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Abstract

Here we assessed changes in subcortical volumes in alcohol use disorder (AUD). A simple morphometry-based classifier
(MC) was developed to identify subcortical volumes that distinguished 32 healthy controls (HCs) from 33 AUD patients, who
were scanned twice, during early and later withdrawal, to assess the effect of abstinence on MC-features (Discovery cohort).
We validated the novel classifier in an independent Validation cohort (19 AUD patients and 20 HCs). MC-accuracy reached
80% (Discovery) and 72% (Validation). MC features included the hippocampus, amygdala, cerebellum, putamen, corpus
callosum, and brain stem, which were smaller and showed stronger age-related decreases in AUD than HCs, and the
ventricles and cerebrospinal fluid, which were larger in AUD and older participants. The volume of the amygdala showed a
positive association with anxiety and negative urgency in AUD. Repeated imaging during the third week of detoxification
revealed slightly larger subcortical volumes in AUD patients, consistent with partial recovery during abstinence. The
steeper age-associated volumetric reductions in stress- and reward-related subcortical regions in AUD are consistent with
accelerated aging, whereas the amygdalar associations with negative urgency and anxiety in AUD patients support its
involvement in the “dark side of addiction”.
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Introduction

Alcohol use disorders (AUDs) are associated with marked
changes in brain structure that have been ascribed in part to
alcohol’s acceleration of aging, including ventricular enlarge-
ment and gray matter (GM) atrophy, particularly in frontal and
anterior superior temporal cortices and insula (Pfefferbaum
et al. 1998; Thayer et al. 2016; Guggenmos et al. 2017; Sullivan
et al. 2018; Zahr et al. 2019; Zhao et al. 2020). There is also
evidence of accelerated aging in subcortical regions with
AUD including the hippocampus, thalamus, and cerebellum,

although to our knowledge accelerated aging of the amygdala
has not been reported. However, the brain morphological
changes associated with AUD may recover as evidenced by
preclinical and clinical studies showing reductions in ventricu-
lar enlargement and GM atrophy with alcohol detoxification
(Zahr et al. 2016; Zou et al. 2018). Surprisingly, despite the
prominence of neurobiological adaptations in the amygdala and
other subcortical structures associated with the development of
negative emotional states during alcohol withdrawal (Koob and
Volkow 2016), mostly derived from preclinical studies (Koob
and Le Moal 2005), there are few clinical reports involving
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neurobiological studies of negative emotional states in AUD
(Ramirez et al. 2020). Further, the effects of detoxification and
age on the amygdala and other subcortical regions are less clear.

Machine learning (ML) is being utilized to classify AUD vs.
healthy control (HC) groups and identify features that distin-
guish them. For instance, a support vector machine (SVM) clas-
sifier that distinguished AUD participants from non-dependent
controls with high accuracy identified cortical thickness in lim-
bic, parietal, and frontal areas and the volumes of the amygdala
and the hippocampus as prominent features (Mackey et al.
2019). Thus, we hypothesized that, based solely on subcortical
volumes, ML methods would classify AUD patients and HCs
with high accuracy, and that the amygdala would emerge as one
prominent feature of the classifier. We aimed to study the effects
of alcohol, age, and alcohol detoxification on the subcortical
features that emerged from the ML classifier, as well as the asso-
ciation between these features and the clinical characteristics of
AUD patients.

Thus, we developed a morphometry-based classifier (MC),
a simple ML method based on the popular connectome-based
predictive modeling (Shen et al. 2017), to classify 33 AUD patients
and 32 matched HCs based on subcortical volumes obtained
from high-resolution 3 T magnetic resonance imaging (MRI). To
assess brain recovery with detoxification, AUD patients were
scanned twice, 2 weeks apart, during early and late inpatient
detoxification. We hypothesized that with subcortical volumes
MC would achieve higher classification accuracy than with cor-
tical morphometrics, that its performance would be similar to
that of SVM (H1) and that the amygdala would emerge as a
prominent MC-feature (H2). We also tested the generalizabil-
ity of our MC-model in an independent AUD and HC valida-
tion cohort (H3). Consistent with the age×alcohol interaction
effects on brain structures, we hypothesized that the subcortical
regions identified by MC, including the amygdala, would show
accelerated aging in AUD (H4), that the volume of the amygdala
would recover during detoxification (H5), and it would be associ-
ated with negative emotions (impulsivity, anxiety, compulsivity,
and negative emotionality [NEM]) while controlling for age and
detoxification (H6).

Materials and Methods
Discovery cohort

Thirty-three AUD patients and 32 HCs participated in the study.
The two groups did not differ in age or gender proportion
(Table 1). All subjects were screened to exclude ferromagnetic
implants which are contraindicated for MRI, major medical,
neurological and psychiatric disorders, head trauma, chronic
use of psychoactive medications, current or past diagnosis
of substance use disorder (other than alcohol abuse and/or
dependence in the AUD group, or current tobacco smoking in
either group) as assessed by the Structured Clinical Interview
for the Diagnostic and Statistical Manual of Mental Disorders
(DSM-IV; American Psychiatric Association 2000) or DSM-5
(American Psychiatric Association 2013). Women were neither
pregnant nor breastfeeding. AUD participants were admitted
for detoxification and had at least 5 years’ history of heavy
drinking. Alcohol was the preferred drug for all AUD patients.
They completed 3 weeks detoxification in the inpatient unit
of the National Institute of Alcohol Abuse and Alcoholism.
All participants had a negative breath test result for alcohol
consumption and a negative urine drug screen on days of testing

(except for benzodiazepines in AUD patients) and were free of
psychoactive medications within 24 hours of study procedures
(except benzodiazepines during early detoxification for AUD
patients). All subjects provided written informed consent to
participate in the study, which was approved by the Institutional
Review Board at the National Institutes of Health (Combined
Neurosciences White Panel).

Alcohol withdrawal and benzodiazepine use
In the NIAAA detoxification clinic, AUD patients were assessed
with the Clinical Institute Withdrawal Assessment-Alcohol
revised (CIWA-Ar) (Sullivan et al. 1989) at admission and then
approximately every 2 hours until withdrawal ceased. If the
CIWA-Ar scores were >8, patients were given benzodiazepines
to treat withdrawal symptoms, which 26 patients received (23
oxazepam, 3 diazepam).

Ratings and neuropsychological testing
One week after admission (baseline), participants completed the
Alcohol Use Disorders Identification Test (AUDIT) as a mea-
sure of harmful alcohol consumption (Saunders et al. 1993), the
Timeline Followback (TLFB) to assess daily alcohol consumption
in the 90 days prior to the study (Sobell and Sobell 1996), the
Lifetime Drinking History (LDH) to assess lifetime alcohol con-
sumption (Skinner and Sheu 1982), and the Alcohol Dependence
Scale (ADS) to assess the severity of dependence (Skinner and
Allen 1982). The Fagerström test was used as a measure of nico-
tine dependence and the Wechsler Abbreviated Scale of Intelli-
gence (WASI-II) subtests Matrix Reasoning and Vocabulary as a
proxy for general intelligence (Wechsler 1999). Participants also
completed the State–Trait Anxiety Inventory (STAI) (Spielberger
et al. 1983), the Obsessive-Compulsive Drinking Scale (OCDS) to
assess obsessive and compulsive alcohol thinking and drinking
behaviors (Anton et al. 1996), and the Beck Depression Inventory
(BDI) to assess depression symptoms (Beck et al. 1988). The
multidimensional personality questionnaire (MPQ) was used to
rate trait measures of NEM (Tellegen and Waller 2008). The UPPS-
P Impulsive Behavior Scale was used to assess negative urgency
(Cyders et al. 2007).

MRI acquisition
At baseline (within one week of last alcohol use) partici-
pants in the Discovery cohort underwent MRI on a 3.0 T
Magnetom Prisma scanner (Siemens Medical Solutions USA,
Inc., Malvern, PA) equipped with a 32-channel head coil.
T1-weighted 3D magnetization-prepared gradient-echo (MP-
RAGE, TR/TE = 2400/2.24 ms) and variable flip angle turbo
spin-echo (TR/TE = 3200/564 ms) pulse sequences were then
used to acquire high-resolution anatomical brain images with
0.8 mm isotropic voxels, field-of-view (FOV) = 240 × 256 mm,
matrix = 300 × 320, and 208 sagittal slices.

To validate our classifier with different data acquisition pro-
cedures and conditions, AUD patients in the Discovery cohort
underwent two additional structural scans, one collected at
baseline (week 1) and the other at the end of the 3-weeks
detoxification period (week 3), using a “low-resolution” MRI
protocol including MP-RAGE (TR/TE = 2200/4.25 ms; FA = 9◦, 1-
mm isotropic resolution) and T2-weighted multi-slice spin-echo
(TR/TE = 8000/72 ms; 1.1-mm in-plane resolution; 94 slices, 1.7-
mm slice thickness) pulse sequences. This data was used to
assess the effect of alcohol withdrawal on subcortical volumes.
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Table 1 Characteristics of AUD patients and HCs in the Discovery and Validation cohorts

AUD (n = 33) HC (n = 32) P-value AUD (n = 19) HC (n = 21) P-value

Discovery Validation
Demographics
Age [years] 40.5 ± 12.9 42.4 ± 12.1 NS 47.6 ± 10.1 46.8 ± 10.5 NS
Gender [males/females] 23/10 20/12 NS∗ 14/5 13/8 NS∗
Education [years] 13.2 ± 2.7 15.7 ± 1.7 1E-04 12.4 ± 2.9 15.2 ± 2.4 0.002
BMI [kg/m2] 26 ± 5 26 ± 6 NS 27 ± 5 29 ± 6 NS
Number of smokers/no smokers 19/14 0/32 <1E-06∗ 10/9 0/21 <1E-04∗
Premorbid cognition and psychiatric symptoms
Intelligence quotient 98 ± 18 116 ± 15 2E-04 90 ± 16 103 ± 16 0.02
Anxiety score 52.0 ± 11.2 29 ± 8 2E-17 39 ± 12 29 ± 8 1E-03
OCDS obsessive score 8.8 ± 4.9 0.1 ± 0.2 5E-15 4.4 ± 4.1 0.2 ± 0.7 2E-04
OCDS compulsive score 13.5 ± 3.5 1.0 ± 1.1 4E-28 7.7 ± 5.1 0.7 ± 1.3 1E-05
Depression score 19.9 ± 10.5 1.1 ± 0.5 1E-16 7.8 ± 9.9 1.3 ± 1.6 0.01
Urgency score 2.8 ± 0.7 1.5 ± 0.5 7E-14 2.1 ± 0.6 1.5 ± 0.4 0.001
NEM score 44 ± 19 21 ± 12 6E-07 31 ± 16 22 ± 9 0.02
Alcohol use
TLFB [average drinks per day] 13.8 ± 9.0 0.2 ± 0.25 3E-12 10.6 ± 6.5 0.8 ± 1.0 4E-06
CIWA score 6.0 ± 4.6 0.06 ± 0.35 8E-10 2.2 ± 3.2 0.2 ± 0.6 0.03
AUDIT total score 10.9 ± 1.7 1.6 ± 1.2 2E-34 21.6 ± 8.4 1.6 ± 1.7 3E-09
Alcohol dependence score 22 ± 9 0.3 ± 0.6 4E-21 13 ± 7 0.2 ± 0.4 1E-08
Years of alcohol use 25 ± 13 25 ± 12 NS 30 ± 11 26 ± 14 NS
Number of drinking days/month 26 ± 6 3.8 ± 5.6 4E-22 25 ± 7 2.0 ± 3.0 2E-12
Number of drinks/drinking day 16 ± 9. 1.5 ± 0.6 3E-10 12 ± 9 2.0 ± 1.0 1E-04
Brain volumetry
ICV [mL] 1296 ± 200 1262 ± 213 NS 1252 ± 231 1283 ± 228 NS
Brain volume [mL] 1111 ± 90 1175 ± 101 4E-04 1085 ± 137 1133 ± 121 NS
Cortical GM [mL] 455 ± 46 486 ± 47 3E-05 431 ± 61 463 ± 52 NS
Cortical WM [mL] 426 ± 49 450 ± 50 5E-03 444 ± 64 460 ± 59 NS
Subcortical GM [mL] 57.1 ± 6.3 62.3 ± 6.2 2E-04 55.1 ± 6.4 56.5 ± 4.2 NS
Ventricles [% of ICV] 27.0 ± 11.1 17.1 ± 6.2 2E-04 23.5 ± 11.1 21.2 ± 11.6 NS
CSF [mL] 1.43 ± 0.31 1.09 ± 0.16 4E-06 1.31 ± 0.29 1.16 ± 0.22 NS
Cerebellar cortex [mL] 113 ± 14 117 ± 11 0.05 102 ± 13 103 ± 10 NS
Cerebellar WM [mL] 27.8 ± 4.1 28.0 ± 3.9 NS 25.3 ± 3.6 26.4 ± 2.8 NS
Corpus callosum [mL] 2.7 ± 0.6 3.0 ± 0.5 0.04 2.6 ± 0.5 2.8 ± 0.4 NS

Note: Two sample t-test; ∗Chi-square test. AUDIT: Alcohol Use Disorders Identification Test; TLFB: Timeline Followback; CIWA: Clinical Institute Withdrawal
Assessment-Alcohol revised; OCDS: Obsessive–Compulsive Drinking Scale. The MPQ was used to rate trait measures of NEM. The UPPS-P Impulsive Behavior Scale
was used to assess negative urgency (see Supplementary Information).

One AUD patient did not complete the last session due to
scheduling problems and was removed from this analysis.

Validation cohort

An independent dataset, consisting of 21 HC and 19 individu-
als with AUD who were also scanned with the low-resolution
MRI protocol during the first week of inpatient detoxification
(4 ± 2 days since last alcohol use) (Tomasi et al. 2019), was used
to validate the classification results (Table 1). The two groups
did not differ in age, gender proportion, or body mass index
(BMI). Participants were screened to exclude major medical,
neurological and psychiatric disorders, head trauma (with loss
of consciousness longer than 30 minutes), chronic use of psy-
choactive medications, current or past diagnosis of substance
use disorder (other than alcohol abuse and/or dependence in
the AUD group, or current tobacco smoking in either group) as
assessed by the Structured Clinical Interview for the Diagnostic
and Statistical Manual of Mental Disorders (DSM-IV), and metal-
lic implants which are contraindicated for MRI. Women were
neither pregnant nor breastfeeding and were studied in the mid-
follicular phase (3–10 days after the first day of their last period).

AUD participants had at least 5 years’ history of heavy drinking
and were abstinent from alcohol 3.8 days at the time of the
scans (range 0–7 days). All participants had a negative urine drug
screen on the days of testing and were free of psychoactive med-
ications within 24 hours of study procedures. All participants
provided written informed consent to participate, which was in
accordance with the Declaration of Helsinki and approved by the
Institutional Review Board at the National Institutes of Health
(Combined Neurosciences White Panel).

On the day of screening (first study day), participants com-
pleted the AUDIT, TLFB, LDH, total lifetime alcohol (TLA), ADS,
WASI-II, STAI, OCDS, BDI, and the CIWA. The AUD participants
remained in the NIH’s clinical center overnight to ensure that
they did not ingest any alcohol and were scanned on the follow-
ing study day. The MPQ was used to rate NEM and the UPPS-P
was used to assess negative urgency.

Brain morphometry

T1- and T2-weighted images were carefully reviewed by a radi-
ologist to assess the clinical significance of incidental find-
ings. The structural preprocessing pipelines (Glasser et al. 2013)
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Figure 1. Morphometry-based classification modeling (MC). (A) Coronal (top) and sagittal (bottom) views of a human brain atlas showing 27 (9 bilateral and 9 medial)

out of the 45 subcortical volumes assessed with FreeSurfer. These regions-of-interest are relevant in AUD and have been implicated in alcohol craving (hippocampus),
intoxication (basal ganglia), and withdrawal (extended amygdala; dashed rounded rectangle), or have been implicated in alcohol-related accelerated aging (lateral
ventricles). (B) Standardized subcortical volumes (z-Volumes) and group membership for each of n subjects are the inputs to MC. At each of n iterations, the model is

developed using data from n-1 subjects (training set) using leave-one-out cross-validation (LOOCV; dashed red line). Next, a two-sample t-test is used to assess group
differences in each z-Volume, across all subjects in the training set. Next, the most important z-Volumes are selected as features for further analysis. Next, for each
subject, the most important z-Volumes are then averaged, separately for positive (pos: HC > AUD) and negative (neg: AUD > HC) features and the difference between
positive and negative averages is calculated for each subject (Zi). Next, a classification threshold is computed by averaging Z-values across all subjects in the training

set and the classification threshold is compared with the individual Z-value of the test subject to classify him/her into either AUD or HC. DC: diencephalon; CC: corpus
callosum; k: number of features.

of the Human Connectome Project based on FreeSurfer 5.3.0
were used to align the T1- and T2-weighted images, perform
bias field correction, register the subject’s native structural vol-
ume space to the stereotactic space of the Montreal Neurolog-
ical Institute (MNI), segment the brain into predefined struc-
tures, reconstruct white and pial cortical surfaces, and perform
FreeSurfer’s standard folding-based surface registration. Sub-
cortical segmentation results were inspected for any notable
issues (see Supplementary Fig. S1). Forty-five subcortical vol-
umes, defined in the automatic subcortical segmentation atlas
(Fischl et al. 2002) were estimated: lateral and inferior-lateral
ventricles, cerebellar white matter (WM) and cortex, thalamus,
caudate, putamen, pallidum, hippocampus, amygdala, accum-
bens, ventral diencephalon (DC), WM and non-WM hypointen-
sities, choroid plexus and vessels on each hemisphere and the
third, fourth and fifth ventricles, brain stem, cerebrospinal fluid
(CSF), optic chiasm, and five partitions of the corpus callosum
(CC; anterior, middle anterior, central, middle posterior, and
posterior; Fig. 1A).

Machine learning

Confounding effects from differences in intracranial volume,
age, and gender were regressed out across subjects, indepen-
dently for each ROI, before classification in IDL (ITT Visual Infor-
mation Solutions, Boulder, CO). Here we propose morphometry-
based classification (MC), a data-driven approach for the predic-
tion of group membership from brain morphometrics. MC relies

on leave-one-out cross-validation (LOOCV) for the generaliza-
tion to independent data and was inspired by connectome-
based predictive modeling (CPM) (Shen et al. 2017; Tomasi and
Volkow 2020).

At each of n iterations, one of the n individuals was excluded
and the four MC-steps: feature selection, feature averaging, model
building, and classification were carried across the remaining n -
1 individuals to train the model as follows. Feature selection: Two-
sample t-test was used to assess differences in volume, cortical
area, thickness, or curvature index between AUD and HC. ROIs
with significant group differences were identified as either pos-
itive (AUD > HC) or negative (HC > AUD) features and included
in the model. Four thresholds were tested (P < 0.001, 0.005, 0.01,
0.05) for feature selection to certify that results did not depend
on arbitrary threshold selection. Feature averaging: ROIs were
averaged, independently for positive and negative features, to
compute mean positive, Xn-1, and negative, Yn-1, averages across
ROIs and n-1 subjects. Prior averaging, each ROI volume was
z-standardized across all subjects to control for differences in
volume across ROIs (Fig. 1B) to avoid bias against small ROIs.
Model building: Since volume increases in some ROIs are fre-
quently accompanied by decreases in other ROIs, the average
difference score, Zn-1 = Xn-1—Yn-1, was calculated. Classification:
Zn-1 was then used as a threshold to predict the group member-
ship of the remaining individual from his/her X1 and Y1 values
(AUD, if Z1 > Zn-1; HC, otherwise). MC-features that overlapped
across all LOOCV-iterations were identified. Permutation testing
was used to assess the empirical null statistic distribution of
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MC results (Shen et al. 2017). Specifically, 1000 MC estimations
were carried by randomly reassigning group membership labels,
while preserving the structure of the morphometric data. The P-
value of the permutation test was computed as the proportion of
MC permutations with greater or equal balanced accuracy than
the true balanced accuracy of the classifier (Shen et al. 2017).
We used balanced accuracy (MC-accuracy, the average of the
proportion corrects of each group individually) (Brodersen et al.
2010) instead of regular classification accuracy (the proportion
corrects for the whole sample) to account for the imbalance in
the number of subjects between groups.

MC was implemented in IDL. MC-accuracy (% correct clas-
sification), specificity (true negative rate), and sensitivity (true
positive rate) were contrasted against those resulting from the
same data using an SVM classifier implemented in R (package
e1071 v1.7–3).

Statistical analyses

Statistical testing was carried out in R. Analysis of covariance
(ANCOVA: Volume ∼ grp∗age) with main effects of group and age
and age-by-group interactions was used to assess if subcortical
volumes predicting group membership are prone to accelerated
aging in AUD. A false discovery rate (FDR) corrected pFDR < 0.05
was used to report significant effects of group and age on subcor-
tical volumes. Age-by-group interaction effects on subcortical
volumes are reported at P < 0.05, uncorrected.

ANCOVA was also used to assess the effects of negative
emotions and history of alcohol use on subcortical volumes
in AUD. Specifically, we tested for the main effects of impul-
sivity, obsessive–compulsive drinking, anxiety, NEM, and TLA
consumption on subcortical volumes in the AUD group while
using the number of heavy drinking years (HDY) and age as
covariates (volume ∼ urgency + OCDS_total_score + anxiety +
NEM + TLA + HDY + age). Significant main effects of negative
affect and history of drug use on subcortical volumes are
reported at pFDR < 0.05.

A mixed model contrasting subcortical volumes at baseline
and the end of detoxification was used to assess the effect of
withdrawal on MC-features that distinguished AUD from HC.

Results
Demographic, alcohol use variables, and brain
volumetry

Discovery Cohort:
Nineteen AUD patients and none of the HCs were current
tobacco smokers (χ2 > 25, P < 1E-06; Table 1). On average, AUD
participants consumed 179 g alcohol per day during the last
90 days. Conversely, 8 of the HC subjects had no alcohol intake
during the last 90 days, and the remainder consumed an average
of 3 g alcohol per day.

On the first study day, AUD participants had severe with-
drawal symptoms (average CIWA score of 6). The AUDIT score
was <4 for all HCs and >6 for all AUD participants (Table 1).
AUD participants had lower intelligence quotient (IQ) scores and
fewer years of education than HC. Impulsivity (urgency score),
NEM score, depression (BDI score) and anxiety (STAI score),
alcohol craving (obsessive and compulsive OCDS scores), and
withdrawal (CIWA score) ratings were higher for AUD than for
HC (Table 1).

The estimated volumes of WM and GM and CC were smaller
and those of ventricles and CSF were larger for AUD than for
HC (Table 1). The cerebellar cortex was smaller for AUD but
the cerebellar WM and the intracranial volumes did not differ
between AUD and HC. To assess the effect of scan resolution
on FreeSurfer estimations we assessed the correlation between
volumetric measures obtained from high- and low-resolution
scans at baseline, across 45 subcortical volumes and 33 AUD
patients, which corresponded to R = 0.998 (Fig. 2A).

Validation Cohort:
Ten of the AUD and none of the HC were smokers (χ2 = 13.9,
P < 0.0001). AUD patients drank an average of 136 g alcohol per
day in the last 90 days. HC drank 27 g alcohol per day. AUD
patients had lower IQ scores than HC (t = 2.3, P = 0.03) and fewer
years of education (P < 0.001). Impulsivity, NEM, depression and
anxiety, alcohol craving, and withdrawal ratings were higher for
AUD than for HC (Table 1). There were no significant differences
in brain volumetry between AUD and HC in the Validation
cohort.

Morphometry-based classification

Twenty-six MC-features (17 positive and 9 negative features) out
of 45 subcortical volumes distinguished AUD from HC at base-
line, using a feature selection threshold P < 0.01 in the Discovery
cohort. The third ventricle, CSF, WM- and non-WM hypointensi-
ties, left-inferior-lateral ventricle, as well as left and right lateral
ventricles and choroid plexus, had larger volumes in AUD than
HC.

Conversely, the middle posterior, central and middle ante-
rior partitions of the CC, brain stem, left-cerebellar cortex, as
well as bilateral amygdala, hippocampus, thalamus, putamen,
accumbens, and ventral DC (hypothalamus, basal forebrain, and
sublenticular extended amygdala, and a large portion of ventral
tegmentum) had larger volumes in HC than in AUD (P < 0.02,
two-tailed t-test; Table 2 and Fig. 2B). No additional features
emerged at the lowest feature selection threshold (P < 0.05). With
these features, MC-accuracy reached 80% in the classification
of AUD and HC (Fig. 2B). MC-accuracy did not vary significantly
as a function of threshold (P-threshold = 0.05, 0.01, 0.005, and
0.001; 75% < MC-accuracy < 80%; 0.012 < P < 0.001, permutation
testing). Using subcortical volumes the MC classifier achieved
86% sensitivity and 76% specificity in this sample. Similar MC-
features emerged from AUD’s low-resolution images collected
at baseline (week 1), and MC- accuracy reached 84% (P < 0.001,
permutation testing; Fig. 2C). With other morphometrics (corti-
cal volumes, surface areas, cortical thickness, curvature, and/or
folding index, using the Destrieux (Supplementary Table S1) or
Desikan (not shown) atlases) MC-accuracy, sensitivity and speci-
ficity were lower compared to those obtained with the sub-
cortical volumes. For subcortical volumes, balanced accuracy,
specificity, and sensitivity were higher for MC than for SVM.
With cortical features, the specificity was higher for SVM than
for MC (Table S2; P < 5E-8, paired t-test); however, balanced accu-
racy and sensitivity did not differ significantly between MC
and SVM. In the validation cohort (19 AUD and 21 HC), MC-
accuracy was 72% (P < 0.001, permutation testing), using a fea-
ture selection threshold P < 0.05 (Fig. 2D). The MC-features for
the Validation cohort were larger third ventricle and smaller
right-thalamus and left-ventral DC for AUD than HC, whereas
using only subcortical volumes SVM-accuracy was 52.5%. The
difference in MC-accuracy between the Discovery and Validation
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Figure 2. MC classification features and accuracy. (A) The volumes of the 45 subcortical regions computed with FreeSurfer from high- and low-resolution T1-weighted

images obtained at baseline (week 1) were highly correlated across regions-of-interest and AUD patients (n = 33). (B,C) Bar plot showing that the MC achieved >80%
balanced accuracy in the prediction of AUD patients and HCs from 26 subcortical volume features from high (B) or low (C) resolution data from the Discovery cohort.
(D) Bar plot showing that MC-accuracy achieved 72% in the prediction of 19 AUD and 21 HC from the Validation cohort using 3 subcortical volume features: the third
ventricle (red) consistently showed larger volumes for AUD than for HC; the right thalamus, and left ventral DC (blue) showed larger volumes for HC than for AUD.The

coronal (top) and sagittal (bottom) views of a human brain atlas show the features of this classifier for illustrative purposes. The ventricles (red) consistently showed
larger volumes for AUD than for HC; the amygdala, hippocampus, basal ganglia (excluding globus pallidus), thalamus, cerebellum, brain stem and medial regions of
the corpus callosum (blue) showed larger volumes for HC than for AUD. Z: positive–negative difference score (see text).

cohorts was not significant (χ2 = 2.1, P = 0.15). In addition, the
MC model was cross validated by using the MC model and the
subcortical volume features for the Discovery cohort to predict
group membership in the Validation cohort, using a feature
selection threshold P < 0.01. With these constraints MC reached
a balanced accuracy of 67% in the classification of participants
in the Validation cohort.

Effect of age

We first tested the homoscedasticity of the morphometrics
using two homogeneity of variance tests, the parametric
Bartlett’s test (Bartlett 1937), and the non-parametric Fligner-
Killeen test (Conover et al. 1981) in the Discovery sample, which
revealed minimal differences in the variance of subcortical
GM volumes between HC and AUD, but larger differences in
the variance of CSF partitions, and confirmed the normal
distributions of amygdala volume and its regression slopes for
age using the Shapiro–Wilk normality test (Shapiro and Wilk
1965) (Table S3). Then, ANCOVA with an FDR-correction was used
to investigate the effect of age on GM features. Eight subcortical
GM volumes that differentiated AUD and HC demonstrated
significant main effect of age (pFDR < 0.05; Fig. 3). Only the left-
amygdala demonstrated age×group interaction effects (P = 0.04,
uncorrected; Table 2 and Fig. 3D), which was confirmed using
non-parametric ANCOVA (Young and Bowman 1995) (P = 0.01).

Negative emotions and history of alcohol use

The left- and right-amygdala volumes had significant pos-
itive associations with both negative urgency and anxiety
(P < 0.05; Fig. 4 and Table 2) and showed significant interactions
between group membership and negative urgency and anxiety
(P = 0.003). In exploratory fashion, we investigated potential
associations between other MC-features and negative emotions
using ANCOVA. Only the right-putamen showed significant
association with NEM (pFDR < 0.05; Table 2) and NEM × group
interaction effects (P = 0.008; Fig. 4). The association between
left-hippocampus volume and compulsive drinking did not
survive FDR-corrections for multiple comparisons. The GM
volume in right putamen and accumbens, left-cerebellar cortex
and the bilateral thalamus, decreased with TLA (P < 0.05;
Table 2 and Fig. 4). However, these associations did not survive
FDR-corrections for multiple comparisons.

Alcohol Detoxification

We found partial normalization of abnormalities in MC-features
with detoxification. Specifically, the third ventricle (6.4%), left-
inferior-lateral (24.7%), and bilateral lateral ventricles (4.8%),
showed smaller volumes, and the right amygdala (2.7%) and
hippocampus (1.4%), left thalamus (1.8%) and cerebellar cor-
tex (0.9%) showed larger volumes at the end of detoxification
(week 3) compared to baseline (week 1; pFDR < 0.05; Fig. 5A). The
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Table 2 Statistical significance for main effects of group, age, age∗group on subcortical volume features that emerged from morphometric
classification of AUD patients and HCs, as well as effects of urgency, obsessive–compulsive drinking (OCDS total score), anxiety (STAI score),
NEM score, and TLA on subcortical volume in AUD patients

Volumes HC �= AUD Age Age∗grp Urgency OCDS total STAI NEM TLA

P-value
Third ventricle 0.006∗ 0.0003∗ ns ns ns ns 0.05 ns
Brain stem 0.003∗ 0.2 ns ns ns ns ns ns
CC_Central 0.001∗ 0.01∗ ns ns ns ns ns 0.02
CC_Mid_Anterior 0.02∗ 0.009∗ ns ns ns ns 0.04 ns
CC_Mid_Posterior 0.03∗ 0.006∗ ns ns ns ns 0.05 0.02
CSF 0.00001∗ 0.03∗ ns ns ns ns 0.04 0.04
Left accumbens 0.00004∗ 0.0002∗ ns ns ns ns ns ns
Left amygdala 0.003∗ 0.2 0.04 0.0006∗ ns 0.05 ns ns
Left cerebellar cortex 0.03∗ 0.0008∗ ns 0.06 ns ns ns 0.03
Left choroid plexus 0.02∗ 0.005∗ ns ns ns ns 0.004 ns
Left hippocampus 0.00006∗ 0.04 ns ns 0.005 ns ns ns
Left-inf-lateral ventricle 0.006∗ 0.1 ns ns ns ns ns ns
Left lateral ventricle 0.00004∗ 0.00004∗ ns ns ns ns 0.01 ns
Left putamen 0.007∗ 0.000004∗ ns 0.03 ns ns ns ns
Left thalamus 0.009∗ 0.09 ns 0.007 ns 0.01 ns 0.01
Left ventral DC 0.0002∗ 0.0002∗ ns ns ns ns ns ns
non-WM hypointensities 0.007∗ 0.0006∗ 0.009 ns 0.03 ns ns ns
Right accumbens 0.004∗ 0.002∗ ns ns ns ns ns 0.01
Right amygdala 0.006∗ 0.2 ns 0.01 ns 0.002 ns ns
Right choroid plexus 0.002∗ 0.004∗ ns ns ns ns 0.04 0.06
Right hippocampus 0.003∗ 0.1 ns ns ns ns ns ns
Right lateral ventricle 0.0001∗ 0.0000005∗ ns ns ns ns 0.009 ns
Right putamen 0.001∗ 9E-10∗ ns 0.06 ns ns 0.0004∗ 0.04
Right thalamus 0.0005∗ 0.1 ns 0.05 ns 0.004 ns 0.05
Right ventral DC 0.0003∗ 0.000003∗ ns ns ns ns ns ns
WM hypointensities 0.0006∗ 0.0007∗ ns ns ns ns ns ns

Note: ∗pFDR < 0.05. Statistical model: ANCOVA. Discovery cohort.

recovery of left-amygdala volume (2.1%) did not reach signifi-
cance. The effect of age on abstinence-related volume recovery
was significant only for the right-hippocampus, which showed
stronger recovery in younger than in older AUD patients during
detoxification (R = -0.33; P = 0.03, uncorrected). The abstinence-
related volume recovery in right-amygdala was predicted by
negative urgency (R = 0.41, P = 0.04, two-tailed), and at trend-
level by anxiety (R = 0.32, P = 0.08, two-tailed) and baseline mea-
sures of right-amygdala volume (R = 0.34; P = 0.06, two-tailed),
suggesting a higher recovery rate for the amygdala volume in
individuals with higher negative urgency or anxiety and with
larger amygdalae at baseline.

Despite the recovery, at the end of detoxification subcortical
volumes were significantly different for AUD patients compared
to HC (Fig. 5B). Specifically using a feature selection threshold
P < 0.01, MC identified 15 positive and 8 negative features. CSF,
WM- and non-WM hypointensities, left-inferior-lateral ventri-
cle, as well as the bilateral lateral ventricle and choroid plexus,
had larger volumes in AUD than HC. Conversely, the middle-
posterior, central and middle-anterior partitions of the CC, brain
stem, and left-accumbens, as well as bilateral cerebellar cortex,
amygdala, hippocampus, ventral DC, and thalamus had larger
volumes in HC than in AUD and achieved an MC-accuracy
of 78%. To demonstrate the robustness within-subjects of the
classifier, the MC model and features obtained at week 1 were
used to predict group membership at week 3, using a feature
selection threshold P < 0.01. With these constraints MC reached

a balanced accuracy of 82% in the classification of AUD and HC
at week 3.

Discussion
This study reports significant changes of subcortical volumes
in AUD patients, including 31 ± 6% larger ventricles and CSF
volume and 11 ± 2% smaller volumes of amygdala, hippocam-
pus, caudate, accumbens, putamen, thalamus, ventral DC, cere-
bellum, brain stem, and CC studied during the first week of
alcohol detoxification. Using these features, MC achieved 80%
accuracy in the classification of AUD and HC in the Discovery
Cohort and 72% accuracy in the Validation Cohort, consistent
with the generalizability of MC to independent samples (H3).
This classification accuracy is comparable to that on Discovery
Cohorts with SVM, random forest, or other multimodal clas-
sifiers combining whole-brain morphometrics (Mackey et al.
2019; Guggenmos et al. 2020) with neuropsychological scores
and demographics (Squeglia et al. 2017), based on connectomics
(Zhu et al. 2018), electrophysiology (Mumtaz et al. 2018) or epige-
netics (Rosato et al. 2019), or combining multimodal biomarkers
(Kamarajan et al. 2020) and family history (Kinreich et al. 2019).
The higher classification accuracy, sensitivity, and specificity
for subcortical volumes, than for other morphometrics (cortical
volumes, surface areas, cortical thickness, curvature, and/or
folding index), is consistent with hypothesis H1 (“subcortical
volumes MC would achieve higher classification accuracy than
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Figure 3. Relative volumes and effect of age. (A) Barplot showing the relative volumes of 26 MC-features for AUD patients and HCs and the corresponding statistical
group differences (colored diamonds). (B) Barplot showing the correlations of the volumes with age (R) and corresponding statistics for the absolute difference in

correlation between the groups (|�R|) and the average correlation with age across all subjects (HC&AUD) (colored diamonds). (C) Boxplot the distribution of absolute
differences in correlation with age across MC-features and its statistical significance (P; t-test, two-tailed). (D) The volume of the amygdala (AMY) showed a significant
negative correlation with age in 33 AUD but not in 32 HC. CSF: cerebrospinal fluid; CC: corpus callosum; Ventral DC: ventral diencephalon. Discovery cohort.

Figure 4. Associations between MC-features and behavior. For illustrative purposes, coronal (left) and sagittal (right) views of a human brain atlas show features that
demonstrated linear associations with negative emotions including negative urgency, compulsive drinking (OCDS_total score), anxiety (STAI score), and NEM, as well

as TLA use in AUD patients and HCs. AMY: amygdala; HIPP: hippocampus; PUT: putamen; CB: cerebellum. Significance threshold P = 0.05, uncorrected (see Table 2).
Discovery cohort.

with cortical morphometrics, that its performance would be
similar to that of SVM”). MC-features are consistent with prior
findings of ventricular enlargement (Pfefferbaum et al. 2001),
and GM atrophy in amygdala, hippocampus, cerebellum, basal
ganglia, and CC in AUD (Riley et al. 1995; Sowell et al. 1996; Wrase
et al. 2008; Shim et al. 2019; Chye et al. 2020). These findings are
also consistent with our hypothesis H2 (“the amygdala would

emerge as a prominent MC-feature”), and suggest that subcor-
tical volumes are core brain structures negatively affected in
AUD.

Several MC-features demonstrated significant effects of age.
Particularly the volumes of the third and lateral ventricles,
choroid plexus, CSF, as well as WM and non-WM hypointensities,
showed increased volume with age, whereas the volumes of
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Figure 5. Effect of alcohol detoxification on brain volumes. (A) Barplot and two orthogonal views of the brain template showing MC-features with statistically significant

differences in volume between baseline (week 1) and end of detoxification (week 3). (B) Bar plot showing the MC-accuracy in the classification of 32 AUD patients imaged
at end of detoxification and the brain atlas showing the features of this classifier. The lateral ventricles (red) consistently showed larger volumes for AUD than for HC;
the amygdala, hippocampus, accumbens, ventral DC, thalamus, cerebellum, brain stem and medial regions of the corpus callosum (blue) showed larger volumes for
HC than for AUD. Z: positive–negative difference score (see text). Discovery cohort.

the cerebellar cortex, accumbens, putamen, and ventral DC
decreased with age across all participants. These findings are
consistent with the enlargement of CSF partitions (Rubenstein
1998; Pfefferbaum et al. 2001; Walhovd et al. 2005) and increases
in WM hypointenstities (Wei et al. 2019), and the atrophy
of the cerebellar cortex, basal ganglia and brain stem that
have been reported with age (Raz et al. 2005; Walhovd et al.
2005). Furthermore, the left-amygdala demonstrated significant
age-related decreases in AUD but not in HC, supporting
hypothesis H4 (“subcortical regions identified by MC, including
the amygdala, would show accelerated aging in AUD”). Except
for the thalamus and right-hippocampus, all MC-features
showed stronger age-correlations in AUD than in HC, and the
absolute group differences in the correlations with age were
significant across MC-features. These findings are therefore
consistent with the hypothesis that alcohol exacerbates the
effects of aging in the brain (Sullivan and Pfefferbaum 2019)
and expand it to subcortical volumes. Multiple mechanisms
have been proposed to contribute to the accelerated aging of the
brain with chronic exposure to high doses of alcohol including
excitotoxicity, toxic intermediates from alcohol metabolism,
disruption of brain energetics and mitochondrial function,
dietary factors such as thiamine depletion, and changes
in neurotrophic factors among others (Jaatinen and Rintala
2008). Specifically, repeated high-dose alcohol intoxication
and withdrawal results in increased excitatory signaling
through N-Methyl-D-aspartic acid or N-Methyl-D-aspartate
(NMDA) receptors and a concomitant reduction in gamma-
aminobutyric acid (GABA) inhibitory neurotransmission that
promotes intraneuronal Ca accumulation (Lovinger 1993). Toxic
metabolites from alcohol such as acetaldehyde (Rintala et al.
2000) and reactive oxygen species (ROS) generated though
cytochrome P450 2E1(CYP2E1) negatively impact neuronal and
glial cells (Montoliu et al. 1995; Eysseric et al. 2000). The direct
effects of alcohol on brain energy metabolism and its effects
on mitochondrial function (Marin-Garcia et al. 1995; Volkow
et al. 2013) as well as modification in neurotrophic factors and
deficits in key nutrients such as thiamine are also implicated in
the accelerated aging of the brain (Jaatinen and Rintala 2008).
Additionally heavy chronic alcohol use has been associated with
increased deoxyribonucleic acid (DNA) methylation changes
associated with aging (Luo et al. 2020).

We report for the first time an association between amygdala
volume and negative affect that differed for AUD patients and
HCs. Specifically, higher amygdala volume, bilaterally, was asso-
ciated with higher negative urgency and anxiety in AUD but not
in HC, which is consistent with the involvement of the amygdala
in the withdrawal/negative emotion stage in AUD.

The volumes of right-amygdala, right-hippocampus and left
cerebellum, and thalamus, the third and left-inferior-lateral
ventricle, and both lateral ventricles recovered significantly
with abstinence (0.9–24.7%), supporting hypothesis H5 (“the
volume of the amygdala would recover during detoxification”).
These findings are in agreement with prior studies showing a
reduction of ventricular enlargement with alcohol abstinence
(Schroth et al. 1988; Zipursky et al. 1989; Shear et al. 1994;
Sullivan et al. 2000; Pfefferbaum et al. 2001; Zahr et al. 2016). Our
findings of recovery of hippocampal, thalamic and amygdala
volumes are also consistent with prior reports (Liu et al. 2000;
Wrase et al. 2008; Zou et al. 2018). Other studies, however,
did not find an association between amygdala volume and
abstinence in AUD (Fein et al. 2006). The mechanisms accounting
for recovery remain unclear and some have suggested that
it reflects WM regeneration (Kipp et al. 2012). In our study,
in AUD participants the volume of the amygdala was ∼ 10%
smaller than in HCs, and its recovery during detoxification was
only partial (<3%), which likely reflect recovery in extracellular
water content (De Santis et al. 2020). Furthremore, the recovery
of the amygdala volume with detoxification was predicted by
baseline measures of amygdala volume, anxiety and negative
urgency scores. This evidence of volume recovery with alcohol
detoxification could explain prior results of no differences in
subcortical volumes between long-term abstinent alcoholics
and nonalcoholic controls (Daftary et al. 2019). While at baseline
AUD patients had 20–45% larger ventricular and CSF and 5–15%
smaller subcortical GM partitions, the recovery of these volumes
was only partial (<25% for ventricles and CSF, and <3% for GM
nuclei) and did not affect the MC-accuracy, based on subcortical
volumes obtained at the end of detoxification (78% accuracy).

For our AUD participants, larger amygdala volumes at base-
line were associated with more severe anxiety and impulsivity,
consistent with the amygdala’s involvement in what is referred
to as the “dark side of addiction” (Koob and Volkow 2016).
However, since negative emotions, including anxiety (McGue
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et al. 1997), as well as smaller amygdalae are associated with a
higher risk for AUD (Dager et al. 2015), one would have expected
that smaller amygdalae would be associated with more severe
negative emotions as previously reported by others in young
adults (Daftary et al. 2019; Oshri et al. 2019). The reason for
this discrepancy is unclear but it could reflect variability in
amygdala volume in AUD. Compared to older AUD patients,
younger patients had relatively larger and possibly more reactive
amygdalae to stress signals such as CRF, which could make them
more vulnerable to atrophy with age. Indeed there is evidence
that with aging the amygdala loses some of its reactivity to
these stress signals (Kovács et al. 2019). There is also evidence
from fMRI studies that the CRF1 receptor antagonist verucer-
font, attenuated the amygdala’s responses to negative affective
stimuli in anxious women with AUD (Schwandt et al. 2016).

The small sample size is the main limitation of our study.
Thus, our findings on age-related effects in subcortical regions
must be reproduced by future studies. The sample size also
limited our ability to properly assess gender differences in brain
morphology in AUD and their interaction with age (Sawyer et al.
2017). The HC group lacked test–retest (week1-week3) structural
data, which prevented us from studying group-by-week inter-
action effects on subcortical volumes. The use of both high-
and low-resolution scans complicated the analysis and inter-
pretation of results. However, the use of morphometrics from
different scan resolutions, which were highly correlated and
demonstrated similar MC-features and classification accuracy
at baseline and at the end of detoxification, showed the general-
ization of the results to standard imaging techniques. Although
not significant, the difference in classification accuracy between
the Validation and Discovery cohorts, both for MC and SVM,
may also reflect differences in sample size and clinical variables
between participants in the Validation and Discovery cohorts.
Nevertheless, the degree of reproducibility of MC is similar to
that reported with ML classifiers in AUD (Mackey et al. 2019).
Education, number of smokers, and psychiatric symptoms were
significantly different between AUD and HC, both in the Dis-
covery and Validation cohorts. Therefore, other variables such
as tobacco use could have been responsible for some of the
observed effects (Gosnell et al. 2020). TLA ingestion, which cor-
related with age so that it was largest for older individuals, was
also correlated with cerebellar (see Fig. 4), putamen, accumbens,
and thalamic volumes though not with the amygdala volume.
While these results are consistent with increased age-related
GM decline (Sullivan et al. 2018), studies in larger samples are
needed to document age × TLA interaction effects on these
subcortical GM regions.

The reasons why MC outperformed SVM in the present study
are uncertain. SVM tends to be effective in small samples, but
it may not perform well when the number of dimensions is
comparable to the number of samples due to overfitting in
model selection (Cawley and Talbot 2010). Conversely, MC is
robust to overfitting because its model selection with only one
adjustable parameter is extremely simple. The low sample size
in the present study (N = 65) and the number of dimensions (45
alcohol-sensitive subcortical regions; mostly CSF partitions and
GM nuclei) may have resulted in significant overfitting in the
SVM-model selection.

In summary, our findings document significant volumet-
ric changes in subcortical regions including the amygdala that
showed exacerbated atrophy with aging but some level of recov-
ery with detoxification in AUD patients. We also document
an association between amygdala volume with anxiety and

negative urgency that corroborates in humans the involvement
of the amygdala in the withdrawal/negative stage, described as
the dark side of addiction, in AUD.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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