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Abstract Mitochondria are often regarded as the powerhouse of the cell by generating the ultimate energy transfer molecule,
ATP, which is required for a multitude of cellular processes. However, the role of mitochondria goes beyond their
capacity to create molecular fuel, to include the generation of reactive oxygen species, the regulation of calcium, and
activation of cell death. Mitochondrial dysfunction is part of both normal and premature ageing, but can contribute to
inflammation, cell senescence, and apoptosis. Cardiovascular disease, and in particular atherosclerosis, is character-
ized by DNA damage, inflammation, cell senescence, and apoptosis. Increasing evidence indicates that mitochondrial
damage and dysfunction also occur in atherosclerosis and may contribute to the multiple pathological processes
underlying the disease. This review summarizes the normal role of mitochondria, the causes and consequences of
mitochondrial dysfunction, and the evidence for mitochondrial damage and dysfunction in vascular disease. Finally,
we highlight areas of mitochondrial biology that may have therapeutic targets in vascular disease.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Atherosclerosis † Mitochondria † DNA damage † Reactive oxygen species
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This article is part of the Spotlight Issue on: Smooth Muscle Cells and Vascular Diseases

1. Introduction
Cardiovascular disease remains the leading cause of death in the
Western World with two-thirds of mortality attributable to athero-
sclerosis. Atherosclerosis predominantly affects the large and
medium-sized arteries, usually presenting from the fifth decade and
accounting for over 1 million premature European deaths every
year.1 The atherosclerotic plaque is a multicellular lesion comprising
vascular smooth muscle cells (VSMCs), monocyte/macrophages, T
lymphocytes, and other inflammatory cells, in addition to intra- and
extracellular lipid and cellular debris. Elevated circulating lipids, such
as low-density lipoproteins (LDL), are a significant risk factor asso-
ciated with increased plaque burden.2 The migration of LDL into
the vessel wall with subsequent oxidation and subsequent endothelial
dysfunction are key processes initiating atherogenesis. LDL oxidation
may occur through the action of intracellular lipoxygenases or be the
result of reactive oxygen species (ROS).3,4 Plaques often develop at
regions of low shear stress at sites linked to endothelial dysfunction.
Loss of the endothelium is implicated in leucocyte recruitment, adhe-
sion, and migration and plaque development. However, VSMCs and
monocyte/macrophages become the dominant cell types as the
lesion advances. While early vascular lesions may be characterized
by intimal hyperplasia and VSMC proliferation, mature lesions are
characterized by a paucity of cells, premature cellular senescence,
and increased apoptosis. The plaque environment has increased

ROS levels and DNA damage, which may create elevated bioenergetic
demands and also promote cell senescence and apoptosis. Together,
inflammation, cell death, and senescence lead to the formation of vul-
nerable lesions. The rupture of vulnerable plaques exposes the pro-
thrombotic core to the circulation. Platelets then aggregate to form
thrombi that can lead to arterial occlusion,5,6 manifesting as heart
attacks, or emboli, manifesting as strokes.

2. Mitochondria
Mitochondria are double membrane organelles, contained within the
cytoplasmic compartment of all eukaryotic cells. As well as the
nucleus, mitochondria are a source of DNA within a cell. The mito-
chondrial 16 kb genome encodes 13 polypeptides of the respiratory
chain while the remaining 79 polypeptides are nuclear-encoded.
These polypeptides combine to create the respiratory complexes
required for the transport of electrons through the respiratory
chain and the generation of ATP.

Coordination between the nuclear and mitochondrial genomes
requires a high degree of fidelity. As well as the respiratory chain poly-
peptides, over 1000 other nuclear-encoded proteins, such as those of
the Krebs [tricarboxylic (TCA)] cycle and those required for the for-
mation of protein channels, are required to shuttle into the mitochon-
dria.7 Protein translocation through mitochondrial membranes
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involves the unfolding and ratcheting of the polypeptides, mediated by
motor and chaperone proteins such as hsp70. Once in the matrix the
proteins refold to their correct conformation, although the exact
mechanism remains unclear.8

3. Mitochondrial function
and dysfunction

3.1 Oxidative phosphorylation
Mitochondria mediate oxidative phosphorylation (OXPHOS) via the
transfer of electrons through multimeric complexes to produce
ATP (Figure 1). Complexes I, II, III, and IV form the electron transport
chain (ETC) on the inner mitochondrial membrane. NADH and suc-
cinate produced in the Krebs cycle donate electrons (e2) to Com-
plexes I (NADH dehydrogenase) and II (succinate dehydrogenase).
These electrons are transferred to ubiquinone (Q) and then delivered
to Complex III (ubiquinol: cytochrome c oxidoreductase). The elec-
trons flow to Complex IV (cytochrome c oxidase) via cytochrome c
(C) and finally to the terminal accepter oxygen, producing water.
As the electrons are transferred, protons (H+) are pumped to the
intermembrane space to create a gradient and the mitochondrial
membrane potential. ATP synthase (Complex V) couples proton
flow down this gradient to the synthesis of ATP, which is then avail-
able to fuel cellular function.

3.2 Reactive oxygen species
ROS are produced as a by-product of the respiratory chain, making
the mitochondria the major source of cellular ROS.9 The leakage of

electrons from the ETC, predominantly at Complexes I and III,
leads to the partial reduction of oxygen.10 Superoxide (O2

†–) is pro-
duced, which matrix manganese superoxide dismutase (MnSOD) or
CuZnSOD in the intermembrane space convert into hydrogen perox-
ide (H2O2). H2O2 can then be fully reduced to water by antioxidant
enzymes, such as glutathione peroxidase (GPX) or catalase.11 GPX
uses reduced glutathione (GSH) to catalyse the reduction in H2O2,
and the resulting oxidized glutathione (GSSG) is restored to GSH
by glutathione reductase (GR) (Figure 1). While catalase can also elim-
inate H2O2, it is only present in mitochondria from the heart and liver.
BH3 homology proteins such as Bcl-2 have been suggested to also
mediate an antioxidant role. For example, Bcl-2 has been shown to
increase the expression of SOD. However, others have shown that
Bcl-2 is initially pro-oxidant and there is up-regulation of the antioxi-
dant defences in response.12

The mitochondrial antioxidant systems are important, because if
H2O2 is not reduced to water, it can generate the dangerous hydroxyl
radical. Superoxide can also combine with nitric oxide to produce
highly reactive products such as peroxynitrite (OONO2).13 ROS
can have deleterious effects on cellular function, through the modifi-
cation of DNA, proteins, and lipids as described below. However,
ROS also have important physiological roles, probably the most
recognized of which is in the defence against infectious pathogens.
Through the respiratory burst, phagocytes are capable of generating
high levels of superoxide and hydrogen peroxide, to help with the
clearance of microbes.14 Beyond immune defence, the role of ROS
also extends to signal transduction and second-messenger generation.
For example, the hydroxyl radical activates guanylate cyclase, leading
to the production of cGMP.15 This is important for regulating vascular

Figure 1 OXPHOS, superoxide production, and antioxidant pathways in mitochondria. NADH and FADH2 supply high-energy electrons (e2) from
metabolic substrates. Electrons pass through the ETC and reduce molecular oxygen to form water at Complex IV. Complex V uses the proton gra-
dient achieved to convert ADP to ATP. Superoxide O2

†– is formed at Complexes I and III and is dismutated to H2O2 by matrix MnSOD or CuZnSOD
in the intermembrane space. H2O2 can then be fully reduced to water by GPX or catalase. GPX uses reduced GSH to catalyse the reduction in H2O2,
and the resulting GSSG is restored to GSH by GR. Ca2+ influences ROS production by promoting citric acid cycle activity, increasing the loss of
cytochrome c and stimulating NOS. The NO† generated inhibits respiration at Complex IV, enhancing ROS production.
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tone, with cGMP mediating vascular smooth muscle relaxation, and
hence vasodilation.16 ROS have also been implicated in mitogenic sig-
nalling. In particular, superoxide increases mitogen-activated protein
kinase activity and stimulates VSMC proliferation.17,18 However, fre-
quent exposure to ROS can cause cell death,18 such that regulation
of their levels is crucial to cellular homeostasis.

The balance between ROS generation and the antioxidant activity
of the cell controls cellular oxidative status. ROS production is influ-
enced by a variety of factors including the mitochondrial metabolic
state. For example, stimuli such as hyperglycaemia and leptin (which
is involved in the regulation of body weight) can both induce super-
oxide production.19,20 Increasing levels of oxygen and decreased elec-
tron flow through the ETC are also associated with enhanced ROS
generation,9,21 and calcium is an important regulator of ROS produc-
tion (reviewed in Kowaltowski et al.22). While an increase in Ca2+ may
lead to decreased ROS formation through a transient decrease in the
mitochondrial membrane potential,23 excess Ca2+ is associated with
oxidative stress.24 The potential mechanisms of how Ca2+ influences
ROS production include promoting citric acid cycle activity and in-
creasing the loss of cytochrome c.22 Ca2+ can also stimulate nitric
oxide synthase (NOS),25 increasing nitric oxide NO† generation,
which inhibits Complex IV.26 Again ROS formation would be
enhanced (Figure 1).

As oxidative stress occurs when there is an imbalance between ROS
production and the antioxidant defences, it is important that ROS can
have a regulatory effect on their own levels. For example, superoxide
stimulates uncoupling protein (UCP-1), thereby decreasing the mito-
chondrial membrane potential and reducing ROS generation.27,28

3.3 Calcium
While 99.9% of calcium is deposited in bones, its flux within the body
is tightly regulated, with serum calcium levels rarely changing by more
than 1%. The role of calcium in the contraction of cardiac, skeletal,
and smooth muscle is well established. However, intracellular
calcium is also involved in signal transduction pathways by acting as
a second messenger, and it is a co-factor for many enzymes.

Mitochondrial calcium uptake occurs via the Ca2+ uniporter29 driven
by both the concentration gradient and mitochondrial membrane po-
tential. Importantly, through close apposition with the endoplasmic re-
ticulum (ER) or plasma membrane (PM), mitochondria can be exposed
to high-concentration Ca2+ microdomains,30,31 which stimulate Ca2+

uptake, allowing mitochondria to sense and modulate cellular Ca2+ sig-
nalling. Calcium extrusion occurs via the sodium/calcium exchanger to
maintain mitochondrial Ca2+ levels.32 In addition, the mitochondrial
permeability transition pore (MPTP) also allows calcium efflux. Further-
more, mitochondria can influence cellular Ca2+ through their gener-
ation of ATP, which is necessary for Ca2+ATPase activity. These
transporters are found on the PM and sarcoplasmic reticulum (SR)
and help regulate cytosolic Ca2+ concentration.33,34

4. Mitochondria dysfunction
in vascular disease

4.1 Evidence for mitochondrial dysfunction
in atherosclerosis
There is increasing evidence that mitochondrial damage and dysfunc-
tion occurs in atherosclerosis in both human cells and in animal

models. For example, a large 5 kb section of deleted mtDNA is
often observed and is termed ‘the common mitochondrial deletion’.
This occurs at sites of mis-repaired mtDNA damage35 and is increased
in leucocytes of patients with atherosclerosis.36 ROS exposure
increases levels of mtDNA oxidative lesions and reduces mitochon-
drial protein and ATP production in human VSMCs.37

Hyperlipidaemia is a risk factor for atherosclerosis and apolipopro-
tein E (ApoE) is a component of lipoprotein particles required for
their uptake into tissues. Mice deficient for ApoE (ApoE2/2)
develop hyperlipidaemia and subsequent accelerated atherosclerosis.
It has been observed that mitochondrial DNA damage in ApoE2/2

mice precedes atherogenesis and the damage is exacerbated by
impaired antioxidant activity.38 Smoke exposure also promotes
atherogenesis and aortic mtDNA damage, with an accompanying de-
crease in cardiac adenine nucleotide transporter (ANT) activity which
is important for ATP synthesis.39 More recently, ApoE2/2 mice hap-
loinsufficient for the DNA repair enzyme ataxia telangiectasia mutated
(ATM) demonstrated accelerated atherogenesis, increased nuclear
and mtDNA damage, and impaired liver mitochondrial Complex I
activity.38,40 Respiratory chain dysfunction is therefore shown to be
associated with atherosclerosis development, but as yet, its role as
a causal factor in atherogenesis has not been proven.

Nuclear and mitochondrial DNA damage such as 8-oxo-G (an oxi-
dized form of guanine) has been found in human lesions, and recent
data suggest that accumulation of this damage precedes atherogenesis
and correlates with the extent of disease.41 Nuclear and mtDNA
damage can combine, causing the assembly of faulty respiratory com-
plexes, with resultant respiratory chain dysfunction.42 While damage
to Complex V only affects ATP synthesis, disruption to Complexes
I, III, and IV can also decrease the mitochondrial membrane potential.
Overall, the reduced energy supply affects cellular activity.43

4.2 Causes of mitochondria dysfunction
Mitochondrial dysfunction can be caused by DNA damage which is
associated with many of the risk factors for atherosclerosis.44 For
example, smoking can both induce DNA damage and inhibit the
rate of DNA repair.45 Diabetes mellitus is characterized by Islet cell
dysfunction and failed DNA repair,46,47 which is exacerbated by
ROS.48 In addition, hyperlipidaemia is regarded as one of the key
driving forces of atherosclerosis, with oxidation of lipoprotein parti-
cles associated with increases in DNA damage markers. Importantly,
mitochondrial DNA is particularly susceptible to free radical damage.
While nuclear DNA is ensconced within protective histones and
chromatin, mitochondria lack this protection. Furthermore, mito-
chondrial DNA is closer to the generator of free radicals, the respira-
tory chain. Finally, mitochondria rely on more basic DNA repair
processes, such as base excision repair (mt-BER), which removes
smaller adducts incorporated by alkylation, deamination, or oxida-
tion.49 However, unlike the nucleus, mitochondria can increase their
biogenesis50 and remove poorly performing mitochondria via mito-
phagy and the ubiquitin–proteasome system (UPS).

Altered mitochondrial dynamics could be another cause of mito-
chondrial dysfunction. Mitochondria constantly undergo fission and
fusion events, which control their morphology and integrity.51,52

Fusion allows mixing of the mitochondrial genomes, diluting and so
protecting against damaged DNA.53 Fission is also required for
normal mitochondrial function, with impairment leading to decreased
respiration.54 The accumulation of dysfunctional mitochondria may
therefore result from changes in mitochondrial dynamics. Whether
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this contributes to vascular disease development is an interesting
concept, which is yet to be fully explored.

The health of mitochondria is in part regulated by their biogenesis,
and PGC-1a (peroxisome proliferator-activated receptor gamma
coactivator alpha) is regarded as the master regulator of mitochon-
drial biogenesis and homeostasis.55 PGC-1a is a transcriptional coac-
tivator of PPARg, and together, they regulate genes involved in energy
metabolism. Working through cAMP response element-binding pro-
teins and nuclear respiratory factors, they provide a link between
extracellular stimuli and regulation of mitochondrial biogenesis.
PGC-1a can be regulated through several different mechanisms.
Cell stress can increase levels of ROS, which in turn can stimulate
PGC-1a.56 The cell responds by increasing ATP availability, through
the transcription of OXPHOS co-regulated genes.57 The histone dea-
cetylase SIRT1 is also known to bind and activate PGC-1a through
deacetylation,58 and post-translational modifications such as sumoyla-
tion are also thought to modify its activity and its degradation through
ubiquitin-mediated degradation.59 Collectively failure of PGC1-a
regulation can lead to impaired mitochondrial biogenesis and health
and contribute to the disease phenotype.

4.3 Consequences of mitochondrial
dysfunction
One theory of the contribution of DNA damage to atherosclerosis is
that nuclear and mtDNA code for mutated polypeptides, which are
incorporated into the respiratory chain and contribute to defective
OXPHOS. Loss of integrity of the respiratory chain, especially at
Complex I, is thought to increase ROS and feeds back to further in-
crease DNA damage. The nuclear genome has evolved complex and

multiply redundant pathways to effect repair in response to DNA
damage60 (Figure 2). Thus, there is constitutive expression of sensor
proteins, such as Mediator of DNA damage Checkpoint-1 (MDC1),
which keep guard, waiting for a reactively modified DNA nucleotide
or base pair.61 Once faulty DNA is detected, MDC1 is bound and a
number of proteins are recruited. Initially, MRE11/RAD-50/NBS-1
(MRN) or 9-1-1 complexes activate ATM kinase and ATM-related
kinase by phosphorylation causing dimer dissociation. This can lead
to phosphorylation of the checkpoint kinases (CHK1/2).27,62 These
in turn activate effector molecules such as p53, to result in DNA
repair, cell cycle arrest, or initiation of apoptosis.63

Normal mitochondria can become dysfunctional through DNA
damage and disrupted mitochondrial dynamics. Mitochondrial dys-
function manifests as impaired ATP production, increased ROS gener-
ation, and calcium dysregulation. These changes are likely to affect all
the cell types involved in atherosclerosis, including endothelial cells
(ECs), inflammatory leucocytes, and VSMCs. The negative changes
in cell physiology promote apoptosis, cell cycle arrest, senescence,
altered lipid processing, and inflammation, which are all key processes
in the development of vulnerable atherosclerotic plaques.

4.3.1 ROS formation
Inhibition of OXPHOS or Complex I deficiency promotes increased
production of superoxide and hydrogen peroxide.64,65 The resulting
oxidative stress promotes DNA damage, and oxidative modification
of mitochondrial lipids and proteins, altering cellular bioenergetics.
For example, cardiolipin located in the inner mitochondrial membrane
is needed for electron transfer in Complex I;66 oxidative damage of
cardiolipin reduces Complex I activity.67 Furthermore, ROS can
affect ATP generation by modifying and inhibiting ANT.68 The

Figure 2 DNA damage repair signalling pathway in response to single- and double-strand breaks. Constitutive expression of sensor proteins such as
MDC-1 and H2AX help recruit the MRN complex. PIKK family proteins such as DNApk and ATM are then activated, leading to phosphorylation of
the checkpoint kinases CHK1 and CHK2.27,62 These and other proteins in turn activate effector molecules such as p53, to result in DNA repair, cell
cycle arrest, or initiation of apoptosis.63 A full description of these pathways is provided in the text.
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resulting decrease in ATP favours MPTP opening, and indeed, loss of
SOD antioxidant capacity leads to early apoptosis in a murine
model.69

4.3.2 Calcium dysregulation
Cytosolic calcium must be regulated with exquisite sensitivity to main-
tain cellular homeostasis. While the ER is the traditional cytoplasmic
store,70 recent evidence suggests that mitochondria may be the gate-
keepers controlling calcium signalling.32

Reduced mitochondrial ATP generation can disrupt cellular Ca2+

homeostasis, through impaired PM and SR Ca2+ ATPase activity. At
the level of the mitochondria, respiratory chain dysfunction leads to
loss of the membrane potential, which is required for mitochondrial
Ca2+ entry via the uniporter.71 Resultant changes in Ca2+ concentra-
tion affect respiration, because several intramitochondrial enzymes
(pyruvate, oxoglutarate, and sodium isocitrate dehydrogenase) are
Ca2+-sensitive.72 A decrease in their activity leads to reduced sub-
strate provision for OXPHOS, further favouring apoptosis or cellular
senescence.

4.3.3 Apoptosis and cellular senescence
Although pro- and anti-apoptotic signalling pathways are complex,
broadly apoptosis can occur via two pathways—the receptor-
mediated extrinsic pathway or the mitochondrial-dependent intrinsic
pathway.

The intrinsic apoptotic pathway is dependent on the MPTP, first
proposed by Haworth and Hunter in 1979.73 While its exact

structure still remains uncertain, it has been suggested that the
outer membrane voltage-dependent anion channel combines with
inner membrane pores, such as the phosphate carrier Pic or
ANT74,75 (Figure 3). Although this is debated, nearly all groups
confirm the presence of cyclophilin D as an essential component.
When the MPTP opens in response to apoptotic stimuli, equilibration
of Na+, K+, and Ca2+ ions between the mitochondrial matrix and
cytosol can occur, leading to mitochondrial swelling.76 There is a sub-
sequent release of factors promoting cell death, including cytochrome
c, apoptosis-inducing factor, and second mitochondrial activator of
caspases (Smac).77– 79 Cytochrome c triggers the binding of Apaf-1
with procaspase 9, and the subsequent caspase 3 activation initiates
the downstream apoptotic pathway.80 Furthermore, the process is
self-amplifying, with the loss of cytochrome c impairing OXPHOS
and the antioxidant capacity of the mitochondria. Regulation of
MPTP is controlled by calcium flux, ROS, and ATP.81 As decreased
levels of ATP favour pore opening,76 mitochondrial respiratory
chain dysfunction can result in increased apoptosis. Interestingly,
recent work has shown that rupture of the outer mitochondrial mem-
brane will not automatically lead to cell death if inner mitochondrial
membrane integrity can be maintained. This provides a window of op-
portunity to rescue and repair damaged mitochondria, maintaining
their viability and avoiding the onset of mitochondrial death.82

Impaired respiratory chain function can also lead to senescence.
Cellular senescence describes the phenomenon where cells have a
limited number of replicative divisions before they enter irreversible
cell cycle arrest.83 Alterations in metabolism occur with cellular

Figure 3 Interconnections between energy generation via OXPHOS through respiratory Complexes C1–C5, ROS production and apoptosis. The
TCA cycle regenerates NADH as an electron donor to Complexes C1 and C2. Protons are concomitantly pumped across the intermembrane space
and later returned via Complex V to generate ATP from ADP. The mitochondrial genome encodes polypeptides (seven for C1, one for C3) that
combine with nuclear variants to create the multimeric complexes. Electrons can become unpaired and leak from passage through the respiratory
complexes forming electron-free radicals. In close proximity to molecular oxygen, these form superoxide that can transmute to hydrogen peroxide
and hydroxyl radicals. These ROS damage membranes and mtDNA, resulting in faulty complexes that leak more electrons to produce more ROS.
Loss of cell homeostasis results in MPTP opening and dysregulation of calcium homeostasis. Inappropriate activation of calcium-dependent enzymes
and protein kinase results in MPTP opening, loss of osmotic control, and release of cytochrome c to the cytosol and apoptosis (modified from Puddu
et al.44).
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senescence, including a significant reduction in ATP levels.84 A de-
crease in ATP, and subsequent increase in AMP:ATP, can be sensed
by AMP-activated protein kinase (AMPK).85 AMPK activation inhibits
biosynthetic pathways, helping energy conservation, while the
decreased expression of proliferative genes, including cyclins A and
B, leads to senescence.86,87 Consistent with this, murine cells with
mitochondrial defects have reduced proliferation.88

5. Consequences of mitochondrial
dysfunction in atherosclerosis
Although direct evidence of causality is lacking, multiple potential con-
sequences of mitochondrial dysfunction occur in atherosclerosis, in-
cluding inflammation from ROS generation, apoptosis, and
senescence, raising the prospect that mitochondrial damage/dysfunc-
tion directly promotes these features.

Apoptotic VSMCs, ECs, and macrophages are present in athero-
sclerotic lesions89 and affect plaque development and morphology.
VSMC apoptosis leads to accelerated plaque growth, with increased
calcification and medial degeneration.90 Furthermore, VSMC apop-
tosis can result in thinning of the fibrous cap, an increase in the nec-
rotic core, and intimal inflammation.5 Similarly, macrophages comprise
40–50% of the identified apoptotic cells present,89 and macrophage
apoptosis leads to an expansion of the necrotic core.6 EC apoptosis
is also significant as it would compromise the integrity and function
of the vascular endothelial layer. Damage to the endothelium is con-
sidered to be an initiating step in atherosclerosis,91 with LDL uptake
and leucocyte adhesion and migration occurring at sites of endothelial
dysfunction. EC apoptosis may also be mediated through mitochon-
drial dysfunction and MPTP activation, and indeed, oxidized LDL
induces the mitochondrial apoptotic cascade in vascular ECs.92

While endothelial mitochondrial dysfunction may not necessarily
result in apoptosis, the altered Ca2+ handling could also affect ROS
and nitric oxide generation, promoting atherosclerosis.93

Cell senescence has also been demonstrated in atherosclerosis. For
example, VSMCs derived from human plaques show a senescent
phenotype in culture94,95 and express markers of senescence, includ-
ing senescence-associated b-galactosidase and p21.96 Senescent
VSMCs have a decreased response to b-adrenergic receptor stimula-
tion, which could increase vascular tone and blood pressure.97 Fur-
thermore, elastase production is increased by both senescent cells
and in atherosclerosis,98 promoting the breakdown of extracellular
matrix and a decrease in vascular compliance. Importantly, the senes-
cence of VSMCs could potentially contribute to inefficient plaque
repair, with resulting plaque instability.99

While there is increasing evidence of mitochondrial dysfunction in
atherosclerosis, it is not clear whether this is a consequence of the
disease or that both atherosclerosis and mitochondrial dysfunction
share common causes. For example, mitochondria evolve from
normal to dysfunctional throughout their lifespan. The risk factors
for atherosclerosis may accelerate this process, by directly affecting
mitochondrial DNA and proteins, but by also changing their biogen-
esis and degradation. Similarly, it is unclear whether these effects
are mediated entirely through ROS generation, or other effects
from mitochondrial damage/dysfunction. These questions will
not be answered until we can selectively promote or inhibit mito-
chondrial damage/dysfunction separate from ROS production and

investigate the lifecycle of mitochondria during the development of
atherosclerosis.

6. Mitochondrial dysfunction
in other vascular diseases
Mitochondrial damage and dysfunction may also have a role in other
vascular diseases, such as hypertension, stroke, heart failure, and
cardiac ischaemia/reperfusion injury.100,101 Global levels of hyperten-
sion are estimated at over 1 billion people worldwide,102 and if un-
treated, the condition predisposes to increased cardiovascular-
related mortality. However, hypertension has a complex aetiology
with over 50 genes postulated to be involved,103 some of which are
also involved with mitochondrial homeostasis. For example, the angio-
tensin receptor AT-1 is a frequent target of drug intervention, and
both drugs such as Losartan (AT-II antagonist) and the receptor
itself may regulate free radical generation at the level of the mitochon-
dria.104 The AT-1 receptor has recently been shown to be seques-
tered to mitochondria and may influence signalling.105 Mitochondrial
dysfunction has also been seen in the microvasculature of stroke
patients, which can be reduced by Losartan and mitochondrial-specific
antioxidants such as Mito-TEMPO.106 This suggests that not only is
mitochondrial dysfunction leading to increased generation of ROS,
which promotes these pathologies, but that targeted therapies may
mediate protection.

As in the vasculature, an intact endothelium (endocardium) is
required for normal cardiac physiology, as it is vital for substrate
supply, provides mediators such as nitric oxide, and trophic support
for cardiac myocytes.93 Disruption to endothelial function has been
documented in heart failure107,108 and mitochondrial dysfunction
may have a contributory role. For example, TNFa is increased in
advanced heart failure109 and can increase mitochondrial ROS forma-
tion in ECs.110 The ROS produced can compromise endothelial func-
tion through oxidative damage, and through interacting with, and so
decreasing the bioavailability of nitric oxide.111

Mitochondrial ROS production may also contribute to the endo-
thelial dysfunction observed in ischaemia–reperfusion injury following
restoration of coronary blood flow.112 Ischaemia–reperfusion results
in damage to the endothelium, with apoptosis of capillary ECs and
decreased endothelium-dependent relaxation of coronary arter-
ies.113,114 Increased respiratory chain ROS generation may
contribute to this endothelial dysfunction, as hypoxia–reoxygenation
increases respiratory chain ROS production, which can then trigger
interleukin-6 secretion and increased EC permeability.115

7. Mitochondria as targets for
treatment in vascular disease
From the above discussion, it is apparent that prevention or reversal
of mitochondrial damage/dysfunction may represent a target in vascu-
lar disease. Indeed, it is highly likely that the current therapeutics
reduce mitochondrial damage/dysfunction as part of their mode of
action. For example, the HMG-CoA reductase inhibitors (Statins),
proven as a successful treatment of atherosclerosis,116 capable of
inducing lesion regression,117 also reduce oxidative DNA damage, in
part by accelerating DNA repair.118 Statins also improve mitochondria
biogenesis via PGC1-a and reduced ROS.119
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In contrast, it is more difficult to establish a role for specific treat-
ments whose primary target is the mitochondria. However, given that
ROS have a critical role in atherosclerosis development, recent
advances in targeting antioxidants may be an effective strategy. An
example would be an agent such as MitoQ, a targeted ubiquinone
moiety that accumulates in mitochondria and decreases oxidative
damage.120 Although MitoQ improves cardiac hypertrophy121 and
ischaemic–reperfusion injury,122 its potential role in human athero-
sclerosis remains undetermined.123

An alternative therapeutic approach is via intervention in the
recycling of damaged mitochondria. Normal mammalian mitochondria
are targeted for recycling by the UPS. Proteins such as Parkin are
recognized by E3-ubiquitin ligase and are expressed on the outer
mitochondrial membrane. These proteins tag the organelle for
mitochondria-associated degradation or mitochondrial autophagy,
now termed mitophagy.124 It has been suggested that proteasomal
ageing limits mitochondrial capacity to recycle and may provide a
fruitful area of intervention.125,126

In addition to drug therapy, lifestyle interventions may also be
beneficial in reducing the effects of mitochondrial damage/dysfunc-
tion, as suggested by knockout mouse models. For example, mice
lacking DNA proofreading activity have mitochondrial dysfunction,
an accelerated ageing phenotype, and multiorgan pathologies.127

Recent work suggests that endurance exercise can confer a partial
rescue of the pathology with reduced apoptosis in multiple
tissues.128 Increased mitochondrial biogenesis, decreased mtDNA
damage, and improved respiratory chain capacity were demon-
strated.129 Similarly, calorie restriction has been shown to reduce
mitochondria respiratory chain activity and ROS generation.130 The
reduced ROS production may be the result of decreased substrate
availability or be due to Akt activation. Akt is a pro-survival kinase,
mediating activation of eNOS.131 eNOS is known to increase mito-
chondrial biogenesis, which is predicted to reduce ROS production.

SIRT3, a mitochondria histone deacetylase, regulates fatty acid catab-
olism and ketogenesis during fasting, which is also implicated in the
control of ROS generation.132

8. Conclusions
There is increasing evidence that mitochondrial damage/dysfunction
occurs both in normal ageing and in atherosclerosis. Mitochondrial
dysfunction can result in impaired OXPHOS, increased ROS gener-
ation, and calcium dysregulation. These effects promote apoptosis
and senescence, which are key processes in the development of vul-
nerable atherosclerotic plaques (Figure 4). Mitochondrial dysfunction
also has key metabolic effects, whose systemic manifestations may
also promote atherosclerosis. Mitochondrial damage/dysfunction is
thus a target for therapeutic intervention by targeted medicines or
lifestyle changes.
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