, nutritional and environmental
interventions, together with new mechanistic therapies,
are urgently needed to combat the new epidemics of ischae-
mic disease.

DM-associated vascular disease manifests with endothelial
cell (EC) dysfunction, follows structural changes of large
and small arteries with tissue hypoperfusion and hypoxia.
These alterations recapitulate, in an accelerated version,
the process of arterial remodelling with associated senes-
cence that occurs with ageing.2 In particular, diabetic
subjects frequently show signs of accelerated atherosclero-
sis, undergo acute coronary syndromes, myocardial infarc-
tion with silent myocardial ischaemia, peripheral artery
disease, and stroke.3 Despite advances in interventional
techniques, DM portends an adverse outcome following

revascularization, and intimal hyperplastic remodelling
still represents a common complication in diabetic
patients.4 Furthermore, DM impairs endogenous reperfusion
mechanisms, i.e. activation of pre-existing arterial collat-
erals and generation of neo-vessels by arteriogenesis and
angiogenesis, thereby worsening the recovery from an
ischaemic insult.5,6 This is aggravated by the concurrent
development of microvascular complications. Limb muscle
microangiopathy, together with peripheral neuropathy, is a
key determinant in the pathogenesis of life-threatening
foot ulcers, which affect 10% of diabetic patients. Prolifera-
tive retinopathy, a major cause of blindness, is present in
more than 50% of patients with advanced type 1 DM. Nephro-
pathy affects 35% of diabetic subjects and can evolve in
chronic renal failure.3,7

Vessel integrity, once believed to be maintained exclu-
sively by resident cells, is now recognized to be supported
by bone marrow (BM)-derived endothelial progenitor cells
(EPC).8 Furthermore, local and BM-derived progenitor cells
seemingly participate in re-endothelialization and arterial
remodelling after vascular injury.9 In both types of DM,
vascular disease has been shown to be associated with a
decline in EPC number and function. Common biochemical
alterations affecting both mature EC and EPC might there-
fore concur in diabetic vascular complications.10,11* Corresponding author. Tel/Fax: þ44 117 9283904.
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This review illustrates the heterogeneous mechanisms of
cellular and extracellular vascular wall remodelling, focus-
ing on possible therapeutic targets for the prevention and
treatment of diabetic complications.

2. Vascular remodelling

Remodelling affects capillaries and arteries of different
calibre in both physiological (e.g. ageing) and pathological
(e.g. atherosclerosis, hypertension, and diabetes) con-
ditions. The term remodelling was originally coined for a
complex set of vascular changes induced by chronic hyper-
tension, including altered phenotype and function of EC
and vascular smooth muscle cells (VSMC), as well as the
extracellular matrix (ECM) structure and composition,
leading to altered vessel wall-to-lumen ratio.12,13 Princi-
pally, mechanical factors (wall shear stress, wall circumfer-
ential stress) and hypoxia determine hypertensive vascular
remodelling.14 In DM, metabolic factors, e.g. hyperglycae-
mia and oxidative stress, are important for microvascular
remodelling. Interestingly, control of hyperglycaemia
alone, while improving microvascular function, exerts only
modest benefit on macrovascular complications.15 This is
in keeping with frequent association of DM with additive
macrovascular remodelling risk factors, i.e. hypertension.
In type 2 DM patients, concomitant hypertension causes
enhanced inward remodelling of small arteries and attenu-
ation of vessel dilation.16 In this respect, specifically
DM-associated vascular remodelling comprises chemical
and biological modifications of the ECM, altered function
of EC and VSMC, and changes in circulating cells/EC inter-
action via adhesion molecules, cytokines, and proteases
(Figure 1). At the macrovascular level, these alterations
cause the characteristic intima and media (IM) thickening
that, along with increased stiffness and decreased vasomo-
tion, are predictive for a high risk for cardiovascular
events.17

2.1 Extracellular alterations

Increased IM thickness and vessel rigidity in type 2 DM
patients result in an higher pulse wave velocity, decreased
compliance, and luminal dilatation.17 We will briefly focus
on mechanisms responsible for wall stiffening, namely
calcium and matrix protein deposition, increased protein
glycoxidation, together with altered matrix degradation by
matrix metalloproteinases (MMPs) and impaired VSMC relax-
ation. Calcification and increased expression of mediators of
osteogenic differentiation of VSMC and pericytes are also
seen in atherosclerotic plaques from non-diabetic
patients;18 altered insulin and glucose levels, however,
accelerate this process.19,20 Increased deposition of matrix
proteins within the diabetic vessel wall was described
several decades ago. Hyperglycaemia and subsequently
advanced glycation end products (AGEs) were shown to
increase basement membrane components and fibronectin
expression in cultured EC.21–23 The term AGE comprises a
multitude of non-enzymatically glycosylated proteins and
lipids with altered chemical and biological properties.
Specifically, in plasma and locally at the site of vascular
complications, increased glucose levels induce protein
glycation. Early glycation products slowly degrade to form

several different AGEs.24 AGEs have emerged as key sub-
stances in diabetic vascular remodelling, mediating extra-
cellular modifications, such as impaired ECM flexibility and
increased matrix area by cross-linking of matrix proteins,
e.g. through entrapment of molecules, such as low-density
lipoproteins (LDL),25,26 intracellular signalling, and cell–
cell interaction (vide infra) (Figure 1). In addition, AGEs
can reduce the activity of MMPs, a family of endopeptidases
involved not only in matrix degradation, but also in cell
migration, proliferation, and survival.27,28 MMP activity is
controlled at several levels, (i) gene expression, (ii) proteo-
lytic activation of secreted pro-MMPs, and (iii) inhibitors
(TIMPs) or activators (e.g. EMMPRIN). In the diabetic vessel
wall, AGEs interfere with this system through alterations
in activator protein 1 (AP-1) and transforming growth
factor beta (TGF-b) signalling,29,30 and specific expression
of MMP subtypes.31–33 Expression of MMPs and their regula-
tors furthermore differs among different vascular cells in
physiologic and disease conditions as well as in culture.34–36

Altered cellular composition of the diabetic vessel wall (EC
depletion, macrophage, and VSMC increased invasion/pro-
liferation) aggravates the imbalance between different
MMP (vide infra). In DM, differences in substrate specificity
and altered expression/activity of individual MMPs might
partly explain the increased plaque instability, the higher
ECM volume and rigidity, and the reduced vascular healing
capacity.

2.2 Intracellular alterations

2.2.1 Endothelial cells
Because of their incapacity to regulate glucose influx, EC
represent a unique target for DM-induced damage. Protein
glycation and excessive generation of reactive oxygen
species (ROS) impair EC function and viability.37 A more
‘leaky’ endothelial layer results in increased extravasation
of plasma proteins. Among the mechanisms responsible for
enhanced permeability is reduced density of tight and adhe-
rens junctions in diabetic EC due to decreased expression
and increased destruction by proteases like m-calpain.38 In
small vessels, also the loss of pericytes contributes to hyper-
permeability (vide infra).

EC signalling is furthermore affected by glycation of
ECM components, AGE receptor (e.g. RAGE) binding, and
glycation/glycoxidation of intracellular proteins and tran-
scription factors.37,39 RAGE signalling and high intracellular
glucose levels increase both mitochondrial and nicotina-
mide adenine dinucleotide phosphate (NADPH) oxidase-
dependent ROS generation (Figure 2).40,41 While low ROS
level is a physiological signalling mechanism for EC, e.g. pro-
moting EC proliferation,42 excessive ROS is cytotoxic, and
contributes to impaired angiogenesis and diabetic cardiovas-
cular complications.43,44 In DM, ROS levels rise due to exces-
sive superoxide production accompanied by inadequacy of
scavenger mechanisms. Loss of the antioxidant enzyme glu-
tathione peroxidase-1 aggravates atherosclerosis in diabetic
mice, while administration of antioxidants rescues impaired
endothelial function.45–47 High ROS levels induce DNA
strand breaks. Poly (ADP ribose) polymerase (PARP) is then
activated in the attempt of repairing the DNA damage. In
chronic hyperglycaemia, however, this protective mechan-
ism is detrimental. PARP inhibits glyceraldehyde phosphate
dehydrogenase (GAPDH), with consequent accumulation of
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glucose by-products, which fuel AGE and diacylglycerol
(DAG)/protein kinase C (PKC) pathways and thereby
amplify ROS-induced endothelial damage (Figure 2).48 Both
high glucose and ROS promote EC apoptosis through

nuclear factor-kappaB (NFkB) and c-Jun NH2-terminal
kinase (JNK) pathways by caspase activation (Figure 2).49,50

RAGE activation stimulates a variety of intracellular sig-
nalling pathways, including the mitogen-activated protein
kinase (MAPK) pathway via apoptosis signal-regulating
kinase 1 (ASK1).51 Interestingly, ASK1 activation causes tran-
scriptional induction of plasminogen activator inhibitor-1
(PAI-1), a major inhibitor of fibrinolysis that may contribute
to delayed resolution of thrombosis in diabetic patients.52

Caspase activation is normally under the inhibitory control
of the phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial
nitric oxide synthase (eNOS) axis.53 PI3K signalling through
Akt is a powerful pro-survival and pro-angiogenic mechan-
ism, resulting among other effects, in the phosphoryl-
ation/activation of eNOS and nitric oxide (NO)
generation.54 In atherosclerosis, and especially within the
diabetic vessel wall, eNOS is dysfunctional.55 Besides
reduced phosphorylation of eNOS at Ser1177, due to
decreased Akt activity, and eNOS inactivation via the DAG/
PKC pathway, eNOS dysfunction is ascribed to oxidation of
the cofactor tetrahydrobiopterin (BH4), a mechanism
referred to as ‘eNOS uncoupling’.56 Uncoupled eNOS pro-
duces oxygen radicals instead of NO, adding to the increased
oxidative stress and to reduced NO levels.

2.2.2 Vascular smooth muscle cells
Situated within ECM with enhanced rigidity and beneath a
layer of EC, which fail to provide appropriate levels of vaso-
active substances,57 diabetic VSMC meet strong counter-
acting conditions. Those external factors are accompanied
by VSMC failure to respond to vasoactive stimuli.

Figure 1 Alterations within intima and media of diabetic vessels. Endothelial cell apoptosis, reduced generation of nitric oxide (NO), and loss of endothelial cell
junctions allow infiltration of macrophages and extravasation of plasma proteins. Leukocyte adhesion is facilitated by endothelial expression of adhesion mol-
ecules, aiding monocyte/macrophage infiltration and ultimately foam cell generation. Increased protein entrapment in the extracellular matrix, together with
increased matrix deposition, and reduced degradation result in higher matrix volume. Low NO levels promote vascular smooth muscle cell (VSMC) proliferation
and impede relaxation. Infiltrating macrophages and VSMC further increase intima/media (IM) thickness. Secretion of thrombogenic factors accelerates platelet
adhesion and thrombus formation.

Figure 2 Reactive oxygen species (ROS) induced damage in diabetic endo-
thelial cells. Reactive oxygen species-induced DNA strand breaks induce upre-
gulation of poly(ADP ribose) polymerase (PARP) that in turn inhibits
glyceraldehyde phosphate dehydrogenase (GAPDH). The resulting glucose
by-products provide substrates for both advanced glycation end product
(AGE) formation and for the diacylglycerol (DAG)/protein kinase C (PKC)
pathway. AGE receptors activate intracellular signalling cascades leading to
apoptosis through inhibition of PI3K/Akt/eNOS signalling and activation of
the NF-kB and c-Jun NH2-terminal kinase (JNK) pathways as well as NADPH
oxidase-dependent ROS generation.
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Although VSMC are exposed to the same cues as EC, namely
high glucose and oxidative stress, their response is the oppo-
site with regard to proliferation and migration capacities,
contributing to the disease-associated progressive athero-
sclerosis and restenosis.58,59

The signalling cascades involved are similar in VSMC and in
EC, including ROS and AGE generation increase, mediated by
RAGE, NADPH oxidase, PKC, and NFkB pathways combined
with reduction in PI3K/Akt/eNOS signalling. Both, insulin
and glucose enhance the proliferative ability of cultured
VSMC and reduce apoptosis,60 but the underlying mechan-
isms are still not fully understood. In vitro, high glucose
down-regulates PKC-b in VSMC, resulting in the activation
of proliferation.61 Other PKC isoforms, however, show differ-
ent behaviour: PKC-a up-regulation by hyperglycaemia is
responsible for the increased expression of growth factors
(GFs) and their receptors, such as TGF-b and TGF-b
receptor-1.62 PKC signalling is also implicated in
hyperglycaemia-mediated reduction of VSMC apoptosis.63

VSMC contractility and survival are also controlled by the
renin–aldosterone–angiotensin system, with its effector
angiotensin II (AngII). High glucose enhances AngII response,
through up-regulation of the AngII AT1 receptor, and
enhanced ROS production.64,65 Activation of extracellular
signal-regulated kinases (ERK)1/2, JNK, and p38 MAPK by
AngII is enhanced by high glucose, and in turn results in
AngII up-regulation in VSMC.65,66 Other signs of vascular
remodelling attributed to AngII comprise vessel wall calcifi-
cation, enhanced permeability, and monocyte infiltration.
Increased VSMC migration in DM is furthermore attributed
to RAGE-mediated up-regulation of cytokines and GFs, e.g.
TGF-b1, platelet-derived growth factor (PDGF), and
tumour necrosis factor a.67 Digestion of the internal elastic
lamina by MMPs furthermore facilitates VSMC migration/
invasion of the intimal layer.

2.2.3 Pericytes/podocytes
In microvessels, EC and basal lamina are surrounded by a
discontinuous layer of pericytes in direct contact with EC
through gaps in the basal lamina. A similar position is
maintained by the podocytes in renal glomeruli. These cell
types through both direct cell–cell contact and paracrine
signalling, regulate EC survival, proliferation, and migration,
and stabilize nascent neovessels during angiogenesis. Peri-
cytes share characteristics with VSMC, e.g. contractility in
response to vasoactive stimuli, and in vitro studies suggest
that they can give rise to VSMC. However, it is still unclear
whether pericytes are VSMC precursors, or both indepen-
dently derived from a common progenitor, with pericytes
maintaining higher plasticity.

Under physiologic conditions oxygen induces pericyte con-
traction. High levels of oxidative stress, however, evoked by
high glucose and AGEs, induce pericyte and podocyte apop-
tosis through mechanisms similar to those in EC. For
example, forkhead box transcription factors, known
mediators of apoptosis, are activated upon p38 activation
and Akt dephosphorylation in the presence of glycated
collagen.68 These effects are amplified by loss of insulin-
mediated pro-survival signalling.69 Moreover, high glucose
up-regulates phagocyte-type NAD(P)H oxidase in pericytes
increasing ROS production.70 Increased MMP-2 activity and
reduced TIMP3 expression in DM concur in promoting peri-
cyte apoptosis via detachment from the matrix.71–73

Similar to pericytes, podocytes are lost in renal glomeruli
as a consequence of ROS-induced apoptosis.74 Furthermore,
modulation of ion channel activity, e.g. P2X7 purinoceptors,
might contribute to accelerated pericyte/podocyte death,
as recently postulated.75–77 Pericyte impairment, as in the
diabetic retina, leads to uncontrolled growth of immature
and ‘leaky’ vessels, easily broken causing haemorrhagic
damage and vision loss.

2.3 Cell–cell interactions

Diabetes-associated EC dysfunction facilitates vascular
inflammation via GF and cytokine secretion, and adhesion
molecules expression.78 Increased leukocyte affinity to EC
has been linked to the pathogenesis of diabetic microangio-
pathy and atherogenesis.79,80 Furthermore, facilitated leu-
kocyte trans-endothelial migration (TEM) due to increased
endothelial permeability and cytokine/GF generation con-
tributes to IM thickening and plaque instability, symptomatic
for diabetic atherosclerosis.81,82 High insulin and glucose
levels increase adhesion molecule expression on leukocytes
and EC, assisting initial rolling and later firm adhesion pre-
liminary to TEM.83,84 As discussed before, both AGEs and
AngII activate transcription factors (NF-kB and AP-1) in a
ROS-dependent manner, inducing adhesion molecule gene
expression.85 Consistently, RAGE signalling inhibition,
NF-kB inactivation, and ROS scavenging reduce monocyte
adhesion to the endothelium and retard the development
of vasculopathies in diabetic patients.86–88 Excessive throm-
bus formation in diabetic patients is attributed at least in
part to AngII-mediated up-regulation of PAI-1 in response
to RAGE activation. Furthermore, glycoxidation of diabetic
platelet cell membrane proteins is associated with acceler-
ated aggregation and decreased sensitivity towards
aspirin.89,90 Finally, AGEs in the trans-endothelial space
induce the production of chemoattractants for monocytes.86

This process is auto-amplifying, since activated monocytes
that infiltrate the vessel wall produce ROS and inflammatory
cytokines, which in turn stimulate ROS generation in VSMC.
The above-described mechanisms of DM-induced atherogen-
esis follow the pattern observed during arterial ageing,91,92

indicating common mechanisms for arterial remodelling,
e.g. eNOS uncoupling and systemic insulin resistance.93,94

3. Impairment of angiogenesis
and vasculogenesis

Clinical and experimental evidence indicates that altered
remodelling of arterial collaterals as well as de novo vascu-
larization play a key role in impaired recovery from ischae-
mia in DM. We and others used a model of severe hind limb
ischaemia to investigate the cellular and molecular mechan-
isms of disturbed angiogenesis in diabetic animal models.6,95

3.1 Angiogenesis inducers and inhibitors

Both forms of diabetes feature an insufficient surge of endo-
thelial GFs at sites of ischaemia, namely members of the
vascular endothelial GF (VEGF) and insulin-like GF families,
hindering reparative neovascularization.6,96 Impaired VEGF
signalling translates into reduced monocyte chemotaxis
to sites of ischaemia, where those cells are putatively
implicated in the formation of new arterial collaterals.97
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Studies from Tanii et al.98 contradict, however, the primary
involvement of VEGF-mediated mechanisms.

Microangiopathy and peripheral neuropathy often develop
concomitantly and aggravate each other. The neurotrophin
nerve growth factor (NGF) is produced by EC, which also
express NGF receptors.99 In DM, impaired NGF signalling
together with overexpression of the neurotrophin-related
death receptor p75 increases EC apoptosis and impairs
wound healing.100,101 Other neuropeptides from sensory
neurons are implicated in angiogenesis and their deficit
could participate in the delayed repair of diabetic ulcers.102

Disequilibrium of angiogenesis promoters and inhibitors
can lead to exuberant but dysfunctional neovascularization,
as seen in the diabetic retina, as well as vascular destabili-
zation, as observed in skeletal and cardiac muscle, thus sup-
porting a high degree of heterogeneity of diabetic vascular
pathology.103,104

3.2 Vasculogenesis: dysfunction of diabetic
endothelial progenitor cells

Neovascularization accomplished with contribution of stem
cells (SC) and BM-derived EPC, termed post-natal vasculo-
genesis, is a multi-step process cooperating with regener-
ation facilitated by resident vascular cells (Figure 3).
Circulating EPC from type 2 DM patients are numerically
and functionally altered and correlate inversely with levels
of haemoglobin A1C and cardiovascular risk factors.10 The
finding of an association between EPC dysfunction and cardi-
ovascular complications is important but not sufficient to
draw pathogenetic conclusions. Furthermore, the specific
location and mechanisms of EPC damage and reduction
remain unknown. The initial stage of vasculogenesis is rep-
resented by BM–SC activation and transmigration to the
central BM ‘vascular niche’.105,106 BM–SC express high
levels of antioxidant enzymes.107 Not surprisingly, there-
fore, oxidative stress does not play a major role in high

glucose-induced EPC dysfunction.108 A recent report from
Li et al.109 indicates that circulating EPC number in diabetic
mice is significantly reduced with arterial injury; however,
the number of EPC in BM in diabetic mice was greater.
This important observation underlines the possibility that
DM-induced EPC damage may occur after liberation from
the BM, with exposure to high glucose. Those findings also
lead us to speculate that the EPC increase in BM of diabetic
animals may represent a compensatory mechanism for
increased mortality of those cells in the circulation.

We previously showed that moderate increase in glucose
levels impairs cell cycling and migration and increases
apoptosis of cultured human EPC.36 Consistently, human
diabetic CD34þ progenitor cells show altered migratory
ability towards stromal cell-derived factor-1 (SDF-1).110

Furthermore, diabetic EPC show impaired integrative
capacity in neovasculature of ischaemic organs and
reduced re-endothelialization ability after arterial
injury.109 Recent evidence shows that eNOS uncoupling is
central in EPC mobilization and function in humans as well
as in a DM animal model.111,112 Elevation of asymmetric
dimethylarginine, an endogenous NOS inhibitor, in DM,
could contribute to this phenomenon.113 Glycoxidated pro-
teins are suspected for the reduced availability and dysfunc-
tion of EPC in DM, as in vitro studies showed that activation
of the Akt/p53/p21 pathway in healthy EPC cultured in the
presence of oxidized small and dense LDL (ox-dmLDL),
results in a senescent-like growth arrest.114,115 Apart from
endogenous liabilities, diabetic EPC release unidentified
factors that accelerate microvascular EC ageing.10,11 The
mobilization of SC from BM to sites of injury is considered
instrumental to the repair and stabilization of vascular
damage.18 Initial evidence suggests however that DM could
convert this mechanism into an adverse process, with
recruitment of pro-inflammatory progenitors prevailing on
those endowed of regenerative potential. In addition to
SC from distant sources, local adventitial progenitor cells
may contribute to vascular remodelling. Following vascular
injury, those progenitor cells migrate into the intima and
differentiate into smooth muscle cells116 but are also
capable of participating in the formation of peri-adventitial
vascular sprouts, thus establishing the basement for arterial
collateralization.117 Thus, adventitial progenitor cells might
play a Dr Jekyll–Mr Hyde role in the development of arterio-
sclerosis, angioplasty-induced restenosis, vein graft athero-
sclerosis, and reparative vascular growth.

4. Regenerative therapies

New mechanistic insights in the pathogenesis of endothelial
dysfunction were rapidly translated into new therapeutic
opportunities. Among emerging strategies, ROS and AGE
scavengers, PKCb inhibitors,118–121,122 and potentiation of
eNOS activity with BH4, statins, and thiazolidinediones
(glitazones) reportedly alleviate endothelial dysfunction in
diabetic animals.123,124 Clinical trials demonstrated the
ability of statins and glitazones to reduce the incidence
of cardiovascular events such as myocardial infarction and
stroke in diabetic patients (see Hamilton et al.125 for review).

In this final section of this review, we will concentrate on
new approaches of regenerative vascular medicine, namely
therapeutic angiogenesis and SC therapy. Based on the
hypothesis that VEGF signalling is decreased in the diabetic

Figure 3 Ischaemia-induced vasculogenesis. In response to ischaemia,
secreted soluble factors, like hypoxia-inducible factor-1a (HIF-1a) and stromal
cell-derived factor-1, induce proliferation, differentiation, and liberation of
vascular progenitor cells from the BM. In the tissue, EPC adhere to the vessel
wall and migrate along gradients of chemotactic factors (e.g. VEGF, SDF-1).
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heart, Yoon et al.126 injected a plasmid DNA encoding
VEGF165 in the myocardium of diabetic rats, thereby restor-
ing microvascular homeostasis and preventing heart failure
development. In addition, VEGF gene therapy proved to
stimulate angiogenesis in ischaemic limbs of diabetic
mice.6 It was argued that the short duration and leaky neo-
vascularization induced by this GF may be worrisome in dia-
betes. Furthermore, different VEGF isoforms and splice
variants have been shown to induce different signalling
mechanisms, suggesting better contemplation before clini-
cal usage of this protein. There has been, in general, a dis-
appointing outcome regarding angiogenesis in clinical
trials,127 with only recombinant human PDGF-BB being clini-
cally approved for the treatment of diabetic neuropathic
ulcers, yet none for ischaemic ulcers.128 This claims for
the introduction of pleiotropic angiogenic agents able to
address the multi-factorial determinants of diabetic
endotheliopathy. Our group previously showed that gene
therapy with human kallikrein prevents endothelial dysfunc-
tion and microangiopathy in limb muscles of mice with type
1 DM.95,129,130 Several mechanisms of kallikrein action in this
setting are conceivable, including improvement of ECM
flexibility by its protease function and increased kinin
release. With superimposed limb ischaemia, kallikrein pro-
motes arterial collateralization through generation of
kinins and NO, but independently of VEGF.131 The kinin
pathway has furthermore been shown to mediate the
pro-angiogenic effects of angiotensin-converting enzyme
inhibition in DM.104

Schatteman and colleagues132 first analysed the role of
EPC in DM-related microangiopathies. CD34þ circulating
cells from type 1 DM patients produced fewer EC per ml of
blood and exogenous non-diabetic CD34þ cells accelerated
blood flow recovery in a diabetic model of limb ischaemia.
Moreover, heterologous transplantation of non-diabetic
BM-derived progenitor cells promotes vasculogenesis and
wound healing in type 2 DM mice, whereas homologous,
diabetic progenitor cells favour cicatrization but inhibit
vasculogenesis.133 Thus autologous SC therapy for diabetic
vascular regeneration may have limitations both intrinsic
in progenitor cells and imposed by the diabetic environ-
ment. Furthermore, differences may exist with regard to
EPC function and curative properties in type 1 and 2 DM.
Finally, a crucial point determining the therapeutic benefit
of EPC is represented by their ability to secrete
pro-angiogenic factors, which may be diminished or substi-
tuted by inflammatory cytokines in diabetic EPC.

Future directions include attempting to rescue those func-
tional defects and improving EPC recruitment/engraft-
ment.134 One candidate is NO, which is a common
mediator of intracellular pathways in EC and EPC (Figure
4). Recent studies indicate statin and, to an even greater
extent, NO-donating statins potently stimulate reparative
angiogenesis and arteriogenesis in type 1-DM.135 Of note,
statins improve the migratory and survival capacity of EPC
via the PI3K/Akt/eNOS axis and NO-donating statins
further amplify these effects.135

5. Summary

EC and EPC dysfunction pairs with a complex set of cellular
and structural modifications within the vessel wall leading to
diabetic vascular complications. We believe that EPC will

have a central role in new targeted therapies for diabetes
angiopathies, but more data establishing their nature and
function are to be achieved.

Conflict of interest: none declared.

Funding

British Heart Foundation (PG/06/035/20641, PG/06/096/
21325); Juvenile Diabetes Foundation Research (1/2004/
124); European Federation for the Study of Diabetes; Minis-
tero della Pubblica Istruzione Università e Ricerca (MIUR)
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