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The human brain is a topologically complex network embedded in
anatomical space. Here, we systematically explored relationships
between functional connectivity, complex network topology, and
anatomical (Euclidean) distance between connected brain regions, in
the resting-state functional magnetic resonance imaging brain
networks of 20 healthy volunteers and 19 patients with childhood-
onset schizophrenia (COS). Normal between-subject differences in
average distance of connected edges in brain graphs were strongly
associated with variation in topological properties of functional
networks. In addition, a club or subset of connector hubs was
identified, in lateral temporal, parietal, dorsal prefrontal, and medial
prefrontal/cingulate cortical regions. In COS, there was reduced
strength of functional connectivity over short distances especially,
and therefore, global mean connection distance of thresholded graphs
was significantly greater than normal. As predicted from relationships
between spatial and topological properties of normal networks, this
disorder-related proportional increase in connection distance was
associated with reduced clustering and modularity and increased
global efficiency of COS networks. Between-group differences in
connection distance were localized specifically to connector hubs of
multimodal association cortex. In relation to the neurodevelopmental
pathogenesis of schizophrenia, we argue that the data are consistent
with the interpretation that spatial and topological disturbances of
functional network organization could arise from excessive ‘‘pruning’’
of short-distance functional connections in schizophrenia.

Keywords: brain network, functional connectivity, graph theory, normal
development, schizophrenia

Introduction

The human brain is a nonrandom topologically complex

network, physically embedded in anatomical space. From a purely

‘‘topological’’ perspective, the brain network is characterized by

the pattern of interactions between nodes, without reference to

spatial properties such as the physical distances spanned by these

interactions. Methods such as graph theory have recently been

used to show that brain functional networks have a complex

topology, characterized by the existence of both highly

connected hubs and densely intraconnected subnetworks

(modules) (Bullmore and Sporns 2009; He and Evans 2010).

The ‘‘anatomical’’ perspective on network organization, in

contrast, focuses on the physical distance between connected

brain regions. Dating back to the seminal work of Ramón y Cajal

(1899), anatomical studies have suggested that the minimization

of connection distance, sometimes called wiring cost, is an

important economical principle constraining the brain’s organi-

zation (Sporns 2010). More generally, it is appreciated that

complex networks embedded in physical space will have

topological properties that are influenced to varying degrees by

the spatial constraints and physical costs entailed in their

formation (Barthélemy 2011). However, anatomical and topolog-

ical perspectives on normal human brain network architecture

have not yet been fully reconciled. The interplay between

topologically and spatially abnormal aspects of human brain

network organization in neurological and psychiatric disorders

also remains to be clearly defined. For neurodevelopmental

disorders, such as schizophrenia, disturbances of spatial and

topological aspects of brain networks in patients should

ultimately be related to perturbations of key neurodevelopmental

processes such as synaptic pruning (Feinberg 1982, 1983; Gogtay

et al. 2004).

Many aspects of brain anatomy have been explained by an

economical principle that seeks to minimize connection

distance or wiring cost between neurons. Such a principle

has been invoked to account for phenomena as diverse as

cortical folding (Van Essen 1997), the layout of functional

regions within mammalian cortex (Cherniak et al. 2004), and

the cellular morphology of neurons (Chklovskii 2004). A model

that minimizes the cost of neuronal connections approximates

the actual layout of the Caenorhabditis elegans nervous

system, which currently remains the only nervous system that

has been completely mapped at the cellular level of neurons

and synapses (Chen et al. 2006). At the coarser spatial scale of

human functional magnetic resonance imaging (fMRI), there is

evidence that the strength of functional connectivity between

regions is greatest for pairs of regions separated by short

physical distance and that connectivity strength decays rapidly

as the Euclidean distance between brain regions increases

(Salvador et al. 2005; Bellec et al. 2006). Likewise, the extent of

white matter tract connectivity as measured with diffusion

spectrum imaging (DSI) also decays with distance, but the

inverse relationship between fMRI and distance is significant

even after controlling for the strong association between

anatomical connectivity (measured with DSI) and functional

connectivity (measured with fMRI) (Honey et al. 2009).

These preliminary observations from neuroimaging suggest

that shorter range connections may be preferred in the large

scale organization of human brain networks. However, return-

ing to the case of C. elegans, recent work has shown that

although wiring cost is evidently submaximal, it is not strictly

minimized (Kaiser and Hilgetag 2006). Using the computational
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technique of component placement optimization, it was

possible to rewire the C. elegans connectome in silico so that

its total wiring length was substantially reduced compared with

the natural nervous system. However, the minimally rewired

network had longer average path length (or lower global

efficiency of information transfer) than the natural system,

suggesting that nervous systems may have been selected not

simply to minimize wiring cost but rather to optimize some

trade-off between cost minimization and the emergence of

‘‘expensive’’ but behaviorally advantageous topological proper-

ties (Bassett et al., 2010; Kaiser, 2011; Fornito et al., 2011; Varier

and Kaiser 2011).

The wave of topological studies of human brain networks

over the last 5 years or so has produced fairly convergent

results. Brain networks are typically clustered, modular, robust,

highly efficient for information transfer, and have a fat-tailed

degree distribution comprising a number of highly connected

nodes or hubs (Bullmore and Sporns 2009). The combination of

high clustering—meaning that a node’s nearest neighbors

are likely to be cliquishly connected to each other—and

high efficiency—meaning that there is a short path between

any pair of nodes—is often referred to as the ‘‘small world’’

property (Watts and Strogatz 1998). This topological profile is

broadly conserved both for structural networks, such as those

derived from DSI data, and for functional networks, such as

those derived from fMRI data, although there is typically not

exact correspondence between structural and functional

networks (Honey et al., 2007, 2009; Hagmann et al. 2008).

Recent studies have begun to investigate the relationships

between topological and spatial aspects of functional brain

networks. fMRI studies of the brain’s modular community

structure have shown that regional nodes belonging to the

same topological module are often anatomical neighbors;

some modules can comprise nodes that are spatially

distant from each other, such as contralaterally homologous

regions of cortex in symmetrically distributed modules

(Meunier et al. 2010). It has also been shown that different

regional nodes may vary in their spatial and topological profile

of connectivity to the rest of the network. On average in

normal volunteers, it was shown that primary sensory and

motor cortical areas have high clustering and predominantly

short-distance connections; in contrast, heteromodal cortical

areas have short average path length (high efficiency) and

predominantly long-distance connections (Sepulcre et al.

2010). However, to our knowledge, no studies have explored

normal individual differences in both spatial and topological

aspects of fMRI brain network organization nor considered

how between-subject variation in connection distance (a

spatial property) could explain variation in efficiency, cluster-

ing, and other topological properties at global (whole brain)

and nodal levels of network analysis.

Schizophrenia has increasingly been conceived as a disorder of

brain network connectivity at both the micro scale of the

synapse and the whole brain scale of neuroimaging (McGlashan

and Hoffman 2000; Stephan et al. 2006). Evidence for abnormal

connectivity and topology of functional and anatomical networks

has emerged from several recent studies. Brain network

organization in schizophrenia is typically less small world, less

clustered, less cost efficient, less dominated by hubs, and less

hierarchical (Liu et al. 2008; Bassett, Bullmore, Meyer-Lindenberg,

et al. 2009; Bassett, Bullmore, Verchinski, et al. 2009; Alexander-

Bloch et al. 2010; Lynall et al. 2010; Van den Heuvel et al. 2010).

These findings have been summarized as indicating that there is

‘‘subtle randomization’’ of brain network topology in schizophre-

nia (Rubinov et al. 2009). The most replicated finding is that

resting-state fMRI networks in patients with schizophrenia are

less clustered (Liu et al. 2008; Alexander-Bloch et al. 2010;

Lynall et al. 2010). Reduced network modularity or community

structure has also previously been reported in childhood-onset

schizophrenia (COS; Alexander-Bloch et al. 2010). Evidence for

schizophrenia as a neurodevelopmental disorder (Rapoport et al.

2005), and for age-related changes in the anatomical distance of

functional connections (Supekar et al. 2009; Fair et al. 2009),

motivates the hypothesis that abnormal adolescent brain de-

velopment in COS is associated with formation of anatomically, as

well as topologically, abnormal brain functional networks. Abnor-

mally increased connection distance between nodes in anatomical

brain networks constructed from gray matter volume data on

patients with schizophrenia has previously been reported Bassett,

Bullmore, Verchinski, et al. (2009). However, anatomical aspects of

brain functional networks have not previously been explored in

relation to the topological abnormalities in schizophrenia.

Here, we used resting-state fMRI to measure functional

connectivity (low-frequency correlation in endogenous brain

oscillations) in networks comprising ~300 gray matter nodes in

a group of healthy controls (N = 20) and an age-matched group

of patients with COS (N = 19). We estimated the spatial

distance of connection as the Euclidean distance between

functionally connected nodes, and we explored how this

spatial property of connection distance or ‘‘wiring cost’’ was

related to global, modular, and nodal topological properties

of the brain networks in health and disease. We also used

a simple generative model of brain networks, which defined

the probability of functional connection between regions as

a function of the physical distance between them, to explore

how variability in penalization of long-distance connections

might account for variability in topological properties of brain

networks.

Materials and Methods

Participants with COS (N = 23) and also healthy volunteers (HV, N = 23)

were recruited for the NIH study of COS and normal brain development.

Patients with COS were recruited through nationwide referral and

extensive prescreening. The institutional review board of the National

Institutes of Health approved the study, and written informed consent

and assent were obtained from parents and children, respectively.

Diagnoses were made using unmodified Diagnostic and Statistical Manual

of Mental Disorders-IIIR/IV criteria for schizophrenia with the onset of

psychosis before age 13. Any history of significant medical/neurological

problems, substance abuse, or premorbid IQ below 70 was exclusionary.

All of the patients were being treated with the antipsychotic medication

Clozapine. Four COS patients and 3 healthy participants were excluded

for excessive head motion during fMRI (see below) resulting in final

samples of 19 participants with COS and 20 healthy participants (HP).

There was no significant difference between groups in terms of

maximum displacement due to motion (COS sample mean = 0.61 mm;

HP sample mean = 0.52 mm; t-test, P = 0.51; 95% confidence interval =
–3.6 to 1.9), gender (10 females, 9 males, COS; 9 females, 11 males, HP;

chi-square test P = 0.88), or age (COS sample mean age = 18.7; standard

deviation [SD] = 4.9; range = 12.2--30.4; HP sample mean age = 19.7; SD =
5.0; range = 13.2--33.7; t-test, P = 0.52; 95% confidence interval = –2.2 to

4.3). For additional demographic information, please see Table 1.

Image Acquisition and Analysis
All images were acquired using a 1.5 T General Electric Signa MRI

scanner located at the National Institutes of Health Clinical Center
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(Bethesda, MD). One anatomical T1-weighted fast spoiled gradient echo

MRI volume was acquired: time to echo (TE) 5 ms; time to repetition

(TR) 24 ms; flip angle 45�; matrix 256 3 256 3 124; field of view (FOV)

24 cm. Two sequential 3-min echo-planar imaging scans were acquired

while subjects were lying quietly in the scanner with eyes closed: TR

2.3 s; TE 40 ms; voxel 3.75 3 3.75 3 5 mm; matrix size 64 3 64; FOV 240

3 240 mm; 27 interleaved slices.

Image preprocessing was accomplished with Analysis of Functional

NeuroImages (Cox 1996) and the Oxford Centre for Functional MRI of

the Brain Software Library (FSL) (Jenkinson and Smith 2001; Jenkinson

et al. 2002). After discarding the first 4 volumes, the functional data was

despiked (removing artifactual outliers in voxelwise time series), motion

corrected, and skull stripped. Maximum displacement was defined as the

maximum of the 6 motion parameters within any 10 s period, with an

exclusion threshold of 2 mm (or degrees). Registration was performed

from each functional scan to that subject’s structural scan using a 6

degrees of freedom transformation, and from each structural scan to MNI

stereotactic standard space using a 12 degrees of freedom trans-

formation. All images were registered to the MNI adult brain template

(Burgund et al. 2002; Kang et al. 2003). White matter and cerebrospinal

fluid (CSF) were segmented with a probability threshold of 0.8. Each

voxel’s time series was regressed against the 6 parameters from motion

correction, the average CSF signal, and the average white matter signal,

with the residuals used for all further analysis.

Gray matter areas in the brain were initially defined using FSL’s cortical

and subcortical Harvard--Oxford probabilistic atlas and cerebellar proba-

bilistic atlas (Diedrichsen et al. 2009) thresholded at 25%. This graymatter

template was filtered to include only voxels with fMRI coverage in every

subject, and downsampled or subparcellated to ~300 uniform regions

(Fornito et al. 2010), maximizing compactness with the additional

constraints that the largest brain region was less than twice the size of

the smallest; also no regions spanned hemispheres or cortical lobes. This

resulted in 293 regionswhose average time serieswere extracted for each

functional scan. The maximal overlap discrete wavelet transform with

a Daubechies 4 wavelet was used to band-pass filter the time series to

the scale 2 frequency interval, 0.05--0.111 Hz. Sequential scans were

concatenated to form a single series of 144 wavelet coefficients. The

absolute wavelet correlation, 0 < jrj < 1, quantified the covariability or

functional connectivity between all 42 778 pairs of anatomically defined

regions, constituting an association or functional connectivity matrix.

Graph Theoretical Analysis of Network Connection Distance and
Topology
Each association matrix was thresholded to make a graph model of the

brain functional network. In such a brain graph (Bullmore and Bassett

2011), the nodes are defined as the brain regions included in the graph,

the edges are the functional connections included, and the degree of

each node is the number of edges that connects it to the rest of the

network. Sparse networks, with relatively few edges representing

relatively large wavelet correlations or relatively strong functional

connections, were constructed using a minimum spanning tree

followed by global thresholding (Alexander-Bloch et al. 2010). Graphs

were constructed over the whole range of connection densities or

costs, from 1% to 99% at 1% intervals; this measure of topological cost

refers to the percentage of all possible edges included in the graph,

such that at 100% there would be edges from each node to every other

node. Summary statistics were averaged over the range of 1--10%, and

sparse networks were analyzed in more detail at 2% cost (for further

information, see Supplementary Material).

The physical distance of an edge in the resulting graphs was simply

estimated as the Euclidean distance (‘‘as the crow flies’’) between the

centroids of the 2 graphically connected brain regions. The global mean

connection distance or wiring cost was the average Euclidean distance

over all pairs of connected regions in the graph. The nodal mean

connection distance was the average Euclidean distance over all edges

connecting a given node to the rest of the network. The distance

strength of a node was defined as the nodal mean connection distance

multiplied by the nodal degree: thus high-degree nodes with many

long-distance connections will have high distance strength. Although

Euclidean distance between nodal centroids is clearly an imperfect

approximation of the anatomical distance between the regions, it has

previously been shown to be comparable to more refined diffusion

imaging-based measures of connection distance (Supekar et al. 2009).

All other topological properties considered, including global effi-

ciency, clustering, small worldness, modularity and the participation

coefficient, have been described previously and used in several prior

graph theoretical studies of human brain networks (Meunier et al.

2009; Lynall et al. 2010). Formal definitions and references are provided

in the Supplementary Materials. In brief, global efficiency is a measure

of the integration of a network (Latora and Marchiori 2001). If many

edges must be traversed to define a path between nodes, that is, if the

characteristic path length is high, then a network has low global

efficiency for parallel information transfer. In contrast, topologically

random graphs (see below) have high global efficiency (Latora and

Marchiori, 2001; Achard and Bullmore 2007). Clustering, sometimes

also called transitivity, is a measure of cliquishness: in a highly clustered

network, if node X is directly connected by a single edge to node Y

and also with node Z, then Y and Z are likely also to be directly

connected by a single edge. Modularity is a measure of community

structure or the extent to which a network is nearly decomposable

into densely intraconnected subnetworks or modules (Newman and

Girvan 2004). The extent to which a node’s edges mediate connect-

ions between these different modules or subnetworks, as opposed to all

of its edges connecting to nodes within its own module, can be

measured by its participation coefficient (Guimerà and Amaral 2005).

Nodes with a high participation coefficient and high degree can be

described as connector hubs, since they play a particularly important

topological role in mediating connections between otherwise isolated

modules.

In addition, to compare the spatial and topological properties of brain

networks to the properties of more-or-less random networks, we

estimated the same parameters in random graphs. We used 2 methods

to construct random graphs. In one procedure, the new edges are

chosen entirely by chance, with the only constraint being that the

randomized graphs have the same number of nodes and edges as the

brain graphs (Erdös and Rényi 1959). In the other procedure, random

graphs were constructed in such a way as to preserve the degree

distribution and number of connected nodes in the brain graphs (Viger

and Latapy 2005). We also explored networks that were only partially

randomized. In this case, a proportion of the edges in a normal brain

graph were randomly rewired. All results from partially randomized

graphs were averaged over 50 random realizations for each of the

20 healthy participants.

Table 1
Demographic information for healthy participants and patients with COS

Patients with COS (N 5 19) Healthy participants (N 5 20) Statistic (df) P value

Mean age of onset (SD) 10.0 (1.8) — — —
Mean age (SD) 18.7 (4.9) 19.4 (4.9) t 5 0.49 (37) 0.62
Sex 10 F; 9 M 10 F; 10 M v2 5 0.02 (1) 0.86
Race 0A; 5B; 0H; 2O; 12W 2A; 3B; 1H; 1O; 13W v2 5 3.85 (4) 0.42
IQ, mean (SD) 76.1 (17.7) 111.0 (13.3) t 5 6.45 (31) \0.01
Socioeconomic status, mean (SD) 62.1 (25.9) 43.9 (13.7) t 5 2.75 (37) \0.01
Handedness (SD) 2 L; 17 R 3 L; 17 R v2 5 0.17 (1) 0.67

Note: df, degrees of freedom; F, female; M, male; race: A, Asian; B, Black/African--American; H, Hispanic; O, other/mixed race; W, White; L, left handedness; R, right handedness.
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Graph analysis was conducted using in-house programs (http://

sourceforge.net/projects/brainnetworks/files/) and the R package

‘‘igraph’’ (Csardi and Nepusz 2006), graphics made use of the R package

‘‘ggplot2’’ (Wickham 2009), and statistics were also calculated using R

(http://www.r-project.org). This study utilized the high-performance

computational capabilities of the Biowulf Linux cluster at the National

Institutes of Health, Bethesda, MD (http://biowulf.nih.gov).

Computational Network Models
We analyzed the topological properties of an explicitly spatial network

model, many varieties of which have been described previously (Kaiser

and Hilgetag 2004; Kaiser and Hilgetag 2006; Barthélemy 2010). The

model defined the probability of an edge between nodes as an

exponential function P(edge) ~ e
–gx, where x is the Euclidean distance

between the centroids of 2 brain regions. We explored a range of values

for the parameter g that resulted in different topological properties and

wiring costs for the simulated networks, comparing models that

matched the different topological profiles of the healthy and the

patient groups. The use of this model allowed us to investigate the

extent to which between-group differences in distance of functional

connections could explain differences in functional network topology.

Results

Anatomical Distance of Functional Connections

The global mean anatomical distance of functional connections

increased as a function of network connection density, as

weaker functional connections were included in denser net-

works (Fig. 1A). This indicates that most of the stronger

functional connections, which comprise the more sparsely

connected networks, are between regions separated by rela-

tively short anatomical distances; see also Figure 2B.

Focusing on networks with a sparse connection density (2%

of possible interactions included as connections), we estimated

the distance between each pair of connected nodes and

compiled these estimates as an empirical probability distribu-

tion of anatomical distance. All individual networks had

asymmetric distance distributions skewed toward short-

distance connections. An exponential probability distribution

provided a reasonable fit to the cumulative distance distribu-

tion (Fig. 1B), although the data include fewer very short-range

connections and also a fatter tail, with more long-range

connections than predicted simply by an exponential decay.

These results confirm a strong selection bias in favor of

short-distance functional connections in sparsely thresholded

normal human brain networks.

Topological Correlates of Connection Distance

There was a fair degree of between-subject variability in the

global mean distance of functional connectivity, which was

strongly associated with individual differences in network

topology (Fig. 2A). Among the healthy participants, the global

mean anatomical distance of functional connections was

significantly correlated with modularity (Pearson’s r = –0.59;

t-test, P < 0.007), clustering coefficient (r = –0.50; P < 0.03),

and global efficiency (r = 0.49; P < 0.04). In other words,

individual brain networks with greater mean distance of

functional connections tend to be less clustered, less modular,

and more globally efficient (have shorter path lengths) than

networks that are configured more economically in terms of

the average distance of functional connections. The small-

worldness scalar, which is a ratio of path length and clustering,

appears to be robust to variation in the length of connections

(r = –0.22; P = 0.4), at least among the healthy participants.

There was also a high degree of within-subject variability in

terms of the anatomical distance of functional connections to

specific brain regions, which was related to the topological roles

played by different nodes and edges in the functional network.

Edges comprising triangular motifs, which are characteristic of

highly clustered networks, tend to be shorter distance than

edges comprising acyclic motifs (Fig. 2C); and intermodular

edges, which connect nodes in different modules, tend to be

longer distance than intramodular edges (Fig. 2D). Brain regional

nodes associated with greater than average connection distance

to the rest of the network tend also to have high degree and

high participation coefficient, indicating that these are connec-

tor hubs that mediate integrative connections between different

spatially distributed modules (Fig. 2E).

Figure 1. Anatomical distance of functional connectivity in fMRI brain networks of
healthy participants and patients with COS. (A) The mean network connection
distance increases as a function of connection density or cost, indicating that the
sparsest networks formed from the most strongly correlated edges are dominated by
short-distance connections. The longer distance, less strongly correlated connections
are added as the networks become denser. We focus on sparsely connected
networks (1--10% cost). (B) The empirical probability density of functional connection
distance is highly skewed toward short-distance connections. An exponential
probability distribution, P(edge) ~ e�gx, where x is the anatomical distance of the
edge, provides a reasonable (though imperfect) fit to the data. (C) Across the whole
range of connection densities, the healthy volunteers have a lower mean network
connection distance than the patients. (D) The empirical probability densities reveal
proportionally more short-distance connections and proportionally less long-distance
connections in the healthy volunteers compared with the patients with schizophrenia.
(E,F) More long-distance and fewer short-distance connections are evident in
a representative network from the patient group, compared with a representative
network from the healthy volunteer group.
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For each node, the product of its degree and its mean

connection distance (denoted distance strength) provides

a simple summary of its importance as a long-distance hub.

We found that distance strength was highest for connector

hubs located bilaterally, predominantly in areas of multimodal

association cortex: left and right lateral temporal lobe (anterior

superior temporal gyrus/planum temporale); left and right

inferior lateral parietal cortex (angular gyrus/supramarginal

gyrus/superior lateral occipital cortex); right anterior medial

frontal lobe (frontal pole/medial frontal cortex/paracingulate

cortex); and right dorsolateral prefrontal cortex (middle frontal

gyrus).

COS: Anatomical Distance and Functional
Dysconnectivity

Like healthy participants, patients with COS had greater strength

of functional connectivity between nodes separated by short

distances. However, we found that the strength of functional

connectivity was generally attenuated in schizophrenia and was

significantly less than normal for shorter distance connections

(separated by <5 cm Euclidean distance; Fig. 2B). Strength of

functional connectivity of longer anatomical distances was

relatively normal in the COS group. Therefore, the proportion

of long-distance connections in brain networks was greater

for patients with COS compared with healthy participants

(Fig. 1D--F ; Supplementary Fig. S2). As exemplified by networks

with a sparse (2%) connection density, the mean connection

distance of the individual COS networks was higher than the

mean connection distance of the networks of healthy partic-

ipants (COS population grand mean = 51 mm; SD across subjects

= 6 mm; healthy participant grand mean = 44 mm; SD = 4 mm;

t = 3.93; P < 0.0005). This group difference is also reflected in

significant differences in the parameter, g, of the best-fitting

exponential probability distribution for each subject (COS mean

g = 0.020; SD = 0.002; healthy participant mean g = 0.023;

SD = 0.002; t = 4.0; P < 0.0004). In addition, the group difference

Figure 2. Interplay between the anatomical distance of functional connections and topological (nonspatial) attributes of brain networks in health and schizophrenia. (A) Across
subjects, the mean anatomical distance of brain networks is related to complex network properties including modularity (a measure of decomposability of the network into component
modules), clustering (the ‘‘cliquishness’’ of connections), global efficiency (the capacity for parallel information transfer), and small worldness (the normalized ratio of clustering to path
length). (B) The average functional connectivity (absolute wavelet correlation at 0.05--0.11 Hz) is lower in the schizophrenia population than in the control population, most notably for
short-distance anatomical connections \5 cm. (C) Triangular or triangle-containing network motifs tend to have shorter anatomical distances in both groups. (D) Intermodular edges
are longer than intramodular edges in both groups. (E) As illustrated in the population of healthy participants, nodes with longer distance anatomical connections tend to have higher
degree (more connections), higher participation coefficient (more connections between different modules or communities), and lower clustering.
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is robust to replacing parametric statistical tests with non-

parametric permutation tests of significance (difference in mean

connection length, P = 0.0007; difference in g parameter, P =
0.0005; see Supplementary Fig. S2). The group difference in the

mean connection distance remained strongly significant (t-test

P < 0.001) for networks matched at any connection density

between 1% and 90% at 1% intervals (Fig. 1C). We note that the

selective attenuation of short-distance connectivity strength in

COS patients is difficult to reconcile with the null hypothesis

(discussed in greater detail below) that the observed differences

between groups are attributable to ‘‘noisier’’ data in the patient

group. Under this hypothesis, the strength of functional

connectivity would be attenuated more consistently across all

pairs of nodes, regardless of the distance between them.

The difference between patients and healthy participants in

functional connection distance was related to differences in

topological network measures (Fig. 2A). For networks with

connection density in the range 1--10%, we tested key

topological metrics for a main effect of distance, a main effect

of diagnostic group, and a diagnosis-by-distance interaction

effect. There were main effects for distance on modularity

(F = 33.2; P < 0.00001), clustering (F = 6.6; P < 0.02), and small

worldness (F = 8.8; P < 0.006); main effects for diagnostic

group on modularity (F = 17.9; P < 0.0002), clustering (F = 11.5;

P < 0.002), and small worldness (F = 4.5; P < 0.05); and there

were no interaction effects. In other words, longer connection

distances were generally associated with reduced modularity,

clustering, and small worldness; there followed the predictable

corollary that these topological metrics were significantly

abnormal in the COS group.

In terms of the within-subject variability of nodal connection

distances in relation to the topological roles of specific brain

regions, the general framework established for the healthy

brain networks holds true for the COS data, while reflecting the

overall increase in global mean connection distance (Fig. 2C,D).

The patients with schizophrenia show broadly the same

pattern as the healthy participants in terms of the anatomical

distribution of connector hubs, but specific brain regions also

have more long-distance connections in COS (Fig. 3B,C). Using

a false positive correction for multiple t-tests of P < 0.003, the

nodal distance strength was significantly lower in the healthy

group in the left dorsolateral prefrontal cortex (superior frontal

gyrus/middle frontal gyrus); right inferior parietal lobule

(angular gyrus/supramarginal gyrus); right anterior medial

(frontal pole/paracingulate cortex); and right dorsolateral

prefrontal cortex (superior frontal gyrus/middle frontal gyrus).

This anatomical pattern of disturbances is further supported by

a supplementary analysis of each cortical lobe as its own

independent network: Bilaterally the frontal and parietal lobes

showed a similar pattern of alterations to the whole brain

networks, whereas there was no difference in connection

distance between controls and patients within the temporal or

occipital lobes (see Supplementary Fig. S1C,D).

Network Randomization and Schizophrenia

One important caveat to consider in interpreting these results

is that some of the differences observed between groups may

not indicate real differences but could instead be attributable

to contamination of the data on COS patients by greater

contributions of statistical noise. This interpretation is allowed

by the fact that the strength of functional connectivity is

generally lower than normal in the COS group. Therefore, to

generate networks that are matched in terms of connection

density, it has been necessary to apply thresholds for definition

of an edge that are somewhat lower for the COS group than for

the healthy participants. It follows that some of the edges

included in the COS network may simply represent chance

association between time series and any such ‘‘noise-generated’’

edges might be expected to result in randomization of the

network topology. It is important to note that a global decrease

in functional connectivity, as simulated for example by de-

creasing all of the interregional correlations to the same extent,

would not alter the topology of networks thresholded at the

same connection density. To account for the altered topology in

sparsely thresholded networks, not only the absolute value but

also the order of even the strongest interregional correlations

would have to be affected.

To address this possible interpretation explicitly, we con-

ducted a number of additional analyses. First, we compared the

observed brain graphs (in both healthy and COS groups) with

random or partly randomized graphs in terms of their

connection distance and clustering over a range of connection

densities (Fig. 4A). These analyses confirmed that the COS

networks are clearly different from the random graphs in terms

of connection distance and clustering. Random graphs, for

example, have high global mean connection distance at all

connection densities. Comparing the COS networks to the data

obtained by randomly rewiring 10% of the edges in the healthy

Figure 3. Anatomical locations of long-distance connector hubs, in health and
schizophrenia. Cortical surface maps show the distance strength of each node,
defined as the degree (number of connections) of each node multiplied by its average
connection distance to the rest of the network, Z-scored for each participant relative
to the mean and SD of their group. Connector hubs are shown as regions of
multimodal association cortex with high distance strength in (A) the healthy volunteer
group and (B) the patients with schizophrenia. (C) Distance strength was significantly
reduced for some connector hubs in frontal and parietal cortex in the healthy
participants compared with the patients with schizophrenia (false positive correction;
t-test P \ 0.003).
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brain networks, we find that clustering is reduced to

a greater degree in the partly randomized networks than in

the COS networks; but connection distance is not increased

by as much in the partly randomized networks as it is in the

COS networks. In short, simple randomization of normal

network topology cannot account simultaneously for both

the spatial and the topological profiles of patients with COS.

The data show subtler topological alterations and grosser

spatial alterations than would be predicted by a randomiza-

tion process.

Second, we recalculated clustering and connection distance

in networks constructed for both groups of data by applying

a range of identical thresholds to each individual’s correlation

matrix. In other words, we generated networks matched for

strength of functional connectivity rather than being (as

previously) matched for connection density. This analysis

allows some differences between networks in terms of their

connection density, but it ensures that the probability of

adding an edge that represents chance correlation is matched

between groups. We found that the key results previously

reported when networks are controlled for connection density

are also found when the networks are controlled for minimum

strength of correlation. Clustering was reduced, and connec-

tion distance was increased, over a wide range of threshold

values in the COS group compared with healthy volunteers

(Fig. 4B). The fact that this control preserves the higher mean

connection length in COS is particularly striking, because the

COS networks have fewer edges than the control networks

when they are matched at a minimum strength of correlation,

which other things being equal would result in lower mean

connection lengths (see Fig. 4A).

Third, we normalized the topological metrics of the brain

graphs by dividing each observed metric by its value in

a random graph of equivalent size and connection density.

We found that the relationships between connection

distance, efficiency, modularity, and clustering remained as

previously reported (see Fig. 4C). Collectively, these results

support the conclusion that the observed between-group

differences in connection distance and topology are not

explicable simply in terms of greater ‘‘noisiness’’ of the COS

data contributing a disproportionate number of edges

representing chance association between regions.

Distance Penalization Model of Brain Functional
Network Formation

To further explore the interplay between anatomical and

topological aspects of network organization, we used a simple

model for the probability of a functional connection between

nodes as an exponentially decaying function of the physical

distance between them (Kaiser and Hilgetag 2004). The

exponential parameter can be regarded as a distance penalty:

Larger values of the parameter will make it less probable that

2 regions will form a functional connection unless the distance

between them is short. We first found the value for the

exponential parameter, which most closely approximated

the key topological properties of the healthy brain networks

Figure 4. The topological and spatial abnormalities of functional networks in COS are not attributable simply to randomization of networks. (A) The schizophrenia networks are far
from fully random networks, and they are also not consistent with a process of subtle randomization where 10% of normal network edges are randomized. Partial randomization of
healthy brain networks causes excessive reduction in clustering and insufficient increase in connection distance compared with the results on COS networks. (B) Between-group
differences in clustering and connection distance persist when networks are constructed over a range of identical threshold values, thus ensuring that all edges in all networks
represent between-regional correlations greater than the same minimum value. (C) The relationships between connection distance, efficiency, modularity, and clustering persist
when the topological metrics are normalized by their values in comparable random networks.
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(Table 2). Then we reestimated the exponential parameter

to optimally match the equivalent topological properties of

the networks observed in the COS group. We found that the

topological profile of the patients with COS, for example

reduced clustering and modularity, could be reasonably well

reproduced in the simulations simply by reducing the exponen-

tial parameter. In other words, a less severe penalization of

connection probability as a function of physical distance allowed

the formation of less clustered and modular networks.

This simple model of connection probability as an exponen-

tial function of distance is far from a perfect model of the data.

For example, the connection distance distributions generated

by the model are consistently different to those observed in the

actual data. But the model provides proof-of-concept that

topological abnormalities of the networks in COS could be

determined by relaxation of normal ‘‘cost controls’’ that favor

short-distance connections (see Table 2).

Discussion

We can think of the network organization of the brain

topologically, yet it is also physically embedded and anatom-

ically wired within the limited 3D space available. These results

reveal the strong interplay between spatial and topological

attributes of human brain networks. Healthy brain networks

were formed by strong short-distance connections favoring

clustered and modular network topologies, as well as a number

of long-distance connections concentrated on intermodular or

connector hubs in areas of multimodal association cortex. In

contrast, COS networks showed a profile of topological and

spatial abnormalities which, we will argue, is compatible with

developmental formation by a process of ‘‘overpruning’’ of

short-distance connections.

The (near) Minimization of Wiring Cost

As noted originally by Cajal in the late 19th century, and

extensively corroborated by multiple experimental and mod-

eling studies since then, many aspects of brain organization are

compatible with minimization of connection distance or wiring

cost (Ramón y Cajal 1899; Van Essen 1997; Chklovskii 2004;

Chen et al. 2006; Kaiser 2011; Sporns 2011). Previous studies

have revealed that functional connectivity decays with the

distance between brain regions, anticipating our finding that

healthy brain functional networks are composed predomi-

nantly of short-distance connections (Salvador et al. 2005;

Bellec et al. 2006; Honey et al. 2009). We provide fresh

evidence that key topological attributes of brain networks,

such as clustering and modularity, are strongly negatively

correlated with the distance between the most strongly

correlated nodes in whole brain networks. However, we have

also found that global efficiency of information transfer

(a property inversely related to path length) is positively

correlated with connection distance; intermodular connec-

tions are quantifiably longer than intramodular edges (~20%
longer on average in sparse functional networks); and a sub-

network of highly connected nodes or network hubs with

many long distance connections, with the appearance of a ‘‘rich

club’’ (Van den Heuvel and Sporns 2011), is located in

consistent regions of heteromodal association cortex.

These results on normal brain functional networks support

the theory that cost minimization alone is an important

principle in brain organization, but it cannot account for all

aspects of brain network topology (Kaiser and Hilgetag 2006;

Bassett et al. 2010; Kaiser et al. 2010; Fornito et al. 2011; Varier

and Kaiser 2011). If that were the case, we would expect brain

networks to be more regular or lattice-like in their organization

with correspondingly low global efficiency of information

transfer. Whereas, in fact, the parsimonious principle favoring

formation of clustered intramodular connections appears to be

somewhat offset by factors favoring a minority of relatively

long-distance connections which can sustain communication

between modules and confer greater global efficiency on the

network. Recent studies (Li et al. 2009; Van den Heuvel et al.

2009; Zalesky et al. 2011) have shown that fluid intelligence (as

measured by classical IQ tests) is negatively correlated with the

global minimum path length of structural and functional

networks, suggesting that the cognitive and behavioral

advantages of more efficient networks might drive their

selection despite the somewhat greater connection cost

entailed.

Brain Organization in Childhood-Onset Schizophrenia

Our study confirms topological disturbances in schizophrenia

and relates them for the first time to anatomical abnormalities

in connection distance. For thresholded networks that include

the strongest functional connections as edges, the average

wiring cost in COS is increased; COS networks contain

proportionally fewer short-distance edges, about the same

number of medium-distance edges, and proportionally more

long-distance edges. Regionally, the increased wiring cost is

highest in parts of the same subnetwork of highly connected

heteromodal hubs that contain the most long-distance con-

nections in the healthy participants. Given previous reports of

a reduction in gamma band synchrony within this subnetwork

in schizophrenia (Lee et al. 2003; Spencer et al. 2004; Symond

et al. 2005), we note that we do not find an absolute increase in

their interregional correlations. Rather, a disease-related deficit

in connectivity at short distances appears to spare the long-

distance connectivity of these hub regions, which accentuates

their role in thresholded brain networks.

In addition to alterations in the profile of connection

distances, the COS functional networks appear less clustered,

less modular, and less small-world than normal, which is

Table 2
Computational modeling of network topology

Average length of connections in network simulations, (mm)
with the parameter g tuned to mach the following topological
properties

Modularity Efficiency Clustering

Healthy
participants

31.8 ± 0.3 (g 5 0.08) 20.1 ± 0.1 (g 5 0.2) 18.2 ± 0.1 (g 5 0.23)

Patients
with COS

40.0 ± 0.6 (g 5 0.056) 21.7 ± 0.1 (g 5 0.3) 19.2 ± 0.1 (g 5 0.196)

Note: Using models of network growth to explicitly fit the topological (nonspatial) properties of the

networks, we find that the simulations of the patients with COS also have longer connection lengths

than the simulations of the healthy participants, in accordance with the actual increase in network

connection lengths that we find in COS (Fig. 1C,D). The model includes edges with a probability

P(edge) ~ e�gx, where x is the anatomical (Euclidean) distance between 2 brain regions. The

parameter g was tuned to match the modularity, global efficiency, and clustering of each clinical

group, and 20 simulations were conducted to estimate the mean connection length (mm) (±SD) of

the resulting networks. The simulated graphs and the data were identically thresholded at 2% edge

density.
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consistent with reports from previous graph theoretical resting

fMRI studies (Liu et al. 2008; Alexander-Bloch et al. 2010; Lynall

et al. 2010). It is notable that these topological disruptions in

schizophrenia are generally as predicted given the greater

mean connection distance between the most strongly con-

nected brain regions, although the relationship between wiring

cost and some topological properties is nonlinear. Thus, while

clustering and modularity decrease approximately linearly with

greater connection distance across the whole population,

global efficiency increases with connection distance in the

healthy controls but less so in the COS patients. The patients

thus have decreased clustering without a concomitant increase

in global efficiency, resulting in networks that are less small

world.

Although a statistical correlation between anatomical and

topological properties does not imply causation, the difference

in connection distance predicts the pattern of topological

alterations in schizophrenia. This can be illustrated with

reference to network growth models that simulate networks

under variable spatial constraints (Barthélemy 2010; Kaiser and

Hilgetag 2004; Kaiser et al. 2009). More severe distance

penalties that encourage more short-range connectivity create

graphs that are more modular and more clustered, consistent

with the topological properties of healthy brain networks

compared with those of patients with schizophrenia (Table 2).

Thus it is possible that the topological abnormalities observed

in the COS patients are determined by an aberrant neuro-

developmental process favoring proportionally fewer short-

distance connections (we return to this hypothesis below).

It is also tenable a priori that the randomization of network

topology in COS could be a statistical artifact caused by the

method of graph construction. This involves applying a thresh-

old to the functional connectivity (wavelet correlation) matrix

for each individual. As this threshold is lowered toward zero, it

is inevitable that some edges will be added to the graph due to

chance association rather than functional connectivity be-

tween fMRI time series. Since the COS patients generally had

lower strength of correlation than normal, especially at short

distances, it is possible that for any given connection density

there will be more edges attributable to chance association in

the COS networks, and this would have the effect of rendering

the network topology more random. However, we have shown

that random or partly randomized graphs imperfectly simulate

the spatial and topological characteristics of the COS networks;

that the observed abnormalities in both clustering and

connection distance persist when identical thresholds are used

to ensure that weak correlations are equally likely to be

included as edges in both normal and COS graphs; and that the

relationships between connection distance and topological

properties are conserved when the topological metrics are

normalized by their values in comparable random graphs.

Collectively, these results argue strongly against the null

hypothesis that the COS networks contain more edges

representing weak association by chance between fMRI time

series.

A ‘‘Functional Overpruning’’ Hypothesis

More substantively, we suggest that our results are consistent

with schizophrenia as a consequence of a neurodevelopmental

process of synaptic overpruning. In resting-state fMRI network

studies of normal development, it has been suggested that

pruning, coupled with maturational processes of axonal

myelination, could explain an apparent shift from short-

distance functional connectivity in children toward long-

distance connectivity during normal adolescence (Fair et al.

2009; Supekar et al. 2009). The attenuation of short-distance

functional connectivity, and the increase in connection

distance between the most strongly functionally connected

brain regions, could thus be interpreted as the results of

overpruning in patients with COS. Prior support for over-

pruning as a pathogenetic mechanism in schizophrenia is

provided by evidence that several putative markers of synaptic

density normally decline in adolescence after an early child-

hood increase, and the same markers may also be decreased in

schizophrenia. Synaptic pruning markers that are also abnor-

mally reduced in adolescent or adult patients with schizophre-

nia include slow wave (delta) sleep; the cortical metabolic rate;

gray matter volume, as measured in structural MRI studies; and

cortical synaptic density itself (Feinberg 1982, 1983; Harrison

1999; Keshavan et al. 1994; McGlashan and Hoffman 2000;

Gogtay et al. 2004; Feinberg and Campbell 2010). To this list,

we would potentially add short-distance functional connectiv-

ity, which is certainly reduced in this sample of patients with

schizophrenia; but we note that we did not also find a reduction

in short-range functional connectivity as a function of age,

either in patients or controls, as would be expected if this was

indeed a novel marker of normal pruning processes. However,

this could be a false negative due to a lack of any children

younger than age 12 in our study. Larger studies of network

properties over a wider range of ages in childhood and

adolescence will be helpful to inform neurodevelopmental

interpretations of brain network abnormalities in patient

groups.

Other pathogenetic explanations are also consistent with

our pattern of results. The absolute decrease in short-distance

functional connectivity, coupled with the lack of alteration in

the functional connectivity between distant brain regions

(Fig. 2B), suggests a primary deficit in formation or mainte-

nance of short-distance connections in schizophrenia and

therefore a proportionally greater contribution of long-range

connections to the global network configuration. But this

short-range connectivity deficit could be plausibly explained by

other mechanisms than synaptic overpruning, such as a distur-

bance or loss of formation or demyelination of short-distance

white matter tracts. A recent diffusion imaging study indeed

demonstrates decreased interregional white matter network

connectivity in patients with schizophrenia, although the

topological alteration in these white matter networks was

toward decreased efficiency and increased clustering (Zalesky

et al. 2011). In spite of broad similarities between diffusion

imaging and fMRI networks (Honey et al. 2007; Hagmann et al.

2008; Honey et al. 2009), this apparent discrepancy points to

the nontriviality of predicting how specific alterations in white

matter connectivity will impact functional networks, as well as

the need for more multimodal imaging studies in larger samples

of this clinically heterogeneous disorder.

Methodological Issues

The power to measure disorder-related differences in connec-

tion distance from fMRI measurements may be limited by the

adoption of coarse-grained anatomical templates to parcellate

the images and thus define the nodes of the networks. Previous
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fMRI network studies of schizophrenia have not reported

differences in connection distance, but they have typically used

anatomical templates (e.g., FSL’s Harvard-Oxford atlas; Alexan-

der-Bloch et al. 2010 or the Anatomical Automatic Labeling

atlas; Liu et al. 2008; Lynall et al. 2010) to define ~100 regional

nodes that are highly variable in terms of shape and size. The

use of such templates could mask the group difference that we

report in several possible ways. It is known that large variation

in the size of regions biases the strength of functional

connections in favor of larger regions (Salvador et al. 2008).

It is difficult to meaningfully assign physical distances to all of

the connections between differently sized regions. For

example, the Euclidean distance between the centroids of

a large region and an adjacent small region could be the same

as, or larger than, the distance between 2 nonadjacent regions

that are both small in size. In addition, working with a smaller

number of total regions will generally narrow the distance

distribution and reduce the range of possible distances, which

may reduce sensitivity to detect effects that are localized either

to short- or long-distance connections. In fact, using anatomical

templates with relatively few regions that vary significantly in

size, we fail to replicate our finding of increased connection

distance in COS networks. However, this key finding is robust

to using ~4000 6-mm isotropic voxels as network nodes, to

analyzing each cortical hemisphere or lobe separately, and to

constructing graphs using alternative methods (see Supple-

mentary Materials and Fig. S1).

Our case-control study is limited by the fact that IQ is

significantly lower in the patient population. This discrepancy

is difficult to avoid in studies of schizophrenia, because

cognitive impairment is a clear part of the disease phenotype

(Heinrichs and Zakzanis 1998). Ongoing sibling studies may

provide the best opportunity to look at the fMRI phenotype of

schizophrenia risk genes, in more exactly IQ-matched samples.

However, it is unlikely that the network alterations that we

report in schizophrenia are due to IQ differences alone. Several

studies (Li et al. 2009; Van den Heuvel et al. 2009; Zalesky et al.

2011) have demonstrated a positive correlation between IQ

and the global integration of brain networks (as measured by

high network efficiency and low minimum path length), but

the patients in our study do not show any evidence of

decreased network integration, as might be predicted by their

lower IQ score. Rather, the loss of short-distance connectivity

in patients appears to manifest in topological deficits of

clustering and modularity, segregative network properties that

are inversely correlated with integrative properties. However,

this pattern of results does raise the question of why low IQ in

the schizophrenia patients is not associated with a significantly

reduced efficiency, as might be expected from the normative

studies mentioned above. Evidently, the relationship between

efficiency and IQ that holds for healthy individuals may not be

predictive of the relationships between cognition and brain

network topology in the disease state. On the other hand,

a previous magnetoencephalography study did find reduced

cost efficiency in schizophrenia networks associated with

reduced working memory performance (Bassett et al. 2009),

and diffusion imaging studies have also suggested that there is

decreased global integration of networks in schizophrenia (Van

den Heuvel et al. 2010; Zalesky et al. 2011), so it is evident that

these issues are in need of further study.

Since fMRI functional connectivity cannot be used to

directly infer axonal projections, our data does not immediately

address the question of whether dysconnectivity in schizophre-

nia is primarily synaptic, axonal, or both (Stephan et al. 2006;

Ellison-Wright and Bullmore 2009). Our results do help to clarify

the fMRI phenotype of alterations in connectivity. If disconnec-

tivity denotes specifically a loss of connectivity, whereas

dysconnectivity denotes a broader range of pathologically

increased, decreased, or rearranged connections (Stephen

et al. 2009), our results suggest that short-distance disconnec-

tion may underlie network-level dysconnection that is reflected

in alterations of global topological properties. We do not find

evidence of increased functional connectivity in patients in any

brain regions, nor do we find evidence for decreased connec-

tivity of long-distance connections; but the relative importance

of interregional connections is rearranged in a way that

decreases segregative properties of the brain network such as

modularity and clustering, even when we control for any

differences in global connectivity strength between networks.

Supplementary Material

Supplementary material can be found at: http://www.cercor

.oxfordjournals.org/. Code to perform network analysis described in

this paper is available online at http://sourceforge.net/projects/

brainnetworks/files/.
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